Examples of solutions to the examination in Computational Physics (FYTN03), October 24, 2016

Size: px
Start display at page:

Download "Examples of solutions to the examination in Computational Physics (FYTN03), October 24, 2016"

Transcription

1 Examples of solutions to the examination in Computational Physics (FYTN3), October 4, 6 Allowed calculation aids: TEFYMA or Physics Handbook. The examination consists of eight problems each worth five points.. Suppose you seek the quantity a = a (h) h and have numerically computed two estimates to a through a second order method (global error scales h ). Denote by a(h) and a(h) those estimates. a) Derive, using a(h) and a(h), an estimator for a which has an error h 3 or better (Richardson extrapolation). b) Suppose that the next order global error term is h 6. How can you further improve upon your estimate from a)? The functional form of a(h) is known to be a (h) = a + Ah + Bh 6 + O ( h 7). a) We thus have so that â (h) a(h) = a + Ah + Bh 6 + O(h 7 ) () a(h) = a + 4Ah + 3Bh 6 + O ( h 7) () 4a (h) a (h) 3 is an improved estimator of a. b) Continuing in a similar fashion, we have Hence, the estimator = a Bh 6 + ( h 7) (3) â(h) = a Bh 6 + O(h 7 ) (4) â(h) = a 64 Bh 6 + O ( h 7) (5) â (h) 64â (h) â (h) 63 = a + ( h 7) (6) improves further upon the result from a).. Consider the initial value problem d 3 y(t)/ 3 = dy(t)/ y(t) with y() =, y () = and y () =. a) Rewrite the equation above as a set of first-order equations. b) Solve the first-order equations using the Euler method with a step size h =. and calculate a numerical value for y(t) at t =..

2 a) Introducing a(t) = y (t) and v(t) = y (t), we can write the equation above according to da(t) dv(t) dy(t) = v(t) y(t) (7) = a(t) (8) = v(t) (9) Or, on matrix form, dy(t) = AY(t) A = where Y(t) = (a(t), v(t), y(t)), with initial condition Y() = (a(), v(), y()) = (,, ). b) We discretize time t n = nh, where h is the step-size, and define Y n = Y(t n ) = (a(t n ), v(t n ), y(t n )). Replacing the time-derivatives above with a forward difference and multiplying by h then leads to the Euler method: The solution is Y n+ = Y n + hay n = (I + ha)y n () Y n = (I + ha) n Y () Carrying out the two required matrix multiplications, using the given initial condition, leads to Y(t =.) = (a(.), v(.), y(.)) = ( h, h, ). Thus, y(t =.) =. 3. a) Consider the Gauss quadrature theorem. From this theorem we have the identity f(x)w(x)dx = A f(x ) + A f(x ) if f(x) is chosen to be a polynomial of degree less than or equal to 3, with suitably chosen weight function, w(x). a) Which of the following choices of weight function, w(x), are valid choices for the theorem to apply: (i) exp( x) sin(πx/), (ii) exp( x ), (iii) /( x ), and (iv) exp( x) cos (πx/)? Why? b) Choose w(x) = exp( x) and determine the weights A, A and the abscissas x, x such that this is relation is exact. Hint: The integral x n e x dx = n! (for n =,,,...) may be useful. a) The Gauss quadrature theorem requires the weight function to be non-negative, i.e. that w(x) (also, w(x) must be well-defined in the sense that all moments exists). These conditions are satisfied for cases (ii) and (iv). b) We need the corresponding second order orthogonal polynomial, and we use the Gram- Schmi method with w(x) = e x, i.e. with the scalar product φ i φ j = φ i (x)φ j (x)e x dx

3 As always φ =. φ = x φ x φ φ φ = x φ = x φ x φ φ φ φ x φ φ φ = x 4x + = (x ) So the zeros are x, = ±. Inserting f(x) = gives and f(x) = x gives e x dx = = A + A So A = ( ) and A = ( + ) and xe x dx = = A ( + ) + A ( ) e x f(x)dx ( )f( + ) + ( + )f( ) is exact for all polynomials with degree less than or equal to Consider initial value problem in one dimension u(x, t) t = u(x, t) x ; u(x, ) = u. Assuming the central finite difference formula for discretization in spatial variable (x) you can express this problem in the form du(t) = Au(t), where the A is a constant square matrix corresponding to discretization of the operator x. The size of the matrix A and the vector u(t) is determined by the number of discretization points in the lattice. a) Derive the general form of the matrix A (without specifying its dimension). b) Assume that a lattice consists only of two points, so A is x matrix and u(t) is two-component vector. Using explicit Euler method write down the recursion formula for stepping in time and determine for what size of positive time step (h > ) the method is stable. a) In the central difference approximation the second derivative of u becomes u x u j+ u j + u j a Looking at the index j we conclude that in the required matrix form it will be represented by tridiagonal matrix

