Math 578: Assignment 2

Size: px
Start display at page:

Download "Math 578: Assignment 2"

Transcription

1 Math 578: Assignment Determine whether the natural cubic spline that interpolates the table is or is not the x y function 1 + x x 3 x [0, 1] f(x) = 1 2(x 1) 3(x 1) 2 + 4(x 1) 3 x [1, 2] 4(x 2) + 9(x 2) 2 3(x 2) 3 x [2, 3] Solution: Yes. Check conditions as follows. Define 1 + x x 3 := S 0 (x) x [0, 1] f(x) = 1 2(x 1) 3(x 1) 2 + 4(x 1) 3 := S 1 (x) x [1, 2] 4(x 2) + 9(x 2) 2 3(x 2) 3 := S 2 (x) x [2, 3] and Hence, Therefore, Besides, 1 3x 2 x [0, 1] f (x) = 2 6(x 1) + 12(x 1) 2 x [1, 2] (x 2) 9(x 2) 2 x [2, 3] 6x x [0, 1] f (x) = (x 1) x [1, 2] 18 18(x 2) x [2, 3] S 0 (1) = 1 = S 1 (1) S 1 (2) = 0 = S 2 (2) S 0(1) = 2 = S 1(1) S 1 (2) = 4 = S 2(2) S 0 (1) = 6 = S 1 (1) S 1 (2) = 18 = S 2 (2). f (0) = f (3) = 0. Hence, function f is the natural cubic spline of the given table. 1

2 19. Find a natural cubic spline function whose knots are 1, 0 and 1 and that takes these values: x y Solution: Suppose the natural cubic spline function has the form { S0 (x) x [ 1, 0] f(x) = S 1 (x) x [0, 1] Therefore, Assuming that and from the equation S 0 ( 1) = S 1 (1) = 0 = z 0 = z 2. S 0 (0) = z 1, h i 1 z i 1 + 2(h i 1 + h i )z i + h i z i+1 = b(b i b i 1 ) where b i = y i+1 y i h i and i = 1, we can get z 1 = 0. Hence, S 0 (x) = Ax + B, S 1 (x) = Cx + D. Substituting S 0 ( 1) = 5, S 0 (0) = 7, S 1 (0) = 7, S 1 (1) = 9 into the above equations, we have S 0 = S 1 = 2x + 7. Therefore, f(x) = 2x + 7 is the natural cubic spline whose knots and values are given in the table. 2

3 37. The first U.S. postage stamp was issued in 1885, with the cost to mail a letter set at 2 cents. In 1917, the cost was raised to 3 cents but then was returned to 2 cents in In 1932, it was upped to 3 cents again, where it remained for 26 years. Then a series of increases took place as follows: 1958 = 4 cents, 1963 = 5 cents, 1968 = 6 cents, 1971 = 8 cents, 1974 = 10 cents, 1978 = 15 cents, 1981 = 18 cents in March and 20 cents in October, 1985 = 22 cents, 1988 = 25 cents, 1991 = 29 cents, 1995 = 32 cents, 1999 = 33 cents, 2001 = 34 cents, 2002 = 37 cents, 2006 = 39 cents, 2007 = 41 cents, 2008 = 42 cents. (1) Determine the Newton interpolation polynomial for these data. (2) Determine the natural cubic spline for these data. (3) Using both results, to answer the questions: when will it cost 50 cents to mail a letter? Currently, the cost is 44 cents. What would each of these two types of interpolation predict? Solution: All codes are in the appix. (1)Suppose x = [ ], y = [ ]. Based on divided difference algorithm, Newton interpolation polynomial is p(x) = d 1 + d 2 (x 1885) + d 2 (x 1885)(x 1917) + + d 22 (x 1885) (x 2007), where the coefficients are [d 1, d 2,, d 22 ] = [2, , , , ]. (Details are in the algorithm.) The graph is 18 x 1013 Newton interpolation polynomial Figure 1: Newton interpolation polynomial. 3

4 (2) The second derivatives at each point are: z = [0, , , , , , , , , , , , , , , , , , , , , 0]. And the exact form of the cubic spline is calculated in the algorithm by formula (5) in our notes. Here is the graph (3) Figure 2: Interpolation using natural cubic spline. 90 Find when will it cost 50 cents Figure 3: Find the time for cost of 50 cents using Newton interpolation polynomial. From the figure, it can be seen that it will cost 50 cents in , that is at the of the first month of Since currently the cost is 44 cents, this prediction is not good. 4

