12.0 Properties of orthogonal polynomials

Size: px
Start display at page:

Download "12.0 Properties of orthogonal polynomials"

Transcription

1 12.0 Properties of orthogonal polynomials In this section we study orthogonal polynomials to use them for the construction of quadrature formulas investigate projections on polynomial spaces and their convergence when the degree of the polynomials is increased 96

2 12.1 Orthogonal polynomials form a basis Theorem. [cf. Th. 12.1] Let B be a Hilbert space with P n B. Let {φ i, i = 0,..., n} be a set of polynomials with the properties Then, φ i P i and (φ i, φ j ) = 0 for i j. the functions {φ i } are linearly independent and if ψ P k is orthogonal to all polynomials in P k 1 then there exists a c 0 such that ψ = cφ k. 97

3 12.2 Orthogonal polynomials have real, distinct roots Theorem. [cf. Th. 12.2] Let 0 φ k P k be orthogonal to all elements in P k 1. exactly k distinct and real roots in [a, b] Then, φ k has Note, [a, b] is the interval which defines the inner product. The roots of the orthogonal polynomials depend only on k, [a, b] and the weight function w(x). 98

4 12.3 Quadrature (1) The basic idea of quadrature (integration) methods for computing is b a f(x)dx The approximation of the exact integral of f is taken as the exact integral of an approximation to f. As an approximation a polynomial which interpolates f in the points {x i, i = 0, 1,..., k} [a, b] is taken. 99

5 12.4 Quadrature (2) Let p(x) = k f(x i )L(x) be the interpolation polynomial of f at the interpolation points x i = a + c i (b a) and L the corresponding Lagrange polynomial. Then we make the ansats i=0 b a f(x)dx b a p(x)dx = h 1 0 p(a + θ)dθ = h k f(a + c i h) L(θ)dθ } 0 {{} i=0 1 =:b i with h = b a. 100

6 12.5 Order of a quadrature formula (3) Definition. Let q be the biggest integer such that the quadrature formula integrates f(x) = p(x) P q 1 exactly, then q is called the oder of the method. Evidently by construction q k + 1. Some methods: Method k f evals c 0 c 1 c 2 order q Rectangle rule Midpoint rule Trapezoidal rule Simpson s rule Gauss

7 12.6 Gauss quadrature (1) By placing the interpolation points, the order can be changed. What is the largest order for a given k? Theorem. property Let the x i s be the zeros of a polynomial φ s P s then the b a w(x)φ s (x)p(x)dx = 0 p P m 1 holds if and only if the corresponding quadrature method (Gauss method) has order s + m. 3 Example: a = 1, b = 1, w(x) = 1, c 0 = 5, c 3 1 = 0, c 2 = 5 defines the 3 stage Gauss-method, which has order 6. The c i s are zeros of the Legendre polynomials. 102

8 12.7 Gauss quadrature (2) The Gauss method has maximal order, i.e. same k and higher order. there is no method with the For preserving monotonicity the following theorem is important: Theorem. The coefficients b i for the Gauss quadrature method are positive. 103

9 Characterization of orthogonal polynomials Orthogonal polynomials are given by a 3-term recursion. The following theorem gives an alternative characterization: Theorem. The function φ k+1 C[a, b] satisfies the orthogonality condition b a w(x)φ k+1 (x)p(x)dx = 0 p P k if and only if there exists u such that w(x)φ k+1 (x) = u (k+1) (x) x [a, b] u (i) (a) = u (i) (b) = 0 i = 0, 1,..., k 104

10 12.8 Special orthogonal polynomials Definition. The polynomial defined by the orthogonality relation 1 1 (1 x) α (1 + x) β φ i (x)φ j (x) = 0 i j α 1, β 1 are called Jacobi polynomials This gives u(x) = (1 x) α+k+1 (1 + x) β+k+1. Example: α = β = 0 (1 x) k+1 (1 + x) k+1. By differentiation we get the so-called Legendre polynomials φ 0 (x) = 1 φ 1 (x) = dx d (1 + x)(1 x) = 2x φ 2 (x) = d2 dx 2 (1 + x)2 (1 x) 2 = 12x 2 4. For α = β = 1/2 we get the Chebychev polynomials. 105

11 12.9 Chebychev operator R n (1) Let the weight function w be w(x) := 1 1 x 2 We the corresponding norm: f 2 w := 1 1 f(x) 2 dx. Let R n : C[ 1, 1] P n be defined as the best approximation f R n f w = min p P n f p w. 106

