3. Identify and find the general solution of each of the following first order differential equations.


 Elmer Osborne
 1 years ago
 Views:
Transcription
1 Final Exam MATH 33, Sample Questions. Fall 6. y = Cx 3 3 is the general solution of a differential equation. Find the equation. Answer: y = 3y + 9 xy. y = C x + C is the general solution of a differential equation. Find the equation. Answer: xy y = 3. Identify and find the general solution of each of the following first order differential equations. a xy = 5x 3 y / 4y Answer: Bernoulli, y / = x3 + C x b x y + 3 y = cos x x. Answer: Linear, c x dy dx = x + xy + y y = sin x x 3 + C x 3 Answer: Homogeneous, y = x tanln x + C d y = y + 3 4y + xy. Answer: Separable, y = C4 + x 3 e x y = 4x 3 y 3 + xy Answer: Bernoulli, y = x C x 4 f x 3 y = x y + x 3 e y/x Answer: Homogeneous, y = x ln C ln x 4. Given the oneparameter family y 3 = Cx + 4. a Find the differential equation for the family. b Find the differential equation for the family of orthogonal trajectories. c Find the family of orthogonal trajectories. Answer: a y = y3 8 3xy. b y = 3xy y 3 8. c 3x y + y 3 + Cy + 6 =. 5. A certain radioactive material is decaying at a rate proportional to the amount present. If a sample of grams of the material was present initially and after 3 hours the sample lost 3% of its mass, find:
2 a An expression for the mass At of the material remaining at any time t. b The mass of the material after 8 hours. c The halflife of the material. t/3 8/ ln Answer: a At = b A8 = c t = ln 7/ 6. Scientists observed that a colony of penguins on a remote Antarctic island obeys the population growth law. There were penguins in the initial population and there were 3 penguins 4 years later. a Give an expression for the number Pt of penguins at any time t. b How many penguins will there be after 6 years? c How long will it take for the number of penguins to quadruple? Answer: a Pt = e t 4 ln3 = 3 t/4 b P6 = 3 3/. c t = 4 ln4 ln3 years. 7. A disease is infecting a herd of cows. Let Pt be the number of sick cows t days after the outbreak. Suppose that 5 cows had the disease initially, and suppose that the disease is spreading at a rate proportional to the product of the time elapsed and the number of cows who do not have the disease. a Give the mathematical model initialvalue problem for P. b Find the general solution of the differential equation in a. c Find the particular solution that satisfies the initial condition. Answer: a dp dt = kt P, P = 5 b Pt = Ce kt / c Pt = 95e kt / 8. Determine a fundamental set of solutions of y y 5 y =. Answer: { e 5x, e 3x} 9. Find the general solution of y + 6y + 9y =. Answer: y = C e 3x + C xe 3x.. Find the solution of the initialvalue problem y 7y + y =, y = 3, y =. Answer: y = e 3x 9e 4x.. The function y = e 3x sin x is a solution of a second order, linear, homogeneous differential equation with constant coefficients. What is the equation? Answer: y + 6y + 3y =
3 . The function y = e 3x + 4 xe 3x is a solution of a second order, linear, homogeneous differential equation with constant coefficients. What is the equation? Answer: y 6y + 9y = 3. Find a particular solution of y 6y + 8y = 4e 4x. Answer: z = xe 4x. 4. Give the form of a particular solution of the nonhomogeneous differential equation y 8 y + 6 y = e 4x + 3 cos 4x x +. Answer: z = Ax e 4x + B cos 4x + C sin 4x + Dx + E. 5. Given the differential equation y 4 y + 4 y = ex x a Give the general solution of the reduced equation. b Find a particular solution of the nonhomogeneous equation. Answer: a y = C e x + C xe x. b z = xe x + x e x ln x or z = x e x ln x. 6. Find the general solution of y 4 x y + 6 x y = 4. HINT: The reduced equation has solutions x of the form y = x r. Answer: y = C x + C x Find a particular solution of y + 4y = tan x. Answer: y = C cos x + C sin x cos x ln[sec x + tan x] 8. The general solution of y 4 6 y + 7 y 8 y + y = is: HINT: is a root of the characteristic polynomial Answer: y = C e x + C xe x + C 3 e x cos x + C 4 e x sin x. 9. Give the form of a particular solution of y y 36 y = x + 3e x sin 3x Answer: z = Ax + B + Cxe x + Dx cos 3x + Ex sin 3x. 3