5 54 Find the time for the cost of 50 cents using cubic spline Figure 4: Find the time for cost of 50 cents using natural cubic spline. From Fig. 4, it can be seen that it will cost 50 cents in , that is at the of July in However, since currently the cost is 44 cents while the cost is about 53 cents in the figure, this prediction is also not very good. 5

6 16. Using Taylor series expansions, derive the error term for the formula Proof. For h small enough, we have f (x) 1 [f(x) 2f(x + h) + f(x + 2h)]. h2 f(x + h) = f(x) + f (x)h + f (x) 2 h 2 + f (ξ 1 ) h 3 6 f(x + 2h) = f(x) + 2f (x)h + f (x) (2h) 2 + f (ξ 2 ) (2h) where ξ 1 (x, x + h) and ξ 2 (x, x + 2h). Hence, substituting the above two equations in to the following formula, we have Hence, f(x) 2f(x + h) + f(x + 2h) h 2 f (x) = 1 h 2 [f (x)h 2 2f (x)h 2 f (ξ 1 ) 3 = f (ξ 1 ) 3 h + 4f (ξ 2 ) h = O(h). 3 f (ξ 1 ) h + 4f (ξ 2 ) h 3 3 is the error term for the approximation. h 3 + 4f (ξ 2 ) h 3 ] f (x) Show how to use Richardson extrapolation if. Solution: Denote L = ϕ(h) + a 1 h + a 3 h 3 + a 5 h 5 + L = ϕ(h) + a 1 h + a 3 h 3 + a 5 h 5 + := N 1 (h) + O(h). (0.1) Using h/2 instead of h in the above equation, we get L = ϕ(h/2) + a 1 h/2 + a 3 (h/2) 3 + a 5 (h/2) 5 + (0.2) Multiplying (0.2) by 2 and subtracting (0.1), we obtain L = 2ϕ(h/2) ϕ(h) + O(h 3 ) := N 2 (h) + O(h 3 ). (0.3) Hence N 2 (h) = N 1 (h/2) N 1 (h) = N 1 (h/2) + N 1(h/2) N 1 (h) 2 1 6

7 where N 1 (h) = ϕ(h). Apply Richardson extrapolation on (0.3), we get: Hence, L = 23 N 2 (h/2) N 2 (h) N 3 (h) = N 2 (h/2) + N 2(h/2) N 2 (h) So on and so on, we conclude: where N 1 (h) = ϕ(h). + O(h 5 ) := N 3 (h) + O(h 5 ). (0.4) N j (h) = N j 1 (h/2) + N j 1(h/2) N j 1 (h), (j 2) 2 2j 3 1 7

8 Appixes % Determine Newton i n t e r p o l a t i o n p o l y n o m i a l u s i n g d i v i d e d d i f f e r e n c e. x =[ / / ] ; y =[ ] ; n= l e n g t h ( x ) ; % c o e f f i c i e n t s d=y ; f o r j =2: n ; f o r i =n : 1: j ; d ( i ) = ( d ( i ) d ( i 1 ) ) / ( x ( i ) x ( i j + 1 ) ) ; ; ; %Newton i n t e r p o l a t i o n p o l y n o m i a l t =1885:2008; p=d ( n ) ones ( s i z e ( t ) ) ; f o r i =n 1: 1:1 p =( t x ( i ) ones ( s i z e ( t ) ) ). p+d ( i ) ; p l o t ( x, y, ro ) hold on p l o t ( t, p ) t i t l e ( Newton i n t e r p o l a t i o n p o l y n o m i a l ) % %N a t u r a l c u b i c s p l i n e x =[ / / ] ; y =[ ] ; n= l e n g t h ( x ) ; h= z e r o s ( n 1); b= z e r o s ( n 1); f o r i = 1 : ( n 1) h ( i )= x ( i +1) x ( i ) ; b ( i ) = ( y ( i +1) y ( i ) ) / h ( i ) ; A= z e r o s ( n 2,n 2); f o r i =1: n 3 8