12 12.10 Chebychev operator R n (2) We call R n the Chebychev operator. It is a linear projection. The orthogonal polynomials concerning this norm are the Chebychev polynomials φ j : n (φ j, f) (R n f)(x) = (φ j, φ j ) φ j(x) j=0 If f P n+1 then R n f is even the best approximation in the. -norm. How is R n f related to the best minmax approximation p for general f? The answer is given by R n and Theorem 3.1: f R n f (1 + R n ) f p. 107

13 12.11 Chebychev operator R n (3) Theorem. [Th. 12.7] R n = 1 π 1 2n π sin(n θ) 0 sin( 1 2 θ) dx = n ( ) 1 jπ j tan. 2n + 1 π j=1 108

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA5 Numerical Methods Spring 5 Solutions to exercise set 9 Find approximate values of the following integrals using the adaptive

More information

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method COURSE 7 3. Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method The presence of derivatives in the remainder difficulties in applicability to practical problems

More information

APPENDIX B GRAM-SCHMIDT PROCEDURE OF ORTHOGONALIZATION. Let V be a finite dimensional inner product space spanned by basis vector functions

APPENDIX B GRAM-SCHMIDT PROCEDURE OF ORTHOGONALIZATION. Let V be a finite dimensional inner product space spanned by basis vector functions 301 APPENDIX B GRAM-SCHMIDT PROCEDURE OF ORTHOGONALIZATION Let V be a finite dimensional inner product space spanned by basis vector functions {w 1, w 2,, w n }. According to the Gram-Schmidt Process an

More information

In numerical analysis quadrature refers to the computation of definite integrals.

In numerical analysis quadrature refers to the computation of definite integrals. Numerical Quadrature In numerical analysis quadrature refers to the computation of definite integrals. f(x) a x i x i+1 x i+2 b x A traditional way to perform numerical integration is to take a piece of

More information

Examination paper for TMA4215 Numerical Mathematics

Examination paper for TMA4215 Numerical Mathematics Department of Mathematical Sciences Examination paper for TMA425 Numerical Mathematics Academic contact during examination: Trond Kvamsdal Phone: 93058702 Examination date: 6th of December 207 Examination

More information

Best approximation in the 2-norm

Best approximation in the 2-norm Best approximation in the 2-norm Department of Mathematical Sciences, NTNU september 26th 2012 Vector space A real vector space V is a set with a 0 element and three operations: Addition: x, y V then x

More information

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004 Department of Applied Mathematics and Theoretical Physics AMA 204 Numerical analysis Exam Winter 2004 The best six answers will be credited All questions carry equal marks Answer all parts of each question

More information

5 Numerical Integration & Dierentiation

5 Numerical Integration & Dierentiation 5 Numerical Integration & Dierentiation Department of Mathematics & Statistics ASU Outline of Chapter 5 1 The Trapezoidal and Simpson Rules 2 Error Formulas 3 Gaussian Numerical Integration 4 Numerical

More information

Numerical Integra/on

Numerical Integra/on Numerical Integra/on Applica/ons The Trapezoidal Rule is a technique to approximate the definite integral where For 1 st order: f(a) f(b) a b Error Es/mate of Trapezoidal Rule Truncation error: From Newton-Gregory

More information

SPECTRAL METHODS: ORTHOGONAL POLYNOMIALS

SPECTRAL METHODS: ORTHOGONAL POLYNOMIALS SPECTRAL METHODS: ORTHOGONAL POLYNOMIALS 31 October, 2007 1 INTRODUCTION 2 ORTHOGONAL POLYNOMIALS Properties of Orthogonal Polynomials 3 GAUSS INTEGRATION Gauss- Radau Integration Gauss -Lobatto Integration

More information

Chapter 4: Interpolation and Approximation. October 28, 2005

Chapter 4: Interpolation and Approximation. October 28, 2005 Chapter 4: Interpolation and Approximation October 28, 2005 Outline 1 2.4 Linear Interpolation 2 4.1 Lagrange Interpolation 3 4.2 Newton Interpolation and Divided Differences 4 4.3 Interpolation Error

More information

Curve Fitting and Approximation

Curve Fitting and Approximation Department of Physics Cotton College State University, Panbazar Guwahati 781001, Assam December 6, 2016 Outline Curve Fitting 1 Curve Fitting Outline Curve Fitting 1 Curve Fitting Topics in the Syllabus

More information

Romberg Integration and Gaussian Quadrature

Romberg Integration and Gaussian Quadrature Romberg Integration and Gaussian Quadrature P. Sam Johnson October 17, 014 P. Sam Johnson (NITK) Romberg Integration and Gaussian Quadrature October 17, 014 1 / 19 Overview We discuss two methods for integration.

More information

(x x 0 )(x x 1 )... (x x n ) (x x 0 ) + y 0.