4 . Find the Laplace transform of the solution of the initialvalue problem y y 6 y = 3; y = 5, y = Answer: Y = 3 ss s 6 + 5s 5 s s 6.. Find fx = L [Fs] if Fs = 3 s + 4s + 3 s + 4. Answer: fx = 3x + 4 cos x + 3 sin x. Find L[fx] if fx = { x + x x < 4 x x 4 Answer: Fs = s 3 + s e 4s s 3 9e 4s s e 4s s. 3. Fs = 5 s 3 s e 3s s + 3 e 3s s + s + e 3s s + π. Find L [Fs] = fx. 5x, x < 3 Answer: fx = 3x + 6 cos πx π sin πx, x Given the initialvalue problem y 4 y = e x, y = 3. a Find the Laplace transform of the solution. b Find the solution by finding the inverse Laplace transform of your answer to a. Answer: a Y = 5. Given the system of equations s + s b y = s 4 3 e4x 3 e x. x +y z = x +5y 4z = 3 x y z = a Write the augmented matrix for the system. b Reduce the augmented matrix to rowechelon form. c Give the solution set of the system. Answer: a b c x = 3a, x = + a, x 3 = a, a arbitrary.. 4
5 6. Given the system of equations x y = x y +kz = 3 y z = k The values of k, if any, such that the system has infinitely many solutions is are: Answer: No values of k. 7. Find the values of λ, if any such that A = Answer: λ, 3 8. The matrix A = Answer: A = 9. The system of equations has a unique solution. Find y. Answer: y = λ 3 λ 5 is nonsingular. Find A.. x y + 3z = 4 y + z = x + z = is nonsingular. 3. Determine whether the vectors v =, 3,, v =,,, v 3 =, 5,, v 4 =, 4, 4 are linearly dependent or linearly independent. If they are linearly dependent, find the maximal number of independent vectors. Answer: Linearly dependent; the maximum number of independent vectors is. 3. Find the eigenvalues and eigenvectors of Answer: λ = 6, ; λ =, 6 3 ; λ 3 =,. Hint: 6 is an eigenvalue. 3 5
6 3. Find the eigenvalues and eigenvectors of Answer: λ =, ; λ = λ 3 =, Find the solution of the initialvalue problem x = is an eigenvalue. Answer: xt = e t e t 34. Find a fundamental set of solutions of x = Answer: {e 3t [ cos t 35. Find the general solution of x = Answer: xt = C e 3t 36. Find the general solution of x = polynomial. Answer: xt = C e t 3 4 sin t. 4 + C [e 3t ] 5 4 x. + C e t 37. Find a fundamental set of solutions of x = characteristic polynomial. Answer: et, e t, e t 3 x., e 3t [cos t + te 3t. Hint: is an eigenvalue. x, x = ] + sin t. HINT: ]} x. HINT: is a root of the characteristic + C e t + te t.. x. HINT: is a root of the 6
3. Identify and find the general solution of each of the following first order differential equations.
Final Exam MATH 33, Sample Questions. Fall 7. y = Cx 3 3 is the general solution of a differential equation. Find the equation. Answer: y = 3y + 9 xy. y = C x + C x is the general solution of a differential
More informationExam 1 Review. Part I. Finding solutions of a given differential equation. 1. Find the real numbers r such that y = e rx is a solution of y y 30y = 0.
Exam 1 Review Part I. Finding solutions of a given differential equation. 1. Find the real numbers r such that y = e rx is a solution of y y 30y = 0. 2. Find the real numbers r such that y = e rx is a
More informationMATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA
MATH 33 Sample Questions for Exam 3. Find x and y so that x 4 3 5x 3y + y = 5 5. x = 3/7, y = 49/7. Let A = 3 4, B = 3 5, C = 3 Perform the indicated operations, if possible: a AC b AB c B + AC d CBA AB
More informationExam 1 Review: Questions and Answers. Part I. Finding solutions of a given differential equation.