9 A( i, i ) = 2 ( h ( i )+ h ( i + 1 ) ) ; A( i, i +1)= h ( i + 1 ) ; A( i +1, i )= h ( i + 1 ) ; A( n 2,n 2)=2 ( h ( n 2)+h ( n 1 ) ) ; C= z e r o s ( n 2,1); f o r i =1: n 2 C( i ) = 6 ( b ( i +1) b ( i ) ) ; z=a\c ; z = [ 0 ; z ; 0 ] ; p l o t ( x, y, ro ) hold on f o r i = 1 : ( n 1) t =x ( i ) : x ( i + 1 ) ; s= z e r o s ( s i z e ( t ) ) ; s=z ( i + 1 ) / ( 6 h ( i ) ). ( t x ( i ) ). ˆ 3 + z ( i ) / ( 6 h ( i ) ). ( x ( i +1) t ). ˆ ( y ( i + 1 ) / h ( i ) h ( i ) z ( i + 1 ) / 6 ). ( t x ( i ) ) + ( y ( i ) / h ( i ) h ( i ) z ( i ) / ( x ( i +1) t ) ; p l o t ( t, s ) hold on % % Determine Newton i n t e r p o l a t i o n p o l y n o m i a l u s i n g d i v i d e d d i f f e r e n c e. x =[ / / ] ; y =[ ] ; n= l e n g t h ( x ) ; % c o e f f i c i e n t s d=y ; f o r j =2: n ; f o r i =n : 1: j ; d ( i ) = ( d ( i ) d ( i 1 ) ) / ( x ( i ) x ( i j + 1 ) ) ; ; ; %Newton i n t e r p o l a t i o n p o l y n o m i a l t = : : %1885:2008; p=d ( n ) ones ( s i z e ( t ) ) ; f o r i =n 1: 1:1 9

10 p =( t x ( i ) ones ( s i z e ( t ) ) ). p+d ( i ) ; % p l o t ( x, y, ro ) % h old on p l o t ( t, p, r ) grid on ; t i t l e ( Find when w i l l i t c o s t 50 c e n t s ) % %N a t u r a l c u b i c s p l i n e x =[ / / ] ; y =[ ] ; n= l e n g t h ( x ) ; h= z e r o s ( n 1); b= z e r o s ( n 1); f o r i = 1 : ( n 1) h ( i )= x ( i +1) x ( i ) ; b ( i ) = ( y ( i +1) y ( i ) ) / h ( i ) ; A= z e r o s ( n 2,n 2); f o r i =1: n 3 A( i, i ) = 2 ( h ( i )+ h ( i + 1 ) ) ; A( i, i +1)= h ( i + 1 ) ; A( i +1, i )= h ( i + 1 ) ; A( n 2,n 2)=2 ( h ( n 2)+h ( n 1 ) ) ; C= z e r o s ( n 2,1); f o r i =1: n 2 C( i ) = 6 ( b ( i +1) b ( i ) ) ; z=a\c ; z = [ 0 ; z ; 0 ] ; % p l o t ( x, y, ro ) % h old on i =n 1; t = : 0. 1 : ; s= z e r o s ( s i z e ( t ) ) ; s=z ( i + 1 ) / ( 6 h ( i ) ). ( t x ( i ) ). ˆ 3 + z ( i ) / ( 6 h ( i ) ). ( x ( i +1) t ). ˆ ( y ( i + 1 ) / h ( i ) h ( i ) z ( i + 1 ) / 6 ). ( t x ( i ) ) + ( y ( i ) / h ( i ) h ( i ) z ( i ) / 6 ). ( x ( i +1) t p l o t ( t, s ) 10

11 grid on t i t l e ( Find t h e time f o r t h e c o s t of 50 c e n t s u s i n g c u b i c s p l i n e ) 11

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam Jim Lambers MAT 460/560 Fall Semester 2009-10 Practice Final Exam 1. Let f(x) = sin 2x + cos 2x. (a) Write down the 2nd Taylor polynomial P 2 (x) of f(x) centered around x 0 = 0. (b) Write down the corresponding

More information

Exam 2. Average: 85.6 Median: 87.0 Maximum: Minimum: 55.0 Standard Deviation: Numerical Methods Fall 2011 Lecture 20

Exam 2. Average: 85.6 Median: 87.0 Maximum: Minimum: 55.0 Standard Deviation: Numerical Methods Fall 2011 Lecture 20 Exam 2 Average: 85.6 Median: 87.0 Maximum: 100.0 Minimum: 55.0 Standard Deviation: 10.42 Fall 2011 1 Today s class Multiple Variable Linear Regression Polynomial Interpolation Lagrange Interpolation Newton

More information

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b)

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b) Numerical Methods - PROBLEMS. The Taylor series, about the origin, for log( + x) is x x2 2 + x3 3 x4 4 + Find an upper bound on the magnitude of the truncation error on the interval x.5 when log( + x)

More information

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places.