4 A = a b) We have to consider matrix A = ( ) a. The eigenvectors and eigenvalues of this matrix are ( ) ( ) v =, v = and λ = 3/a, λ = /a The Euler method can be written as u n+ = ( + ha)u n = ( + ha) n+ u Writing u in terms of the eigenvectors we get u n = ( + ha) n c j v j = j= ( + hλ j ) n c j v j For method to be stable we have to have + hλ j, so h / max j ( λ j ) = a /3. 5. Describe the implicit Euler method for Schrödinger equation i d ψ = H ψ, where ψ is a complex vector with components ψ i (t), (i =... N), and H is a constant Hermitian N xn matrix. Discuss stability of the method and conservation of the normalization ψ = N i= ψ i. Since H is hermitian, all eigenvalues E k are real and the eigenvectors φ k form an orthonormal basis system, hence for any ψ = k c k φ k j= ψ = k c k With the Implicit Euler method we have the update for one step h in time ψ n ψ n+ ψ n+ = ( + ihh) ψn = T ψ n The eigenvalues of T will become λ k = + ihe k

5 and λ k = +(he k ) for all k, i.e. the method is always stable. If we write ψ n = k c k φ n k the normalization of ψ n+ becomes ψ n+ = k λ k c k < ψ n It follows that ψ n steadily decreases with n. 6. A discrete probability distribution p(c) e βe(c) is sampled by using the following update. First, given the old state C, a new state C is drawn from a probability distribution F (C C ) such that F (C C ) = F (C C). The proposed state C is then accepted or rejected, with probability A(C C ) = + exp[β(e(c ) E(C))] for acceptance. Show that this update satisfies detailed balance. The total transfer probability from C to C (for C C) is W (C C ) = A(C C )F (C C ), leading to the probability flow J(C C ) = W (C C )p(c), where p(c) is assumed to be the Boltzmann distribution. Now, detailed balance means J(C C ) = J(C C) (for all C C ). Since F is assumed symmetric, this boils down to the requirement The LHS is A(C C )p(c) = A(C C)p(C ) p(c) + p(c)/p(c ) = p(c)p(c ) p(c) + p(c ), which is obviously symmetric between C and C, and hence equal to the RHS. 7. Show how a random number with probability density p(x) = { π sin(πx) if < x < otherwise can be obtained from rectangularly distributed random numbers [, ] by (a) the transformation method, and (b) the accept/reject method. (a) With the transformation method, we calculate the cumulated distribution C(x) = x p(x ) dx which is a random variable R with a flat distribution between and. The transformation method consists in equalling this to a uniform random number R on [,], such as is obtained from a random number generator, i.e. C(x) = R. This can be inverted to yield x = C (R).

6 In this case, we get R = C(x) = π x sin(πx ) dx = [ cos(πx ) ] x = ( cos(πx)), which neatly falls in the interval [,] as it should. Rewriting this as cos(πx) = R, we can solve for x, but have to be careful, since cos is not invertible. We need the extra condition of x [, ], and we then get which neatly falls into [,]. x = arccos( R), π (b) The accept/reject method is useful when it is computationally costly to generate the distribution p(x), e.g. with the transformation method. Here, using the method in (a), we would need to avaluate an arccos for every new random x. Instead, one seeks a less costly distribution p (x), and generates a candidate value for x from that, but accepts it with a probability A(x) = Cp(x)/p (x), with C the smallest constant that makes A. If rejected, one generates a new candidate value x from p, accepts it with probability A(x), and so on until one obtains an accepted value for x. For our distribution p(x), we might for p (x) choose e.g. a simple flat distribution on [,], i.e. p (x) =, if x [, ] (else = ). This corresponds to generating candidate values directly by x = R. The acceptance probability becomes A(x) = C sin(πx), with a suitable C >, chosen so as to make A(x) not exceed in value. Since sin( ), we can safely choose C =, which is the largest possible value, yielding A(x) = sin(πx), giving a % acceptance for x =. So, the method then becomes, with R, R denoting independant random numbers drawn from a standard flat distribution on [,]: (a) Draw a candidate value according to x = R, and accept it if R sin(πx); (b) Repeat the first step until a value x is accepted, which is then used. 8. Consider the (discrete) Poisson distribution: where b is a positive parameter. p n = exp( b) bn, n =,,, 3,..., n! (a) Show that the distribution is normalized: n= p n =. (b) Derive the characteristic function, Φ(k) = e ikn. (c) Use it to calculate the lowest moments, µ = n, µ = n. (d) Use ln Φ(k) to show that the all cumulants, C m, m =,, 3,..., have the value b.