Exam 1 Review: Questions and Answers Part I. Finding solutions of a given differential equation. 1. Find the real numbers r such that y = e x is a solution of y y 30y = 0. Answer: r = 6, 5 2. Find the
More informationFirst Order Differential Equations
Chapter 2 First Order Differential Equations Introduction Any first order differential equation can be written as F (x, y, y )=0 by moving all nonzero terms to the left hand side of the equation. Of course,
More informationJune 2011 PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 262) Linear Algebra and Differential Equations
June 20 PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 262) Linear Algebra and Differential Equations The topics covered in this exam can be found in An introduction to differential equations
More informationName Class. 5. Find the particular solution to given the general solution y C cos x and the. x 2 y
10 Differential Equations Test Form A 1. Find the general solution to the first order differential equation: y 1 yy 0. 1 (a) (b) ln y 1 y ln y 1 C y y C y 1 C y 1 y C. Find the general solution to the
More informationPolytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012
Polytechnic Institute of NYU MA Final Practice Answers Fall Studying from past or sample exams is NOT recommended. If you do, it should be only AFTER you know how to do all of the homework and worksheet
More informationSTUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR:
MA262 FINAL EXAM SPRING 2016 MAY 2, 2016 TEST NUMBER 01 INSTRUCTIONS: 1. Do not open the exam booklet until you are instructed to do so. 2. Before you open the booklet fill in the information below and
More informationDIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONS Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt =
More informationFind the orthogonal trajectories for the family of curves. 9. The family of parabolas symmetric with respect to the xaxis and vertex at the origin.
Exercises 2.4.1 Find the orthogonal trajectories for the family of curves. 1. y = Cx 3. 2. x = Cy 4. 3. y = Cx 2 + 2. 4. y 2 = 2(C x). 5. y = C cos x 6. y = Ce x 7. y = ln(cx) 8. (x + y) 2 = Cx 2 Find
More informationReview Problems for Exam 2
Review Problems for Exam 2 This is a list of problems to help you review the material which will be covered in the final. Go over the problem carefully. Keep in mind that I am going to put some problems
More informationMATH 2250 Final Exam Solutions
MATH 225 Final Exam Solutions Tuesday, April 29, 28, 6: 8:PM Write your name and ID number at the top of this page. Show all your work. You may refer to one doublesided sheet of notes during the exam
More informationMA 262, Fall 2017, Final Version 01(Green)
INSTRUCTIONS MA 262, Fall 2017, Final Version 01(Green) (1) Switch off your phone upon entering the exam room. (2) Do not open the exam booklet until you are instructed to do so. (3) Before you open the
More informationMa 221 Final Exam Solutions 5/14/13
Ma 221 Final Exam Solutions 5/14/13 1. Solve (a) (8 pts) Solution: The equation is separable. dy dx exy y 1 y0 0 y 1e y dy e x dx y 1e y dy e x dx ye y e y dy e x dx ye y e y e y e x c The last step comes
More informationMath 250B Final Exam Review Session Spring 2015 SOLUTIONS
Math 5B Final Exam Review Session Spring 5 SOLUTIONS Problem Solve x x + y + 54te 3t and y x + 4y + 9e 3t λ SOLUTION: We have det(a λi) if and only if if and 4 λ only if λ 3λ This means that the eigenvalues
More informationfor any C, including C = 0, because y = 0 is also a solution: dy
Math 3200001 Fall 2014 Practice exam 1 solutions 2/16/2014 Each problem is worth 0 to 4 points: 4=correct, 3=small error, 2=good progress, 1=some progress 0=nothing relevant. If the result is correct,
More informationMath 308 Practice Final Exam Page and vector y =
Math 308 Practice Final Exam Page Problem : Solving a linear equation 2 0 2 5 Given matrix A = 3 7 0 0 and vector y = 8. 4 0 0 9 (a) Solve Ax = y (if the equation is consistent) and write the general solution