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places. NUMERICAL METHODS 1. Rearranging the equation x 3 =.5 gives the iterative formula x n+1 = g(x n ), where g(x) = (2x 2 ) 1. (a) Starting with x = 1, compute the x n up to n = 6, and describe what is happening.

More information

CHAPTER 2 POLYNOMIALS KEY POINTS

CHAPTER 2 POLYNOMIALS KEY POINTS CHAPTER POLYNOMIALS KEY POINTS 1. Polynomials of degrees 1, and 3 are called linear, quadratic and cubic polynomials respectively.. A quadratic polynomial in x with real coefficient is of the form a x

More information

(0, 0), (1, ), (2, ), (3, ), (4, ), (5, ), (6, ).

(0, 0), (1, ), (2, ), (3, ), (4, ), (5, ), (6, ). 1 Interpolation: The method of constructing new data points within the range of a finite set of known data points That is if (x i, y i ), i = 1, N are known, with y i the dependent variable and x i [x

More information

Math Numerical Analysis Mid-Term Test Solutions

Math Numerical Analysis Mid-Term Test Solutions Math 400 - Numerical Analysis Mid-Term Test Solutions. Short Answers (a) A sufficient and necessary condition for the bisection method to find a root of f(x) on the interval [a,b] is f(a)f(b) < 0 or f(a)

More information

Secondary Math 3 Honors - Polynomial and Polynomial Functions Test Review

Secondary Math 3 Honors - Polynomial and Polynomial Functions Test Review Name: Class: Date: Secondary Math 3 Honors - Polynomial and Polynomial Functions Test Review 1 Write 3x 2 ( 2x 2 5x 3 ) in standard form State whether the function is even, odd, or neither Show your work

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA2501 Numerical Methods Spring 2015 Solutions to exercise set 7 1 Cf. Cheney and Kincaid, Exercise 4.1.9 Consider the data points

More information

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines Cubic Splines MATH 375 J. Robert Buchanan Department of Mathematics Fall 2006 Introduction Given data {(x 0, f(x 0 )), (x 1, f(x 1 )),...,(x n, f(x n ))} which we wish to interpolate using a polynomial...

More information

3.1 Interpolation and the Lagrange Polynomial

3.1 Interpolation and the Lagrange Polynomial MATH 4073 Chapter 3 Interpolation and Polynomial Approximation Fall 2003 1 Consider a sample x x 0 x 1 x n y y 0 y 1 y n. Can we get a function out of discrete data above that gives a reasonable estimate

More information

1 Solutions to selected problems

1 Solutions to selected problems Solutions to selected problems Section., #a,c,d. a. p x = n for i = n : 0 p x = xp x + i end b. z = x, y = x for i = : n y = y + x i z = zy end c. y = (t x ), p t = a for i = : n y = y(t x i ) p t = p

More information

Preliminary Examination in Numerical Analysis

Preliminary Examination in Numerical Analysis Department of Applied Mathematics Preliminary Examination in Numerical Analysis August 7, 06, 0 am pm. Submit solutions to four (and no more) of the following six problems. Show all your work, and justify

More information

A monomial or sum of monomials

A monomial or sum of monomials Polynomial: A monomial or sum of monomials Polynomial in x is an expression of the form a n x n + a n 1 x n 1 + a n 2 x n 2 +. a 1 x 1 + a 0 where n is a positive integer and a n 0 Example: 6x 3 + 2x 8x

More information

Integration, differentiation, and root finding. Phys 420/580 Lecture 7

Integration, differentiation, and root finding. Phys 420/580 Lecture 7 Integration, differentiation, and root finding Phys 420/580 Lecture 7 Numerical integration Compute an approximation to the definite integral I = b Find area under the curve in the interval Trapezoid Rule:

More information

Lecture Note 3: Polynomial Interpolation. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 3: Polynomial Interpolation. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 3: Polynomial Interpolation Xiaoqun Zhang Shanghai Jiao Tong University Last updated: October 24, 2013 1.1 Introduction We first look at some examples. Lookup table for f(x) = 2 π x 0 e x2

More information

Tropical Polynomials

Tropical Polynomials 1 Tropical Arithmetic Tropical Polynomials Los Angeles Math Circle, May 15, 2016 Bryant Mathews, Azusa Pacific University In tropical arithmetic, we define new addition and multiplication operations on