7 (a) Checking sum of probabilities: p n = e b b n n! = e b e b =. n= OK! (b) By definition, Φ(k) = e ikn = p n e ikn = e b n= n= b n n! eikn = e b ( be ik ) n n= n! = e b(eik ) which is the characteristic function. (c) Φ(k) defines a generating function for the moments µ m = n m, in the sense that the moments can be obtained from its Taylor expansion: Φ(k) = e ikn = (ikn) m = m= m= n m = m= µ m = +µ (ik)+µ (ik) +... We Taylor expand Φ(k) up to second order, by first expanding the exponent: Φ(k) = exp ( b(e ik ) ) ) exp (b(ik) + b (ik) = exp (bik) exp (b (ik) ) ) ( + bik + b (ik) ( + b (ik) + b(ik) + ( b + b ) (ik), correct up to second order in k. We can read off µ = b and µ = b(b + ). (d) The logarithm of Φ(k) defines a generating function for the cumulants (or the connected moments) C m = n m c, by ln Φ(k) = m= C m. Thus, we need to Taylor expand ln Φ(k) (which was partly done in (c)): ( ) ln Φ(x) = b e ik = b m= = m= b (ik)m, and we can read off the cumulants: C m = b, m =,, 3,...

Examination paper for TMA4215 Numerical Mathematics

Examination paper for TMA4215 Numerical Mathematics Department of Mathematical Sciences Examination paper for TMA425 Numerical Mathematics Academic contact during examination: Trond Kvamsdal Phone: 93058702 Examination date: 6th of December 207 Examination

More information

Math 578: Assignment 2

Math 578: Assignment 2 Math 578: Assignment 2 13. Determine whether the natural cubic spline that interpolates the table is or is not the x 0 1 2 3 y 1 1 0 10 function 1 + x x 3 x [0, 1] f(x) = 1 2(x 1) 3(x 1) 2 + 4(x 1) 3 x

More information

Exercises, module A (ODEs, numerical integration etc)

Exercises, module A (ODEs, numerical integration etc) FYTN HT18 Dept. of Astronomy and Theoretical Physics Lund University, Sweden Exercises, module A (ODEs, numerical integration etc) 1. Use Euler s method to solve y (x) = y(x), y() = 1. (a) Determine y

More information

PH.D. PRELIMINARY EXAMINATION MATHEMATICS

PH.D. PRELIMINARY EXAMINATION MATHEMATICS UNIVERSITY OF CALIFORNIA, BERKELEY SPRING SEMESTER 207 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials NAME PH.D. PRELIMINARY EXAMINATION MATHEMATICS Problem

More information

Solutions Preliminary Examination in Numerical Analysis January, 2017

Solutions Preliminary Examination in Numerical Analysis January, 2017 Solutions Preliminary Examination in Numerical Analysis January, 07 Root Finding The roots are -,0, a) First consider x 0 > Let x n+ = + ε and x n = + δ with δ > 0 The iteration gives 0 < ε δ < 3, which

More information

12.0 Properties of orthogonal polynomials

12.0 Properties of orthogonal polynomials 12.0 Properties of orthogonal polynomials In this section we study orthogonal polynomials to use them for the construction of quadrature formulas investigate projections on polynomial spaces and their

More information

FINITE DIFFERENCES. Lecture 1: (a) Operators (b) Forward Differences and their calculations. (c) Backward Differences and their calculations.

FINITE DIFFERENCES. Lecture 1: (a) Operators (b) Forward Differences and their calculations. (c) Backward Differences and their calculations. FINITE DIFFERENCES Lecture 1: (a) Operators (b) Forward Differences and their calculations. (c) Backward Differences and their calculations. 1. Introduction When a function is known explicitly, it is easy

More information

x n+1 = x n f(x n) f (x n ), n 0.

x n+1 = x n f(x n) f (x n ), n 0. 1. Nonlinear Equations Given scalar equation, f(x) = 0, (a) Describe I) Newtons Method, II) Secant Method for approximating the solution. (b) State sufficient conditions for Newton and Secant to converge.

More information

Lecture Notes, FYTN03 Computational Physics

Lecture Notes, FYTN03 Computational Physics 1 FYTN03 HT08 Lecture Notes, FYTN03 Computational Physics 1 Introduction Numerical methods in physics is simple. Just take your formula and replace everything looking like δx with x. This also implies,

More information

Applied Mathematics Masters Examination Fall 2016, August 18, 1 4 pm.

Applied Mathematics Masters Examination Fall 2016, August 18, 1 4 pm. Applied Mathematics Masters Examination Fall 16, August 18, 1 4 pm. Each of the fifteen numbered questions is worth points. All questions will be graded, but your score for the examination will be the

More information

Numerical Analysis Preliminary Exam 10.00am 1.00pm, January 19, 2018

Numerical Analysis Preliminary Exam 10.00am 1.00pm, January 19, 2018 Numerical Analysis Preliminary Exam 0.00am.00pm, January 9, 208 Instructions. You have three hours to complete this exam. Submit solutions to four (and no more) of the following six problems. Please start

More information

3. Identify and find the general solution of each of the following first order differential equations.

3. Identify and find the general solution of each of the following first order differential equations. Final Exam MATH 33, Sample Questions. Fall 7. y = Cx 3 3 is the general solution of a differential equation. Find the equation. Answer: y = 3y + 9 xy. y = C x + C x is the general solution of a differential

More information

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018 Numerical Analysis Preliminary Exam 1 am to 1 pm, August 2, 218 Instructions. You have three hours to complete this exam. Submit solutions to four (and no more) of the following six problems. Please start

More information

AM205: Assignment 3 (due 5 PM, October 20)

AM205: Assignment 3 (due 5 PM, October 20) AM25: Assignment 3 (due 5 PM, October 2) For this assignment, first complete problems 1, 2, 3, and 4, and then complete either problem 5 (on theory) or problem 6 (on an application). If you submit answers

More information

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places.