More informationApplications of First Order Differential Equation
Dr Mansoor Alshehri King Saud University MATH204Differential Equations Center of Excellence in Learning and Teaching 1 / 39 Orthogonal Trajectories How to Find Orthogonal Trajectories Growth and Decay
More informationMath 310 Introduction to Ordinary Differential Equations Final Examination August 9, Instructor: John Stockie
Make sure this exam has 15 pages. Math 310 Introduction to Ordinary Differential Equations inal Examination August 9, 2006 Instructor: John Stockie Name: (Please Print) Student Number: Special Instructions
More informationForm A. 1. Which of the following is a secondorder, linear, homogenous differential equation? 2
Form A Math 4 Common Part of Final Exam December 6, 996 INSTRUCTIONS: Please enter your NAME, ID NUMBER, FORM designation, and INDEX NUMBER on your op scan sheet. The index number should be written in
More informationIntroduction to Differential Equations
Chapter 1 Introduction to Differential Equations 1.1 Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known
More informationLimited Growth (Logistic Equation)
Chapter 2, Part 2 2.4. Applications Orthogonal trajectories Exponential Growth/Decay Newton s Law of Cooling/Heating Limited Growth (Logistic Equation) Miscellaneous Models 1 2.4.1. Orthogonal Trajectories
More information17.2 Nonhomogeneous Linear Equations. 27 September 2007
17.2 Nonhomogeneous Linear Equations 27 September 2007 Nonhomogeneous Linear Equations The differential equation to be studied is of the form ay (x) + by (x) + cy(x) = G(x) (1) where a 0, b, c are given
More informationProblem 1: Solving a linear equation
Math 38 Practice Final Exam ANSWERS Page Problem : Solving a linear equation Given matrix A = 2 2 3 7 4 and vector y = 5 8 9. (a) Solve Ax = y (if the equation is consistent) and write the general solution
More informationMath 21b Final Exam Thursday, May 15, 2003 Solutions
Math 2b Final Exam Thursday, May 5, 2003 Solutions. (20 points) True or False. No justification is necessary, simply circle T or F for each statement. T F (a) If W is a subspace of R n and x is not in
More information= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review
Math D Final Review. Solve the differential equation in two ways, first using variation of parameters and then using undetermined coefficients: Corresponding homogenous equation: with characteristic equation
More informationPractice Final Exam Solutions for Calculus II, Math 1502, December 5, 2013
Practice Final Exam Solutions for Calculus II, Math 5, December 5, 3 Name: Section: Name of TA: This test is to be taken without calculators and notes of any sorts. The allowed time is hours and 5 minutes.
More informationMA 265 FINAL EXAM Fall 2012
MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators
More informationHomework #6 Solutions
Problems Section.1: 6, 4, 40, 46 Section.:, 8, 10, 14, 18, 4, 0 Homework #6 Solutions.1.6. Determine whether the functions f (x) = cos x + sin x and g(x) = cos x sin x are linearly dependent or linearly
More informationx 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7
Linear Algebra and its ApplicationsLab 1 1) Use Gaussian elimination to solve the following systems x 1 + x 2 2x 3 + 4x 4 = 5 1.1) 2x 1 + 2x 2 3x 3 + x 4 = 3 3x 1 + 3x 2 4x 3 2x 4 = 1 x + y + 2z = 4 1.4)
More informationMath 308 Final Exam Practice Problems
Math 308 Final Exam Practice Problems This review should not be used as your sole source for preparation for the exam You should also rework all examples given in lecture and all suggested homework problems
More informationSolutions to Math 53 Math 53 Practice Final
Solutions to Math 5 Math 5 Practice Final 20 points Consider the initial value problem y t 4yt = te t with y 0 = and y0 = 0 a 8 points Find the Laplace transform of the solution of this IVP b 8 points
More informationDIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt
More informationLesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods.