More information

5.3. Polynomials and Polynomial Functions

5.3. Polynomials and Polynomial Functions 5.3 Polynomials and Polynomial Functions Polynomial Vocabulary Term a number or a product of a number and variables raised to powers Coefficient numerical factor of a term Constant term which is only a

More information

Computational Physics

Computational Physics Interpolation, Extrapolation & Polynomial Approximation Lectures based on course notes by Pablo Laguna and Kostas Kokkotas revamped by Deirdre Shoemaker Spring 2014 Introduction In many cases, a function

More information

Section 0.2 & 0.3 Worksheet. Types of Functions

Section 0.2 & 0.3 Worksheet. Types of Functions MATH 1142 NAME Section 0.2 & 0.3 Worksheet Types of Functions Now that we have discussed what functions are and some of their characteristics, we will explore different types of functions. Section 0.2

More information

November 20, Interpolation, Extrapolation & Polynomial Approximation

November 20, Interpolation, Extrapolation & Polynomial Approximation Interpolation, Extrapolation & Polynomial Approximation November 20, 2016 Introduction In many cases we know the values of a function f (x) at a set of points x 1, x 2,..., x N, but we don t have the analytic

More information

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 16. f(x) dx,

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 16. f(x) dx, Panel integration Week 12: Monday, Apr 16 Suppose we want to compute the integral b a f(x) dx In estimating a derivative, it makes sense to use a locally accurate approximation to the function around the

More information

, a 1. , a 2. ,..., a n

, a 1. , a 2. ,..., a n CHAPTER Points to Remember :. Let x be a variable, n be a positive integer and a 0, a, a,..., a n be constants. Then n f ( x) a x a x... a x a, is called a polynomial in variable x. n n n 0 POLNOMIALS.

More information

Numerical Methods. King Saud University

Numerical Methods. King Saud University Numerical Methods King Saud University Aims In this lecture, we will... find the approximate solutions of derivative (first- and second-order) and antiderivative (definite integral only). Numerical Differentiation

More information

Chap. 19: Numerical Differentiation

Chap. 19: Numerical Differentiation Chap. 19: Numerical Differentiation Differentiation Definition of difference: y x f x x i x f x i As x is approaching zero, the difference becomes a derivative: dy dx lim x 0 f x i x f x i x 2 High-Accuracy

More information

Review 1. 1 Relations and Functions. Review Problems

Review 1. 1 Relations and Functions. Review Problems Review 1 1 Relations and Functions Objectives Relations; represent a relation by coordinate pairs, mappings and equations; functions; evaluate a function; domain and range; operations of functions. Skills

More information

Lecture Note 3: Interpolation and Polynomial Approximation. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 3: Interpolation and Polynomial Approximation. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 3: Interpolation and Polynomial Approximation Xiaoqun Zhang Shanghai Jiao Tong University Last updated: October 10, 2015 2 Contents 1.1 Introduction................................ 3 1.1.1

More information

Review: complex numbers

Review: complex numbers October 5/6, 01.5 extra problems page 1 Review: complex numbers Number system The complex number system consists of a + bi where a and b are real numbers, with various arithmetic operations. The real numbers

More information

Section 4.1: Polynomial Functions and Models

Section 4.1: Polynomial Functions and Models Section 4.1: Polynomial Functions and Models Learning Objectives: 1. Identify Polynomial Functions and Their Degree 2. Graph Polynomial Functions Using Transformations 3. Identify the Real Zeros of a Polynomial

More information

Math 3 Variable Manipulation Part 3 Polynomials A

Math 3 Variable Manipulation Part 3 Polynomials A Math 3 Variable Manipulation Part 3 Polynomials A 1 MATH 1 & 2 REVIEW: VOCABULARY Constant: A term that does not have a variable is called a constant. Example: the number 5 is a constant because it does

More information

Test 2 Review Math 1111 College Algebra

Test 2 Review Math 1111 College Algebra Test 2 Review Math 1111 College Algebra 1. Begin by graphing the standard quadratic function f(x) = x 2. Then use transformations of this graph to graph the given function. g(x) = x 2 + 2 *a. b. c. d.

More information

Interpolation APPLIED PROBLEMS. Reading Between the Lines FLY ROCKET FLY, FLY ROCKET FLY WHAT IS INTERPOLATION? Figure Interpolation of discrete data.