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places. NUMERICAL METHODS 1. Rearranging the equation x 3 =.5 gives the iterative formula x n+1 = g(x n ), where g(x) = (2x 2 ) 1. (a) Starting with x = 1, compute the x n up to n = 6, and describe what is happening.

More information

Exam in TMA4215 December 7th 2012

Exam in TMA4215 December 7th 2012 Norwegian University of Science and Technology Department of Mathematical Sciences Page of 9 Contact during the exam: Elena Celledoni, tlf. 7359354, cell phone 48238584 Exam in TMA425 December 7th 22 Allowed

More information

Approximation theory

Approximation theory Approximation theory Xiaojing Ye, Math & Stat, Georgia State University Spring 2019 Numerical Analysis II Xiaojing Ye, Math & Stat, Georgia State University 1 1 1.3 6 8.8 2 3.5 7 10.1 Least 3squares 4.2

More information

Preliminary Examination in Numerical Analysis

Preliminary Examination in Numerical Analysis Department of Applied Mathematics Preliminary Examination in Numerical Analysis August 7, 06, 0 am pm. Submit solutions to four (and no more) of the following six problems. Show all your work, and justify

More information

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b)

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b) Numerical Methods - PROBLEMS. The Taylor series, about the origin, for log( + x) is x x2 2 + x3 3 x4 4 + Find an upper bound on the magnitude of the truncation error on the interval x.5 when log( + x)

More information

EC Control Engineering Quiz II IIT Madras

EC Control Engineering Quiz II IIT Madras EC34 - Control Engineering Quiz II IIT Madras Linear algebra Find the eigenvalues and eigenvectors of A, A, A and A + 4I Find the eigenvalues and eigenvectors of the following matrices: (a) cos θ sin θ

More information

A local Crank-Nicolson method for solving the heat equation. Abdurishit ABUDUWALI, Michio SAKAKIHARA and Hiroshi NIKI

A local Crank-Nicolson method for solving the heat equation. Abdurishit ABUDUWALI, Michio SAKAKIHARA and Hiroshi NIKI HIROSHIMA MATH. J. 24 (1994), 1-13 A local Crank-Nicolson method for solving the heat equation Abdurishit ABUDUWALI, Michio SAKAKIHARA and Hiroshi NIKI (Received February 6, 1992) 1. Introduction du A

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 216 17 INTRODUCTION TO NUMERICAL ANALYSIS MTHE612B Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other questions.

More information

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012 Polytechnic Institute of NYU MA Final Practice Answers Fall Studying from past or sample exams is NOT recommended. If you do, it should be only AFTER you know how to do all of the homework and worksheet

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

Preliminary Examination, Numerical Analysis, August 2016

Preliminary Examination, Numerical Analysis, August 2016 Preliminary Examination, Numerical Analysis, August 2016 Instructions: This exam is closed books and notes. The time allowed is three hours and you need to work on any three out of questions 1-4 and any

More information

Separation of Variables in Linear PDE: One-Dimensional Problems

Separation of Variables in Linear PDE: One-Dimensional Problems Separation of Variables in Linear PDE: One-Dimensional Problems Now we apply the theory of Hilbert spaces to linear differential equations with partial derivatives (PDE). We start with a particular example,

More information

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1)

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1) QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1) Each of the six questions is worth 10 points. 1) Let H be a (real or complex) Hilbert space. We say

More information

NATIONAL UNIVERSITY OF SINGAPORE PC5215 NUMERICAL RECIPES WITH APPLICATIONS. (Semester I: AY ) Time Allowed: 2 Hours

NATIONAL UNIVERSITY OF SINGAPORE PC5215 NUMERICAL RECIPES WITH APPLICATIONS. (Semester I: AY ) Time Allowed: 2 Hours NATIONAL UNIVERSITY OF SINGAPORE PC55 NUMERICAL RECIPES WITH APPLICATIONS (Semester I: AY 0-) Time Allowed: Hours INSTRUCTIONS TO CANDIDATES. This examination paper contains FIVE questions and comprises

More information

This is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you.