Lesson 3: Linear differential equations of the first der Solve each of the following differential equations by two methods. Exercise 3.1. Solution. Method 1. It is clear that y + y = 3 e dx = e x is an
More informationMath 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3
Math 201 Solutions to Assignment 1 1. Solve the initial value problem: x 2 dx + 2y = 0, y(0) = 2. x 2 dx + 2y = 0, y(0) = 2 2y = x 2 dx y 2 = 1 3 x3 + C y = C 1 3 x3 Notice that y is not defined for some
More informationCalculus for the Life Sciences II Assignment 6 solutions. f(x, y) = 3π 3 cos 2x + 2 sin 3y
Calculus for the Life Sciences II Assignment 6 solutions Find the tangent plane to the graph of the function at the point (0, π f(x, y = 3π 3 cos 2x + 2 sin 3y Solution: The tangent plane of f at a point
More informationMATHEMATICS FOR ENGINEERS & SCIENTISTS 23
MATHEMATICS FOR ENGINEERS & SCIENTISTS 3.5. Second order linear O.D.E.s: nonhomogeneous case.. We ll now consider nonhomogeneous second order linear O.D.E.s. These are of the form a + by + c rx) for
More informationDifferential Equations & Separation of Variables
Differential Equations & Separation of Variables SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference Chapter 8. of the recommended textbook (or the equivalent
More informationMATH 251 Examination II April 7, 2014 FORM A. Name: Student Number: Section:
MATH 251 Examination II April 7, 2014 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work must
More informationDIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt
More informationReview For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.
Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: y y x y2 = 0 : homogeneous equation. x2 v = y dy, y = vx, and x v + x dv dx = v + v2. dx =
More informationMath 322. Spring 2015 Review Problems for Midterm 2
Linear Algebra: Topic: Linear Independence of vectors. Question. Math 3. Spring Review Problems for Midterm Explain why if A is not square, then either the row vectors or the column vectors of A are linearly
More informationLinear Algebra Practice Problems
Math 7, Professor Ramras Linear Algebra Practice Problems () Consider the following system of linear equations in the variables x, y, and z, in which the constants a and b are real numbers. x y + z = a
More informationMATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION
MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether
More informationMATH 104 Practice Problems for Exam 2
. Find the area between: MATH 4 Practice Problems for Exam (a) x =, y = / + x, y = x/ Answer: ln( + ) 4 (b) y = e x, y = xe x, x = Answer: e6 4 7 4 (c) y = x and the x axis, for x 4. x Answer: ln 5. Calculate
More informationPh.D. Katarína Bellová Page 1 Mathematics 2 (10PHYBIPMA2) EXAM  Solutions, 20 July 2017, 10:00 12:00 All answers to be justified.
PhD Katarína Bellová Page 1 Mathematics 2 (10PHYBIPMA2 EXAM  Solutions, 20 July 2017, 10:00 12:00 All answers to be justified Problem 1 [ points]: For which parameters λ R does the following system
More information1. Diagonalize the matrix A if possible, that is, find an invertible matrix P and a diagonal
. Diagonalize the matrix A if possible, that is, find an invertible matrix P and a diagonal 3 9 matrix D such that A = P DP, for A =. 3 4 3 (a) P = 4, D =. 3 (b) P = 4, D =. (c) P = 4 8 4, D =. 3 (d) P
More informationMath 216 Final Exam 14 December, 2012
Math 216 Final Exam 14 December, 2012 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that
More informationMA 242 Review Exponential and Log Functions Notes for today s class can be found at
MA 242 Review Exponential and Log Functions Notes for today s class can be found at www.xecu.net/jacobs/index242.htm Example: If y = x n If y = x 2 then then dy dx = nxn 1 dy dx = 2x1 = 2x Power Function
More informationMath221: HW# 2 solutions
Math: HW# solutions Andy Royston October, 5 8..4 Integrate each side from to t: t d x dt dt dx dx (t) dt dt () g k e kt t t ge kt dt g k ( e kt ). () Since the object starts from rest, dx dx () v(). Now
More informationMathematics for Chemistry: Exam Set 1
Mathematics for Chemistry: Exam Set 1 June 18, 017 1 mark Questions 1. The minimum value of the rank of any 5 3 matrix is 0 1 3. The trace of an identity n n matrix is equal to 11 0 n 3. A square matrix
More informationUNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test
UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test NAME: SCHOOL: 1. Let f be some function for which you know only that if 0 < x < 1, then f(x) 5 < 0.1. Which of the following
More informationEntrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4.