(x x 0 )(x x 1 )... (x x n ) (x x 0 ) + y 0. > 5. Numerical Integration Review of Interpolation Find p n (x) with p n (x j ) = y j, j = 0, 1,,..., n. Solution: p n (x) = y 0 l 0 (x) + y 1 l 1 (x) +... + y n l n (x), l k (x) = n j=1,j k Theorem Let

More information

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes).

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes). CE 025 - Lecture 6 LECTURE 6 GAUSS QUADRATURE In general for ewton-cotes (equispaced interpolation points/ data points/ integration points/ nodes). x E x S fx dx hw' o f o + w' f + + w' f + E 84 f 0 f

More information

Numerical Analysis Comprehensive Exam Questions

Numerical Analysis Comprehensive Exam Questions Numerical Analysis Comprehensive Exam Questions 1. Let f(x) = (x α) m g(x) where m is an integer and g(x) C (R), g(α). Write down the Newton s method for finding the root α of f(x), and study the order

More information

Approximation Theory

Approximation Theory Approximation Theory Function approximation is the task of constructing, for a given function, a simpler function so that the difference between the two functions is small and to then provide a quantifiable

More information

Numerical Analysis An Advanced Course. Gheorghe Coman, Ioana Chiorean, Teodora Cătinaş

Numerical Analysis An Advanced Course. Gheorghe Coman, Ioana Chiorean, Teodora Cătinaş Numerical Analysis An Advanced Course Gheorghe Coman, Ioana Chiorean, Teodora Cătinaş 2 Contents 1 Preliminaries 9 1.1 Linear spaces........................... 9 1.2 Examples of functions spaces...................

More information

Numerical Analysis Preliminary Exam 10.00am 1.00pm, January 19, 2018

Numerical Analysis Preliminary Exam 10.00am 1.00pm, January 19, 2018 Numerical Analysis Preliminary Exam 0.00am.00pm, January 9, 208 Instructions. You have three hours to complete this exam. Submit solutions to four (and no more) of the following six problems. Please start

More information

Numerical integration and differentiation. Unit IV. Numerical Integration and Differentiation. Plan of attack. Numerical integration.

Numerical integration and differentiation. Unit IV. Numerical Integration and Differentiation. Plan of attack. Numerical integration. Unit IV Numerical Integration and Differentiation Numerical integration and differentiation quadrature classical formulas for equally spaced nodes improper integrals Gaussian quadrature and orthogonal

More information

ON A WEIGHTED INTERPOLATION OF FUNCTIONS WITH CIRCULAR MAJORANT

ON A WEIGHTED INTERPOLATION OF FUNCTIONS WITH CIRCULAR MAJORANT ON A WEIGHTED INTERPOLATION OF FUNCTIONS WITH CIRCULAR MAJORANT Received: 31 July, 2008 Accepted: 06 February, 2009 Communicated by: SIMON J SMITH Department of Mathematics and Statistics La Trobe University,

More information

COURSE Numerical integration of functions

COURSE Numerical integration of functions COURSE 6 3. Numerical integration of functions The need: for evaluating definite integrals of functions that has no explicit antiderivatives or whose antiderivatives are not easy to obtain. Let f : [a,

More information

Section 6.6 Gaussian Quadrature

Section 6.6 Gaussian Quadrature Section 6.6 Gaussian Quadrature Key Terms: Method of undetermined coefficients Nonlinear systems Gaussian quadrature Error Legendre polynomials Inner product Adapted from http://pathfinder.scar.utoronto.ca/~dyer/csca57/book_p/node44.html

More information

M.SC. PHYSICS - II YEAR

M.SC. PHYSICS - II YEAR MANONMANIAM SUNDARANAR UNIVERSITY DIRECTORATE OF DISTANCE & CONTINUING EDUCATION TIRUNELVELI 627012, TAMIL NADU M.SC. PHYSICS - II YEAR DKP26 - NUMERICAL METHODS (From the academic year 2016-17) Most Student

More information

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 16. f(x) dx,

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 16. f(x) dx, Panel integration Week 12: Monday, Apr 16 Suppose we want to compute the integral b a f(x) dx In estimating a derivative, it makes sense to use a locally accurate approximation to the function around the

More information

Approximation theory

Approximation theory Approximation theory Xiaojing Ye, Math & Stat, Georgia State University Spring 2019 Numerical Analysis II Xiaojing Ye, Math & Stat, Georgia State University 1 1 1.3 6 8.8 2 3.5 7 10.1 Least 3squares 4.2

More information

8.2 Discrete Least Squares Approximation

8.2 Discrete Least Squares Approximation Chapter 8 Approximation Theory 8.1 Introduction Approximation theory involves two types of problems. One arises when a function is given explicitly, but we wish to find a simpler type of function, such