This is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you. Math 54 Fall 2017 Practice Final Exam Exam date: 12/14/17 Time Limit: 170 Minutes Name: Student ID: GSI or Section: This exam contains 9 pages (including this cover page) and 10 problems. Problems are

More information

Problem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show

Problem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show MTH 0: Linear Algebra Department of Mathematics and Statistics Indian Institute of Technology - Kanpur Problem Set Problems marked (T) are for discussions in Tutorial sessions (T) If A is an m n matrix,

More information

Engg. Math. II (Unit-IV) Numerical Analysis

Engg. Math. II (Unit-IV) Numerical Analysis Dr. Satish Shukla of 33 Engg. Math. II (Unit-IV) Numerical Analysis Syllabus. Interpolation and Curve Fitting: Introduction to Interpolation; Calculus of Finite Differences; Finite Difference and Divided

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA2501 Numerical Methods Spring 2015 Solutions to exercise set 7 1 Cf. Cheney and Kincaid, Exercise 4.1.9 Consider the data points

More information

Course and Wavelets and Filter Banks

Course and Wavelets and Filter Banks Course 18.327 and 1.130 Wavelets and Filter Bans Numerical solution of PDEs: Galerin approximation; wavelet integrals (projection coefficients, moments and connection coefficients); convergence Numerical

More information

Diff. Eq. App.( ) Midterm 1 Solutions

Diff. Eq. App.( ) Midterm 1 Solutions Diff. Eq. App.(110.302) Midterm 1 Solutions Johns Hopkins University February 28, 2011 Problem 1.[3 15 = 45 points] Solve the following differential equations. (Hint: Identify the types of the equations

More information

Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007

Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007 Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007 You have 1 hour and 20 minutes. No notes, books, or other references. You are permitted to use Maple during this exam, but you must start with a blank

More information

APPENDIX B GRAM-SCHMIDT PROCEDURE OF ORTHOGONALIZATION. Let V be a finite dimensional inner product space spanned by basis vector functions

APPENDIX B GRAM-SCHMIDT PROCEDURE OF ORTHOGONALIZATION. Let V be a finite dimensional inner product space spanned by basis vector functions 301 APPENDIX B GRAM-SCHMIDT PROCEDURE OF ORTHOGONALIZATION Let V be a finite dimensional inner product space spanned by basis vector functions {w 1, w 2,, w n }. According to the Gram-Schmidt Process an

More information

LEAST SQUARES APPROXIMATION

LEAST SQUARES APPROXIMATION LEAST SQUARES APPROXIMATION One more approach to approximating a function f (x) on an interval a x b is to seek an approximation p(x) with a small average error over the interval of approximation. A convenient

More information

Final Examination. CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Spring 2016), Stanford University

Final Examination. CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Spring 2016), Stanford University Final Examination CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Spring 2016), Stanford University The exam runs for 3 hours. The exam contains seven problems. You must complete the

More information

CAAM 336 DIFFERENTIAL EQUATIONS IN SCI AND ENG Examination 1

CAAM 336 DIFFERENTIAL EQUATIONS IN SCI AND ENG Examination 1 CAAM 6 DIFFERENTIAL EQUATIONS IN SCI AND ENG Examination Instructions: Time limit: uninterrupted hours There are four questions worth a total of 5 points Please do not look at the questions until you begin

More information

1 Solutions to selected problems

1 Solutions to selected problems Solutions to selected problems Section., #a,c,d. a. p x = n for i = n : 0 p x = xp x + i end b. z = x, y = x for i = : n y = y + x i z = zy end c. y = (t x ), p t = a for i = : n y = y(t x i ) p t = p

More information

3. Identify and find the general solution of each of the following first order differential equations.

3. Identify and find the general solution of each of the following first order differential equations. Final Exam MATH 33, Sample Questions. Fall 6. y = Cx 3 3 is the general solution of a differential equation. Find the equation. Answer: y = 3y + 9 xy. y = C x + C is the general solution of a differential

More information

Physics 137A Quantum Mechanics Fall 2012 Midterm II - Solutions

Physics 137A Quantum Mechanics Fall 2012 Midterm II - Solutions Physics 37A Quantum Mechanics Fall 0 Midterm II - Solutions These are the solutions to the exam given to Lecture Problem [5 points] Consider a particle with mass m charge q in a simple harmonic oscillator

More information

Sign the pledge. On my honor, I have neither given nor received unauthorized aid on this Exam : 11. a b c d e. 1. a b c d e. 2.

Sign the pledge. On my honor, I have neither given nor received unauthorized aid on this Exam : 11. a b c d e. 1. a b c d e. 2. Math 258 Name: Final Exam Instructor: May 7, 2 Section: Calculators are NOT allowed. Do not remove this answer page you will return the whole exam. You will be allowed 2 hours to do the test. You may leave

More information

AIMS Exercise Set # 1

AIMS Exercise Set # 1 AIMS Exercise Set #. Determine the form of the single precision floating point arithmetic used in the computers at AIMS. What is the largest number that can be accurately represented? What is the smallest

More information

Solving Linear Systems of Equations

Solving Linear Systems of Equations November 6, 2013 Introduction The type of problems that we have to solve are: Solve the system: A x = B, where a 11 a 1N a 12 a 2N A =.. a 1N a NN x = x 1 x 2. x N B = b 1 b 2. b N To find A 1 (inverse