Entrance Exam, Differential Equations April, 7 (Solve exactly 6 out of the 8 problems). Consider the following initial value problem: { y + y + y cos(x y) =, y() = y. Find all the values y such that the
More informationQ1 /10 Q2 /10 Q3 /10 Q4 /10 Q5 /10 Q6 /10 Q7 /10 Q8 /10 Q9 /10 Q10 /10 Total /100
Midterm Maths 240  Calculus III July 23, 2012 Name: Solutions Instructions You have the entire period (1PM3:10PM) to complete the test. You can use one 5.5 8.5 halfpage for formulas, but no electronic
More information2.3 Terminology for Systems of Linear Equations
page 133 e 2t sin 2t 44 A(t) = t 2 5 te t, a = 0, b = 1 sec 2 t 3t sin t 45 The matrix function A(t) in Problem 39, with a = 0 and b = 1 Integration of matrix functions given in the text was done with
More information1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?
. Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in
More information1 Differential Equations
Reading [Simon], Chapter 24, p. 633657. 1 Differential Equations 1.1 Definition and Examples A differential equation is an equation involving an unknown function (say y = y(t)) and one or more of its
More information6.0 INTRODUCTION TO DIFFERENTIAL EQUATIONS
6.0 Introduction to Differential Equations Contemporary Calculus 1 6.0 INTRODUCTION TO DIFFERENTIAL EQUATIONS This chapter is an introduction to differential equations, a major field in applied and theoretical
More informationReduction to the associated homogeneous system via a particular solution
June PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 5) Linear Algebra This study guide describes briefly the course materials to be covered in MA 5. In order to be qualified for the credit, one
More informationDIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONS Chapter 1 Introduction and Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known
More informationJUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 1 (First order equations (A)) A.J.Hobson
JUST THE MATHS UNIT NUMBER 5. ORDINARY DIFFERENTIAL EQUATIONS (First order equations (A)) by A.J.Hobson 5.. Introduction and definitions 5..2 Exact equations 5..3 The method of separation of the variables
More informationMA 527 first midterm review problems Hopefully final version as of October 2nd
MA 57 first midterm review problems Hopefully final version as of October nd The first midterm will be on Wednesday, October 4th, from 8 to 9 pm, in MTHW 0. It will cover all the material from the classes
More informationMath 20D Final Exam 8 December has eigenvalues 3, 3, 0 and find the eigenvectors associated with 3. ( 2) det
Math D Final Exam 8 December 9. ( points) Show that the matrix 4 has eigenvalues 3, 3, and find the eigenvectors associated with 3. 4 λ det λ λ λ = (4 λ) det λ ( ) det + det λ = (4 λ)(( λ) 4) + ( λ + )
More informationMAT Linear Algebra Collection of sample exams
MAT 342  Linear Algebra Collection of sample exams Ax. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system
More informationThis is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you.