More information

Math 122 Fall Unit Test 1 Review Problems Set A

Math 122 Fall Unit Test 1 Review Problems Set A Math Fall 8 Unit Test Review Problems Set A We have chosen these problems because we think that they are representative of many of the mathematical concepts that we have studied. There is no guarantee

More information

PART IV Spectral Methods

PART IV Spectral Methods PART IV Spectral Methods Additional References: R. Peyret, Spectral methods for incompressible viscous flow, Springer (2002), B. Mercier, An introduction to the numerical analysis of spectral methods,

More information

Vectors in Function Spaces

Vectors in Function Spaces Jim Lambers MAT 66 Spring Semester 15-16 Lecture 18 Notes These notes correspond to Section 6.3 in the text. Vectors in Function Spaces We begin with some necessary terminology. A vector space V, also

More information

Engg. Math. II (Unit-IV) Numerical Analysis

Engg. Math. II (Unit-IV) Numerical Analysis Dr. Satish Shukla of 33 Engg. Math. II (Unit-IV) Numerical Analysis Syllabus. Interpolation and Curve Fitting: Introduction to Interpolation; Calculus of Finite Differences; Finite Difference and Divided

More information

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam Jim Lambers MAT 460/560 Fall Semester 2009-10 Practice Final Exam 1. Let f(x) = sin 2x + cos 2x. (a) Write down the 2nd Taylor polynomial P 2 (x) of f(x) centered around x 0 = 0. (b) Write down the corresponding

More information

Answers to Homework 9: Numerical Integration

Answers to Homework 9: Numerical Integration Math 8A Spring Handout # Sergey Fomel April 3, Answers to Homework 9: Numerical Integration. a) Suppose that the function f x) = + x ) is known at three points: x =, x =, and x 3 =. Interpolate the function

More information

0 = x 4 + qx 2 + rx + s = (x 2 + jx + l)(x 2 jx + m). If we expand and identify the coefficients in both sides we get the following system

0 = x 4 + qx 2 + rx + s = (x 2 + jx + l)(x 2 jx + m). If we expand and identify the coefficients in both sides we get the following system Florian Enescu, Fall 2010 Polynomials: Lecture notes Week 12. 1. Descartes method; Approximation of roots of polynomials. We will continue now by presenting Lagrange s method for solving degree four equations.

More information

Introduction Linear system Nonlinear equation Interpolation

Introduction Linear system Nonlinear equation Interpolation Interpolation Interpolation is the process of estimating an intermediate value from a set of discrete or tabulated values. Suppose we have the following tabulated values: y y 0 y 1 y 2?? y 3 y 4 y 5 x

More information

Integration. Topic: Trapezoidal Rule. Major: General Engineering. Author: Autar Kaw, Charlie Barker.

Integration. Topic: Trapezoidal Rule. Major: General Engineering. Author: Autar Kaw, Charlie Barker. Integration Topic: Trapezoidal Rule Major: General Engineering Author: Autar Kaw, Charlie Barker 1 What is Integration Integration: The process of measuring the area under a function plotted on a graph.

More information

MA 3021: Numerical Analysis I Numerical Differentiation and Integration

MA 3021: Numerical Analysis I Numerical Differentiation and Integration MA 3021: Numerical Analysis I Numerical Differentiation and Integration Suh-Yuh Yang ( 楊肅煜 ) Department of Mathematics, National Central University Jhongli District, Taoyuan City 32001, Taiwan syyang@math.ncu.edu.tw

More information

Exam in Numerical Methods (MA2501)

Exam in Numerical Methods (MA2501) Norwegian University of Science and Technology Department of Mathematical Sciences Page 1 of 7 MA251 Numeriske Metoder Olivier Verdier (contact: 48 95 2 66) Exam in Numerical Methods (MA251) 211-5-25,

More information

Numerical Integra/on

Numerical Integra/on Numerical Integra/on The Trapezoidal Rule is a technique to approximate the definite integral where For 1 st order: f(a) f(b) a b Error Es/mate of Trapezoidal Rule Truncation error: From Newton-Gregory

More information

Ch. 03 Numerical Quadrature. Andrea Mignone Physics Department, University of Torino AA

Ch. 03 Numerical Quadrature. Andrea Mignone Physics Department, University of Torino AA Ch. 03 Numerical Quadrature Andrea Mignone Physics Department, University of Torino AA 2017-2018 Numerical Quadrature In numerical analysis quadrature refers to the computation of definite integrals. y

More information

Examination paper for TMA4125 Matematikk 4N

Examination paper for TMA4125 Matematikk 4N Department of Mathematical Sciences Examination paper for TMA45 Matematikk 4N Academic contact during examination: Anne Kværnø a, Louis-Philippe Thibault b Phone: a 9 66 38 4, b 9 3 0 95 Examination date:

More information

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes Root finding: 1 a The points {x n+1, }, {x n, f n }, {x n 1, f n 1 } should be co-linear Say they lie on the line x + y = This gives the relations x n+1 + = x n +f n = x n 1 +f n 1 = Eliminating α and

More information

LECTURE 14 NUMERICAL INTEGRATION. Find

LECTURE 14 NUMERICAL INTEGRATION. Find LECTURE 14 NUMERCAL NTEGRATON Find b a fxdx or b a vx ux fx ydy dx Often integration is required. However te form of fx may be suc tat analytical integration would be very difficult or impossible. Use

More information

Simpson s 1/3 Rule Simpson s 1/3 rule assumes 3 equispaced data/interpolation/integration points

Simpson s 1/3 Rule Simpson s 1/3 rule assumes 3 equispaced data/interpolation/integration points CE 05 - Lecture 5 LECTURE 5 UMERICAL ITEGRATIO COTIUED Simpson s / Rule Simpson s / rule assumes equispaced data/interpolation/integration points Te integration rule is based on approximating fx using

More information

A Spectral Method for Nonlinear Elliptic Equations

A Spectral Method for Nonlinear Elliptic Equations A Spectral Method for Nonlinear Elliptic Equations Kendall Atkinson, David Chien, Olaf Hansen July 8, 6 Abstract Let Ω be an open, simply connected, and bounded region in R d, d, and assume its boundary

More information

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. 29 May :45 11:45

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. 29 May :45 11:45 Two hours MATH20602 To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER NUMERICAL ANALYSIS 1 29 May 2015 9:45 11:45 Answer THREE of the FOUR questions. If more

More information

Numerical integration - I. M. Peressi - UniTS - Laurea Magistrale in Physics Laboratory of Computational Physics - Unit V

Numerical integration - I. M. Peressi - UniTS - Laurea Magistrale in Physics Laboratory of Computational Physics - Unit V Numerical integration - I M. Peressi - UniTS - Laurea Magistrale in Physics Laboratory of Computational Physics - Unit V deterministic methods in 1D equispaced points (trapezoidal, Simpson...), others...

More information

Advanced Computational Fluid Dynamics AA215A Lecture 2 Approximation Theory. Antony Jameson

Advanced Computational Fluid Dynamics AA215A Lecture 2 Approximation Theory. Antony Jameson Advanced Computational Fluid Dynamics AA5A Lecture Approximation Theory Antony Jameson Winter Quarter, 6, Stanford, CA Last revised on January 7, 6 Contents Approximation Theory. Least Squares Approximation

More information

Examples of solutions to the examination in Computational Physics (FYTN03), October 24, 2016

Examples of solutions to the examination in Computational Physics (FYTN03), October 24, 2016 Examples of solutions to the examination in Computational Physics (FYTN3), October 4, 6 Allowed calculation aids: TEFYMA or Physics Handbook. The examination consists of eight problems each worth five

More information

Mathematics for Engineers. Numerical mathematics

Mathematics for Engineers. Numerical mathematics Mathematics for Engineers Numerical mathematics Integers Determine the largest representable integer with the intmax command. intmax ans = int32 2147483647 2147483647+1 ans = 2.1475e+09 Remark The set

More information

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form Qualifying exam for numerical analysis (Spring 2017) Show your work for full credit. If you are unable to solve some part, attempt the subsequent parts. 1. Consider the following finite difference: f (0)

More information

Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error. 2- Fixed point

Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error. 2- Fixed point Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error In this method we assume initial value of x, and substitute in the equation. Then modify x and continue till we

More information

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018 Numerical Analysis Preliminary Exam 1 am to 1 pm, August 2, 218 Instructions. You have three hours to complete this exam. Submit solutions to four (and no more) of the following six problems. Please start

More information

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by 1. QUESTION (a) Given a nth degree Taylor polynomial P n (x) of a function f(x), expanded about x = x 0, write down the Lagrange formula for the truncation error, carefully defining all its elements. How

More information

Practice Exam 2 (Solutions)

Practice Exam 2 (Solutions) Math 5, Fall 7 Practice Exam (Solutions). Using the points f(x), f(x h) and f(x + h) we want to derive an approximation f (x) a f(x) + a f(x h) + a f(x + h). (a) Write the linear system that you must solve

More information

Interpolation. Chapter Interpolation. 7.2 Existence, Uniqueness and conditioning

Interpolation. Chapter Interpolation. 7.2 Existence, Uniqueness and conditioning 76 Chapter 7 Interpolation 7.1 Interpolation Definition 7.1.1. Interpolation of a given function f defined on an interval [a,b] by a polynomial p: Given a set of specified points {(t i,y i } n with {t