More information

PH.D. PRELIMINARY EXAMINATION MATHEMATICS

PH.D. PRELIMINARY EXAMINATION MATHEMATICS UNIVERSITY OF CALIFORNIA, BERKELEY Dept. of Civil and Environmental Engineering FALL SEMESTER 2014 Structural Engineering, Mechanics and Materials NAME PH.D. PRELIMINARY EXAMINATION MATHEMATICS Problem

More information

Math 21b Final Exam Thursday, May 15, 2003 Solutions

Math 21b Final Exam Thursday, May 15, 2003 Solutions Math 2b Final Exam Thursday, May 5, 2003 Solutions. (20 points) True or False. No justification is necessary, simply circle T or F for each statement. T F (a) If W is a subspace of R n and x is not in

More information

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method COURSE 7 3. Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method The presence of derivatives in the remainder difficulties in applicability to practical problems

More information

MATH 2250 Final Exam Solutions

MATH 2250 Final Exam Solutions MATH 225 Final Exam Solutions Tuesday, April 29, 28, 6: 8:PM Write your name and ID number at the top of this page. Show all your work. You may refer to one double-sided sheet of notes during the exam

More information

Numerical solution of ODEs

Numerical solution of ODEs Numerical solution of ODEs Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology November 5 2007 Problem and solution strategy We want to find an approximation

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

Fixed point iteration and root finding

Fixed point iteration and root finding Fixed point iteration and root finding The sign function is defined as x > 0 sign(x) = 0 x = 0 x < 0. It can be evaluated via an iteration which is useful for some problems. One such iteration is given

More information

Taylor series - Solutions

Taylor series - Solutions Taylor series - Solutions. f(x) sin(x) sin(0) + x cos(0) + x x ( sin(0)) +!! ( cos(0)) + + x4 x5 (sin(0)) + 4! 5! 0 + x + 0 x x! + x5 5! x! + 0 + x5 (cos(0)) + x6 6! ( sin(0)) + x 7 7! + x9 9! 5! + 0 +

More information

Introduction to gradient descent

Introduction to gradient descent 6-1: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction to gradient descent Derivation and intuitions Hessian 6-2: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction Our

More information

Math 291-2: Final Exam Solutions Northwestern University, Winter 2016

Math 291-2: Final Exam Solutions Northwestern University, Winter 2016 Math 29-2: Final Exam Solutions Northwestern University, Winter 206 Determine whether each of the following statements is true or false f it is true, explain why; if it is false, give a counterexample

More information

An operator is a transformation that takes a function as an input and produces another function (usually).

An operator is a transformation that takes a function as an input and produces another function (usually). Formalism of Quantum Mechanics Operators Engel 3.2 An operator is a transformation that takes a function as an input and produces another function (usually). Example: In QM, most operators are linear:

More information

Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015

Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015 Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015 The test lasts 1 hour and 15 minutes. No documents are allowed. The use of a calculator, cell phone or other equivalent electronic

More information

Exam 3, Math Fall 2016 October 19, 2016

Exam 3, Math Fall 2016 October 19, 2016 Exam 3, Math 500- Fall 06 October 9, 06 This is a 50-minute exam. You may use your textbook, as well as a calculator, but your work must be completely yours. The exam is made of 5 questions in 5 pages,

More information

MATH Solutions to Probability Exercises

MATH Solutions to Probability Exercises MATH 5 9 MATH 5 9 Problem. Suppose we flip a fair coin once and observe either T for tails or H for heads. Let X denote the random variable that equals when we observe tails and equals when we observe

More information

M.SC. PHYSICS - II YEAR

M.SC. PHYSICS - II YEAR MANONMANIAM SUNDARANAR UNIVERSITY DIRECTORATE OF DISTANCE & CONTINUING EDUCATION TIRUNELVELI 627012, TAMIL NADU M.SC. PHYSICS - II YEAR DKP26 - NUMERICAL METHODS (From the academic year 2016-17) Most Student

More information

Hilbert Space Problems

Hilbert Space Problems Hilbert Space Problems Prescribed books for problems. ) Hilbert Spaces, Wavelets, Generalized Functions and Modern Quantum Mechanics by Willi-Hans Steeb Kluwer Academic Publishers, 998 ISBN -7923-523-9

More information

WRT in 2D: Poisson Example

WRT in 2D: Poisson Example WRT in 2D: Poisson Example Consider 2 u f on [, L x [, L y with u. WRT: For all v X N, find u X N a(v, u) such that v u dv v f dv. Follows from strong form plus integration by parts: ( ) 2 u v + 2 u dx

More information

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form Qualifying exam for numerical analysis (Spring 2017) Show your work for full credit. If you are unable to solve some part, attempt the subsequent parts. 1. Consider the following finite difference: f (0)

More information

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization Plan of the Lecture Review: control, feedback, etc Today s topic: state-space models of systems; linearization Goal: a general framework that encompasses all examples of interest Once we have mastered

More information

Infinite series, improper integrals, and Taylor series

Infinite series, improper integrals, and Taylor series Chapter Infinite series, improper integrals, and Taylor series. Determine which of the following sequences converge or diverge (a) {e n } (b) {2 n } (c) {ne 2n } (d) { 2 n } (e) {n } (f) {ln(n)} 2.2 Which

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

Section Taylor and Maclaurin Series

Section Taylor and Maclaurin Series Section.0 Taylor and Maclaurin Series Ruipeng Shen Feb 5 Taylor and Maclaurin Series Main Goal: How to find a power series representation for a smooth function us assume that a smooth function has a power

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 216 17 INTRODUCTION TO NUMERICAL ANALYSIS MTHE712B Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other questions.