Math 54 Fall 2017 Practice Final Exam Exam date: 12/14/17 Time Limit: 170 Minutes Name: Student ID: GSI or Section: This exam contains 9 pages (including this cover page) and 10 problems. Problems are
More informationMathematics for Chemistry: Exam Set 1
Mathematics for Chemistry: Exam Set 1 March 19, 017 1 mark Questions 1. The maximum value of the rank of any 5 3 matrix is (a (b3 4 5. The determinant of an identity n n matrix is equal to (a 1 (b 1 0
More informationANSWERS Final Exam Math 250b, Section 2 (Professor J. M. Cushing), 15 May 2008 PART 1
ANSWERS Final Exam Math 50b, Section (Professor J. M. Cushing), 5 May 008 PART. (0 points) A bacterial population x grows exponentially according to the equation x 0 = rx, where r>0is the per unit rate
More informationMath 224, Fall 2007 Exam 3 Thursday, December 6, 2007
Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007 You have 1 hour and 20 minutes. No notes, books, or other references. You are permitted to use Maple during this exam, but you must start with a blank
More informationCalifornia State University Northridge MATH 280: Applied Differential Equations Midterm Exam 2
California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 2 November 3, 203. Duration: 75 Minutes. Instructor: Jing Li Student Name: Student number: Take your time to
More informationMath 308 Week 8 Solutions
Math 38 Week 8 Solutions There is a solution manual to Chapter 4 online: www.pearsoncustom.com/tamu math/. This online solutions manual contains solutions to some of the suggested problems. Here are solutions
More informationSolution: In standard form (i.e. y + P (t)y = Q(t)) we have y t y = cos(t)
Math 380 Practice Final Solutions This is longer than the actual exam, which will be 8 to 0 questions (some might be multiple choice). You are allowed up to two sheets of notes (both sides) and a calculator,
More informationApplied Calculus. Review Problems for the Final Exam
Math135 Study Guide 1 Math 131/135/194, Fall 2004 Applied Calculus Daniel Kaplan, Macalester College Review Problems for the Final Exam Problem 1../DE/102b.tex Problem 3../DE/107.tex Consider the pair
More information22.2. Applications of Eigenvalues and Eigenvectors. Introduction. Prerequisites. Learning Outcomes
Applications of Eigenvalues and Eigenvectors 22.2 Introduction Many applications of matrices in both engineering and science utilize eigenvalues and, sometimes, eigenvectors. Control theory, vibration
More informationDiff. Eq. App.( ) Midterm 1 Solutions
Diff. Eq. App.(110.302) Midterm 1 Solutions Johns Hopkins University February 28, 2011 Problem 1.[3 15 = 45 points] Solve the following differential equations. (Hint: Identify the types of the equations
More informationكلية العلوم قسم الرياضيات المعادالت التفاضلية العادية
الجامعة اإلسالمية كلية العلوم غزة قسم الرياضيات المعادالت التفاضلية العادية Elementary differential equations and boundary value problems المحاضرون أ.د. رائد صالحة د. فاتن أبو شوقة 1 3 4 5 6 بسم هللا
More informationEXAM. Exam #1. Math 3350 Summer II, July 21, 2000 ANSWERS
EXAM Exam #1 Math 3350 Summer II, 2000 July 21, 2000 ANSWERS i 100 pts. Problem 1. 1. In each part, find the general solution of the differential equation. dx = x2 e y We use the following sequence of
More informationMA 242 LINEAR ALGEBRA C1, Solutions to First Midterm Exam
MA 242 LINEAR ALGEBRA C Solutions to First Midterm Exam Prof Nikola Popovic October 2 9:am  :am Problem ( points) Determine h and k such that the solution set of x + = k 4x + h = 8 (a) is empty (b) contains
More informationPurdue University Study Guide for MA Credit Exam
Purdue University Study Guide for MA 60 Credit Exam Students who pass the credit exam will gain credit in MA60. The credit exam is a twohour long exam with 5 multiple choice questions. No books or notes
More informationChapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form
Chapter 5. Linear Algebra A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are real numbers. 1
More informationChapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form
Chapter 5. Linear Algebra Sections 5.1 5.3 A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are
More informationSolving First Order PDEs
Solving Ryan C. Trinity University Partial Differential Equations Lecture 2 Solving the transport equation Goal: Determine every function u(x, t) that solves u t +v u x = 0, where v is a fixed constant.
More information(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.
1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III
More informationUNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations.
UNIVERSITY OF SOUTHAMPTON MATH055W SEMESTER EXAMINATION 03/4 MATHEMATICS FOR ELECTRONIC & ELECTRICAL ENGINEERING Duration: 0 min Solutions Only University approved calculators may be used. A foreign language
More informationMath 314/ Exam 2 Blue Exam Solutions December 4, 2008 Instructor: Dr. S. Cooper. Name:
Math 34/84  Exam Blue Exam Solutions December 4, 8 Instructor: Dr. S. Cooper Name: Read each question carefully. Be sure to show all of your work and not just your final conclusion. You may not use your
More informationMath 2142 Homework 5 Part 1 Solutions
Math 2142 Homework 5 Part 1 Solutions Problem 1. For the following homogeneous second order differential equations, give the general solution and the particular solution satisfying the given initial conditions.