More information

Exam in TMA4215 December 7th 2012

Exam in TMA4215 December 7th 2012 Norwegian University of Science and Technology Department of Mathematical Sciences Page of 9 Contact during the exam: Elena Celledoni, tlf. 7359354, cell phone 48238584 Exam in TMA425 December 7th 22 Allowed

More information

Legendre s Equation. PHYS Southern Illinois University. October 13, 2016

Legendre s Equation. PHYS Southern Illinois University. October 13, 2016 PHYS 500 - Southern Illinois University October 13, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 13, 2016 1 / 10 The Laplacian in Spherical Coordinates The Laplacian is given

More information

Numerical Integration (Quadrature) Another application for our interpolation tools!

Numerical Integration (Quadrature) Another application for our interpolation tools! Numerical Integration (Quadrature) Another application for our interpolation tools! Integration: Area under a curve Curve = data or function Integrating data Finite number of data points spacing specified

More information

ECS130 Scientific Computing. Lecture 1: Introduction. Monday, January 7, 10:00 10:50 am

ECS130 Scientific Computing. Lecture 1: Introduction. Monday, January 7, 10:00 10:50 am ECS130 Scientific Computing Lecture 1: Introduction Monday, January 7, 10:00 10:50 am About Course: ECS130 Scientific Computing Professor: Zhaojun Bai Webpage: http://web.cs.ucdavis.edu/~bai/ecs130/ Today

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part IB Thursday 7 June 2007 9 to 12 PAPER 3 Before you begin read these instructions carefully. Each question in Section II carries twice the number of marks of each question in Section

More information

1.8. Integration using Tables and CAS

1.8. Integration using Tables and CAS 1.. INTEGRATION USING TABLES AND CAS 39 1.. Integration using Tables and CAS The use of tables of integrals and Computer Algebra Systems allow us to find integrals very quickly without having to perform

More information

Fourier Series. 1. Review of Linear Algebra

Fourier Series. 1. Review of Linear Algebra Fourier Series In this section we give a short introduction to Fourier Analysis. If you are interested in Fourier analysis and would like to know more detail, I highly recommend the following book: Fourier

More information

Bivariate Lagrange interpolation at the Padua points: The generating curve approach

Bivariate Lagrange interpolation at the Padua points: The generating curve approach Journal of Approximation Theory 43 (6) 5 5 www.elsevier.com/locate/jat Bivariate Lagrange interpolation at the Padua points: The generating curve approach Len Bos a, Marco Caliari b, Stefano De Marchi

More information

Numerical Integration

Numerical Integration Numerical Integration Sanzheng Qiao Department of Computing and Software McMaster University February, 2014 Outline 1 Introduction 2 Rectangle Rule 3 Trapezoid Rule 4 Error Estimates 5 Simpson s Rule 6

More information

Polynomial interpolation on the sphere, reproducing kernels and random matrices

Polynomial interpolation on the sphere, reproducing kernels and random matrices Polynomial interpolation on the sphere, reproducing kernels and random matrices Paul Leopardi Mathematical Sciences Institute, Australian National University. For presentation at MASCOS Workshop on Stochastics

More information

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space.

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space. Chapter 1 Preliminaries The purpose of this chapter is to provide some basic background information. Linear Space Hilbert Space Basic Principles 1 2 Preliminaries Linear Space The notion of linear space

More information

Multistage Methods I: Runge-Kutta Methods

Multistage Methods I: Runge-Kutta Methods Multistage Methods I: Runge-Kutta Methods Varun Shankar January, 0 Introduction Previously, we saw that explicit multistep methods (AB methods) have shrinking stability regions as their orders are increased.

More information

Calculus of Variations Summer Term 2014

Calculus of Variations Summer Term 2014 Calculus of Variations Summer Term 2014 Lecture 12 26. Juni 2014 c Daria Apushkinskaya 2014 () Calculus of variations lecture 12 26. Juni 2014 1 / 25 Purpose of Lesson Purpose of Lesson: To discuss numerical

More information

Orthogonal Polynomials and Gaussian Quadrature

Orthogonal Polynomials and Gaussian Quadrature Orthogonal Polynomials and Gaussian Quadrature 1. Orthogonal polynomials Given a bounded, nonnegative, nondecreasing function w(x) on an interval, I of the real line, we consider the Hilbert space L 2

More information

NUMERICAL ANALYSIS PROBLEMS

NUMERICAL ANALYSIS PROBLEMS NUMERICAL ANALYSIS PROBLEMS JAMES KEESLING The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.. Solving Equations Problem.