More information

Examination paper for TMA4125 Matematikk 4N

Examination paper for TMA4125 Matematikk 4N Department of Mathematical Sciences Examination paper for TMA45 Matematikk 4N Academic contact during examination: Anne Kværnø a, Louis-Philippe Thibault b Phone: a 9 66 38 4, b 9 3 0 95 Examination date:

More information

DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end.

DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end. Math 307, Midterm 2 Winter 2013 Name: Instructions. DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end. There

More information

PHYS Handout 6

PHYS Handout 6 PHYS 060 Handout 6 Handout Contents Golden Equations for Lectures 8 to Answers to examples on Handout 5 Tricks of the Quantum trade (revision hints) Golden Equations (Lectures 8 to ) ψ Â φ ψ (x)âφ(x)dxn

More information

A Brief Outline of Math 355

A Brief Outline of Math 355 A Brief Outline of Math 355 Lecture 1 The geometry of linear equations; elimination with matrices A system of m linear equations with n unknowns can be thought of geometrically as m hyperplanes intersecting

More information

Lecture 12: Detailed balance and Eigenfunction methods

Lecture 12: Detailed balance and Eigenfunction methods Miranda Holmes-Cerfon Applied Stochastic Analysis, Spring 2015 Lecture 12: Detailed balance and Eigenfunction methods Readings Recommended: Pavliotis [2014] 4.5-4.7 (eigenfunction methods and reversibility),

More information

(x x 0 )(x x 1 )... (x x n ) (x x 0 ) + y 0.

(x x 0 )(x x 1 )... (x x n ) (x x 0 ) + y 0. > 5. Numerical Integration Review of Interpolation Find p n (x) with p n (x j ) = y j, j = 0, 1,,..., n. Solution: p n (x) = y 0 l 0 (x) + y 1 l 1 (x) +... + y n l n (x), l k (x) = n j=1,j k Theorem Let

More information

Physics 505 Homework No. 1 Solutions S1-1

Physics 505 Homework No. 1 Solutions S1-1 Physics 505 Homework No s S- Some Preliminaries Assume A and B are Hermitian operators (a) Show that (AB) B A dx φ ABψ dx (A φ) Bψ dx (B (A φ)) ψ dx (B A φ) ψ End (b) Show that AB [A, B]/2+{A, B}/2 where

More information

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in 806 Problem Set 8 - Solutions Due Wednesday, 4 November 2007 at 4 pm in 2-06 08 03 Problem : 205+5+5+5 Consider the matrix A 02 07 a Check that A is a positive Markov matrix, and find its steady state

More information

Final exam (practice) UCLA: Math 31B, Spring 2017

Final exam (practice) UCLA: Math 31B, Spring 2017 Instructor: Noah White Date: Final exam (practice) UCLA: Math 3B, Spring 207 This exam has 8 questions, for a total of 80 points. Please print your working and answers neatly. Write your solutions in the

More information

Lagrange Multipliers

Lagrange Multipliers Optimization with Constraints As long as algebra and geometry have been separated, their progress have been slow and their uses limited; but when these two sciences have been united, they have lent each

More information

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA MATH 33 Sample Questions for Exam 3. Find x and y so that x 4 3 5x 3y + y = 5 5. x = 3/7, y = 49/7. Let A = 3 4, B = 3 5, C = 3 Perform the indicated operations, if possible: a AC b AB c B + AC d CBA AB

More information

2015 School Year. Graduate School Entrance Examination Problem Booklet. Mathematics

2015 School Year. Graduate School Entrance Examination Problem Booklet. Mathematics 2015 School Year Graduate School Entrance Examination Problem Booklet Mathematics Examination Time: 10:00 to 12:30 Instructions 1. Do not open this problem booklet until the start of the examination is

More information

The Sommerfeld Polynomial Method: Harmonic Oscillator Example

The Sommerfeld Polynomial Method: Harmonic Oscillator Example Chemistry 460 Fall 2017 Dr. Jean M. Standard October 2, 2017 The Sommerfeld Polynomial Method: Harmonic Oscillator Example Scaling the Harmonic Oscillator Equation Recall the basic definitions of the harmonic

More information

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes Root finding: 1 a The points {x n+1, }, {x n, f n }, {x n 1, f n 1 } should be co-linear Say they lie on the line x + y = This gives the relations x n+1 + = x n +f n = x n 1 +f n 1 = Eliminating α and

More information

An Analysis of Five Numerical Methods for Approximating Certain Hypergeometric Functions in Domains within their Radii of Convergence