More informationSign the pledge. On my honor, I have neither given nor received unauthorized aid on this Exam : 11. a b c d e. 1. a b c d e. 2.
Math 258 Name: Final Exam Instructor: May 7, 2 Section: Calculators are NOT allowed. Do not remove this answer page you will return the whole exam. You will be allowed 2 hours to do the test. You may leave
More informationM340 HW 2 SOLUTIONS. 1. For the equation y = f(y), where f(y) is given in the following plot:
M340 HW SOLUTIONS 1. For the equation y = f(y), where f(y) is given in the following plot: (a) What are the critical points? (b) Are they stable or unstable? (c) Sketch the solutions in the ty plane. (d)
More informationChapter 6: Messy Integrals
Chapter 6: Messy Integrals Review: Solve the following integrals x 4 sec x tan x 0 0 Find the average value of 3 1 x 3 3 Evaluate 4 3 3 ( x 1), then find the area of ( x 1) 4 Section 6.1: Slope Fields
More informationFinal Exam Review. Review of Systems of ODE. Differential Equations Lia Vas. 1. Find all the equilibrium points of the following systems.
Differential Equations Lia Vas Review of Systems of ODE Final Exam Review 1. Find all the equilibrium points of the following systems. (a) dx = x x xy (b) dx = x x xy = 0.5y y 0.5xy = 0.5y 0.5y 0.5xy.
More information5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.
Linear Algebra  Test File  Spring Test # For problems  consider the following system of equations. x + y  z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the
More informationFINAL REVIEW FALL 2017
FINAL REVIEW FALL 7 Solutions to the following problems are found in the notes on my website. Lesson & : Integration by Substitution Ex. Evaluate 3x (x 3 + 6) 6 dx. Ex. Evaluate dt. + 4t Ex 3. Evaluate
More informationAnswer Key b c d e. 14. b c d e. 15. a b c e. 16. a b c e. 17. a b c d. 18. a b c e. 19. a b d e. 20. a b c e. 21. a c d e. 22.
Math 20580 Answer Key 1 Your Name: Final Exam May 8, 2007 Instructor s name: Record your answers to the multiple choice problems by placing an through one letter for each problem on this answer sheet.
More information1 Solution to Homework 4
Solution to Homework Section. 5. The characteristic equation is r r + = (r )(r ) = 0 r = or r =. y(t) = c e t + c e t y = c e t + c e t. y(0) =, y (0) = c + c =, c + c = c =, c =. To find the maximum value
More informationSection 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation
Section 3.4. Second Order Nonhomogeneous Equations y + p(x)y + q(x)y = f(x) (N) The corresponding homogeneous equation y + p(x)y + q(x)y = 0 (H) is called the reduced equation of (N). 1 General Results
More informationMATH 2050 Assignment 6 Fall 2018 Due: Thursday, November 1. x + y + 2z = 2 x + y + z = c 4x + 2z = 2
MATH 5 Assignment 6 Fall 8 Due: Thursday, November [5]. For what value of c does have a solution? Is it unique? x + y + z = x + y + z = c 4x + z = Writing the system as an augmented matrix, we have c R
More informationFind the Fourier series of the oddperiodic extension of the function f (x) = 1 for x ( 1, 0). Solution: The Fourier series is.
Review for Final Exam. Monday /09, :45:45pm in CC403. Exam is cumulative, 4 problems. 5 grading attempts per problem. Problems similar to homeworks. Integration and LT tables provided. No notes, no
More informationChapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form
Chapter 5. Linear Algebra A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are real numbers. 1
More informationChapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form
Chapter 5. Linear Algebra Sections 5.1 5.3 A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are
More informationSample Final Exam: Solutions
Sample Final Exam: Solutions Problem. A linear transformation T : R R 4 is given by () x x T = x 4. x + (a) Find the standard matrix A of this transformation; (b) Find a basis and the dimension for Range(T
More information