More information

8.3 Numerical Quadrature, Continued

8.3 Numerical Quadrature, Continued 8.3 Numerical Quadrature, Continued Ulrich Hoensch Friday, October 31, 008 Newton-Cotes Quadrature General Idea: to approximate the integral I (f ) of a function f : [a, b] R, use equally spaced nodes

More information

Partial Differential Equations and Random Walks

Partial Differential Equations and Random Walks Partial Differential Equations and Random Walks with Emphasis on the Heat Equation Kevin Hu January 7, 2014 Kevin Hu PDE and Random Walks January 7, 2014 1 / 28 Agenda 1 Introduction Overview 2 Random

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georgia Tech PHYS 612 Mathematical Methods of Physics I Instructor: Predrag Cvitanović Fall semester 2012 Homework Set #5 due October 2, 2012 == show all your work for maximum credit, == put labels, title,

More information

Key Words: cardinal B-spline, coefficients, moments, rectangular rule, interpolating quadratic spline, hat function, cubic B-spline.

Key Words: cardinal B-spline, coefficients, moments, rectangular rule, interpolating quadratic spline, hat function, cubic B-spline. M a t h e m a t i c a B a l a n i c a New Series Vol. 24, 2, Fasc.3-4 Splines in Numerical Integration Zlato Udovičić We gave a short review of several results which are related to the role of splines

More information

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7 Linear Algebra and its Applications-Lab 1 1) Use Gaussian elimination to solve the following systems x 1 + x 2 2x 3 + 4x 4 = 5 1.1) 2x 1 + 2x 2 3x 3 + x 4 = 3 3x 1 + 3x 2 4x 3 2x 4 = 1 x + y + 2z = 4 1.4)

More information

Method of Finite Elements I

Method of Finite Elements I Method of Finite Elements I PhD Candidate - Charilaos Mylonas HIL H33.1 and Boundary Conditions, 26 March, 2018 Institute of Structural Engineering Method of Finite Elements I 1 Outline 1 2 Penalty method

More information

10550 PRACTICE FINAL EXAM SOLUTIONS. x 2 4. x 2 x 2 5x +6 = lim x +2. x 2 x 3 = 4 1 = 4.

10550 PRACTICE FINAL EXAM SOLUTIONS. x 2 4. x 2 x 2 5x +6 = lim x +2. x 2 x 3 = 4 1 = 4. 55 PRACTICE FINAL EXAM SOLUTIONS. First notice that x 2 4 x 2x + 2 x 2 5x +6 x 2x. This function is undefined at x 2. Since, in the it as x 2, we only care about what happens near x 2 an for x less than

More information

AM205: Assignment 3 (due 5 PM, October 20)

AM205: Assignment 3 (due 5 PM, October 20) AM25: Assignment 3 (due 5 PM, October 2) For this assignment, first complete problems 1, 2, 3, and 4, and then complete either problem 5 (on theory) or problem 6 (on an application). If you submit answers

More information

Lecture IX. Definition 1 A non-singular Sturm 1 -Liouville 2 problem consists of a second order linear differential equation of the form.

Lecture IX. Definition 1 A non-singular Sturm 1 -Liouville 2 problem consists of a second order linear differential equation of the form. Lecture IX Abstract When solving PDEs it is often necessary to represent the solution in terms of a series of orthogonal functions. One way to obtain an orthogonal family of functions is by solving a particular

More information

Part IB - Easter Term 2003 Numerical Analysis I

Part IB - Easter Term 2003 Numerical Analysis I Part IB - Easter Term 2003 Numerical Analysis I 1. Course description Here is an approximative content of the course 1. LU factorization Introduction. Gaussian elimination. LU factorization. Pivoting.

More information

Exercise 11. Isao Sasano

Exercise 11. Isao Sasano Exercise Isao Sasano Exercise Calculate the value of the following series by using the Parseval s equality for the Fourier series of f(x) x on the range [, π] following the steps ()-(5). () Calculate the

More information

Calculus of Variations Summer Term 2016

Calculus of Variations Summer Term 2016 Calculus of Variations Summer Term 2016 Lecture 12 Universität des Saarlandes 17. Juni 2016 c Daria Apushkinskaya (UdS) Calculus of variations lecture 12 17. Juni 2016 1 / 32 Purpose of Lesson Purpose

More information

Variational Methods & Optimal Control

Variational Methods & Optimal Control Variational Methods & Optimal Control lecture 12 Matthew Roughan Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide April 14, 216

More information

Function Space and Convergence Types

Function Space and Convergence Types Function Space and Convergence Types PHYS 500 - Southern Illinois University November 1, 2016 PHYS 500 - Southern Illinois University Function Space and Convergence Types November 1, 2016 1 / 7 Recall