An Analysis of Five Numerical Methods for Approximating Certain Hypergeometric Functions in Domains within their Radii of Convergence An Analysis of Five Numerical Methods for Approximating Certain Hypergeometric Functions in Domains within their Radii of Convergence John Pearson MSc Special Topic Abstract Numerical approximations of

More information

. (a) Express [ ] as a non-trivial linear combination of u = [ ], v = [ ] and w =[ ], if possible. Otherwise, give your comments. (b) Express +8x+9x a

. (a) Express [ ] as a non-trivial linear combination of u = [ ], v = [ ] and w =[ ], if possible. Otherwise, give your comments. (b) Express +8x+9x a TE Linear Algebra and Numerical Methods Tutorial Set : Two Hours. (a) Show that the product AA T is a symmetric matrix. (b) Show that any square matrix A can be written as the sum of a symmetric matrix

More information

Chapter 2. First-Order Differential Equations

Chapter 2. First-Order Differential Equations Chapter 2 First-Order Differential Equations i Let M(x, y) + N(x, y) = 0 Some equations can be written in the form A(x) + B(y) = 0 DEFINITION 2.2. (Separable Equation) A first-order differential equation

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004 Department of Applied Mathematics and Theoretical Physics AMA 204 Numerical analysis Exam Winter 2004 The best six answers will be credited All questions carry equal marks Answer all parts of each question

More information

1. Diagonalize the matrix A if possible, that is, find an invertible matrix P and a diagonal

1. Diagonalize the matrix A if possible, that is, find an invertible matrix P and a diagonal . Diagonalize the matrix A if possible, that is, find an invertible matrix P and a diagonal 3 9 matrix D such that A = P DP, for A =. 3 4 3 (a) P = 4, D =. 3 (b) P = 4, D =. (c) P = 4 8 4, D =. 3 (d) P

More information

Final Exam SOLUTIONS MAT 131 Fall 2011

Final Exam SOLUTIONS MAT 131 Fall 2011 1. Compute the following its. (a) Final Exam SOLUTIONS MAT 131 Fall 11 x + 1 x 1 x 1 The numerator is always positive, whereas the denominator is negative for numbers slightly smaller than 1. Also, as

More information

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

235 Final exam review questions

235 Final exam review questions 5 Final exam review questions Paul Hacking December 4, 0 () Let A be an n n matrix and T : R n R n, T (x) = Ax the linear transformation with matrix A. What does it mean to say that a vector v R n is an

More information

Lecture 1 INF-MAT3350/ : Some Tridiagonal Matrix Problems

Lecture 1 INF-MAT3350/ : Some Tridiagonal Matrix Problems Lecture 1 INF-MAT3350/4350 2007: Some Tridiagonal Matrix Problems Tom Lyche University of Oslo Norway Lecture 1 INF-MAT3350/4350 2007: Some Tridiagonal Matrix Problems p.1/33 Plan for the day 1. Notation

More information

Practice Final Exam Solutions for Calculus II, Math 1502, December 5, 2013

Practice Final Exam Solutions for Calculus II, Math 1502, December 5, 2013 Practice Final Exam Solutions for Calculus II, Math 5, December 5, 3 Name: Section: Name of TA: This test is to be taken without calculators and notes of any sorts. The allowed time is hours and 5 minutes.

More information

Math 113 Winter 2005 Key

Math 113 Winter 2005 Key Name Student Number Section Number Instructor Math Winter 005 Key Departmental Final Exam Instructions: The time limit is hours. Problem consists of short answer questions. Problems through are multiple

More information

An Overly Simplified and Brief Review of Differential Equation Solution Methods. 1. Some Common Exact Solution Methods for Differential Equations

An Overly Simplified and Brief Review of Differential Equation Solution Methods. 1. Some Common Exact Solution Methods for Differential Equations An Overly Simplified and Brief Review of Differential Equation Solution Methods We will be dealing with initial or boundary value problems. A typical initial value problem has the form y y 0 y(0) 1 A typical

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

Mathematical Optimisation, Chpt 2: Linear Equations and inequalities

Mathematical Optimisation, Chpt 2: Linear Equations and inequalities Mathematical Optimisation, Chpt 2: Linear Equations and inequalities Peter J.C. Dickinson p.j.c.dickinson@utwente.nl http://dickinson.website version: 12/02/18 Monday 5th February 2018 Peter J.C. Dickinson

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

1 Solutions to selected problems

1 Solutions to selected problems Solutions to selected problems Section., #a,c,d. a. p x = n for i = n : 0 p x = xp x + i end b. z = x, y = x for i = : n y = y + x i z = zy end c. y = (t x ), p t = a for i = : n y = y(t x i ) p t = p

More information

Finite Difference Methods for Boundary Value Problems

Finite Difference Methods for Boundary Value Problems Finite Difference Methods for Boundary Value Problems October 2, 2013 () Finite Differences October 2, 2013 1 / 52 Goals Learn steps to approximate BVPs using the Finite Difference Method Start with two-point

More information