More information

Simultaneous Gaussian quadrature for Angelesco systems

Simultaneous Gaussian quadrature for Angelesco systems for Angelesco systems 1 KU Leuven, Belgium SANUM March 22, 2016 1 Joint work with Doron Lubinsky Introduced by C.F. Borges in 1994 Introduced by C.F. Borges in 1994 (goes back to Angelesco 1918). Introduced

More information

LEAST SQUARES APPROXIMATION

LEAST SQUARES APPROXIMATION LEAST SQUARES APPROXIMATION One more approach to approximating a function f (x) on an interval a x b is to seek an approximation p(x) with a small average error over the interval of approximation. A convenient

More information

Separation of Variables in Linear PDE: One-Dimensional Problems

Separation of Variables in Linear PDE: One-Dimensional Problems Separation of Variables in Linear PDE: One-Dimensional Problems Now we apply the theory of Hilbert spaces to linear differential equations with partial derivatives (PDE). We start with a particular example,

More information

Simple Examples on Rectangular Domains

Simple Examples on Rectangular Domains 84 Chapter 5 Simple Examples on Rectangular Domains In this chapter we consider simple elliptic boundary value problems in rectangular domains in R 2 or R 3 ; our prototype example is the Poisson equation

More information

Day 2 Notes: Riemann Sums In calculus, the result of f ( x)

Day 2 Notes: Riemann Sums In calculus, the result of f ( x) AP Calculus Unit 6 Basic Integration & Applications Day 2 Notes: Riemann Sums In calculus, the result of f ( x) dx is a function that represents the anti-derivative of the function f(x). This is also sometimes

More information

Chapter 5: Numerical Integration and Differentiation

Chapter 5: Numerical Integration and Differentiation Chapter 5: Numerical Integration and Differentiation PART I: Numerical Integration Newton-Cotes Integration Formulas The idea of Newton-Cotes formulas is to replace a complicated function or tabulated

More information

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places.

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places. NUMERICAL METHODS 1. Rearranging the equation x 3 =.5 gives the iterative formula x n+1 = g(x n ), where g(x) = (2x 2 ) 1. (a) Starting with x = 1, compute the x n up to n = 6, and describe what is happening.

More information

Interpolation and the Lagrange Polynomial

Interpolation and the Lagrange Polynomial Interpolation and the Lagrange Polynomial MATH 375 J. Robert Buchanan Department of Mathematics Fall 2013 Introduction We often choose polynomials to approximate other classes of functions. Theorem (Weierstrass

More information

There are two things that are particularly nice about the first basis

There are two things that are particularly nice about the first basis Orthogonality and the Gram-Schmidt Process In Chapter 4, we spent a great deal of time studying the problem of finding a basis for a vector space We know that a basis for a vector space can potentially

More information

NUMERICAL DYNAMIC PROGRAMMING

NUMERICAL DYNAMIC PROGRAMMING NUMERICAL DYNAMIC PROGRAMMING Kenneth L. Judd Hoover Institution and NBER July 29, 2008 1 Dynamic Programming Foundation of dynamic economic modelling Individual decisionmaking Social planners problems,

More information

MA Spring 2013 Lecture Topics

MA Spring 2013 Lecture Topics LECTURE 1 Chapter 12.1 Coordinate Systems Chapter 12.2 Vectors MA 16200 Spring 2013 Lecture Topics Let a,b,c,d be constants. 1. Describe a right hand rectangular coordinate system. Plot point (a,b,c) inn

More information

An Analysis of Five Numerical Methods for Approximating Certain Hypergeometric Functions in Domains within their Radii of Convergence

An Analysis of Five Numerical Methods for Approximating Certain Hypergeometric Functions in Domains within their Radii of Convergence An Analysis of Five Numerical Methods for Approximating Certain Hypergeometric Functions in Domains within their Radii of Convergence John Pearson MSc Special Topic Abstract Numerical approximations of

More information

Examination paper for TMA4130 Matematikk 4N

Examination paper for TMA4130 Matematikk 4N Department of Mathematical Sciences Examination paper for TMA4130 Matematikk 4N Academic contact during examination: Morten Nome Phone: 90 84 97 83 Examination date: 13 December 2017 Examination time (from

More information

Class notes: Approximation

Class notes: Approximation Class notes: Approximation Introduction Vector spaces, linear independence, subspace The goal of Numerical Analysis is to compute approximations We want to approximate eg numbers in R or C vectors in R

More information

Fixed point iteration and root finding

Fixed point iteration and root finding Fixed point iteration and root finding The sign function is defined as x > 0 sign(x) = 0 x = 0 x < 0. It can be evaluated via an iteration which is useful for some problems. One such iteration is given

More information