Interpolation APPLIED PROBLEMS. Reading Between the Lines FLY ROCKET FLY, FLY ROCKET FLY WHAT IS INTERPOLATION? Figure Interpolation of discrete data. WHAT IS INTERPOLATION? Given (x 0,y 0 ), (x,y ), (x n,y n ), find the value of y at a value of x that is not given. Interpolation Reading Between the Lines Figure Interpolation of discrete data. FLY ROCKET

More information

Roots and Coefficients Polynomials Preliminary Maths Extension 1

Roots and Coefficients Polynomials Preliminary Maths Extension 1 Preliminary Maths Extension Question If, and are the roots of x 5x x 0, find the following. (d) (e) Question If p, q and r are the roots of x x x 4 0, evaluate the following. pq r pq qr rp p q q r r p

More information

Sections 7.1, 7.2: Sums, differences, products of polynomials CHAPTER 7: POLYNOMIALS

Sections 7.1, 7.2: Sums, differences, products of polynomials CHAPTER 7: POLYNOMIALS Sections 7.1, 7.2: Sums, differences, products of polynomials CHAPTER 7: POLYNOMIALS Quiz results Average 73%: high h score 100% Problems: Keeping track of negative signs x = + = + Function notation f(x)

More information

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form Qualifying exam for numerical analysis (Spring 2017) Show your work for full credit. If you are unable to solve some part, attempt the subsequent parts. 1. Consider the following finite difference: f (0)

More information

Interpolation and extrapolation

Interpolation and extrapolation Interpolation and extrapolation Alexander Khanov PHYS6260: Experimental Methods is HEP Oklahoma State University October 30, 207 Interpolation/extrapolation vs fitting Formulation of the problem: there

More information

LHS Algebra Pre-Test

LHS Algebra Pre-Test Your Name Teacher Block Grade (please circle): 9 10 11 12 Course level (please circle): Honors Level 1 Instructions LHS Algebra Pre-Test The purpose of this test is to see whether you know Algebra 1 well

More information

Solve the problem. Determine the center and radius of the circle. Use the given information about a circle to find its equation.

Solve the problem. Determine the center and radius of the circle. Use the given information about a circle to find its equation. Math1314-TestReview2-Spring2016 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) Is the point (-5, -3) on the circle defined

More information

MATH10001 Mathematical Workshop Graph Fitting Project part 2

MATH10001 Mathematical Workshop Graph Fitting Project part 2 MATH10001 Mathematical Workshop Graph Fitting Project part 2 Polynomial models Modelling a set of data with a polynomial curve can be convenient because polynomial functions are particularly easy to differentiate

More information

Patterns and Relations (Patterns)

Patterns and Relations (Patterns) Patterns and Relations (Patterns) Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 Specific Learning Outcomes Specific Learning Outcomes Specific Learning Outcomes Specific Learning Outcomes Specific Learning

More information

The highest degree term is x $, therefore the function is degree 4 (quartic) c) What are the x-intercepts?

The highest degree term is x $, therefore the function is degree 4 (quartic) c) What are the x-intercepts? L3 1.3 Factored Form Polynomial Functions Lesson MHF4U Jensen In this section, you will investigate the relationship between the factored form of a polynomial function and the x-intercepts of the corresponding

More information

Math 9 Practice Final Exam #1

Math 9 Practice Final Exam #1 Class: Date: Math Practice Final Exam #1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Determine the value of 0.64. a. 0.8 b. 0.08 0.4 d. 0.1 2. Which

More information

Simplifying Rational Expressions and Functions

Simplifying Rational Expressions and Functions Department of Mathematics Grossmont College October 15, 2012 Recall: The Number Types Definition The set of whole numbers, ={0, 1, 2, 3, 4,...} is the set of natural numbers unioned with zero, written

More information

Applied Numerical Analysis Homework #3

Applied Numerical Analysis Homework #3 Applied Numerical Analysis Homework #3 Interpolation: Splines, Multiple dimensions, Radial Bases, Least-Squares Splines Question Consider a cubic spline interpolation of a set of data points, and derivatives

More information

Applied Numerical Analysis Quiz #2

Applied Numerical Analysis Quiz #2 Applied Numerical Analysis Quiz #2 Modules 3 and 4 Name: Student number: DO NOT OPEN UNTIL ASKED Instructions: Make sure you have a machine-readable answer form. Write your name and student number in the

More information

Extrapolation in Numerical Integration. Romberg Integration

Extrapolation in Numerical Integration. Romberg Integration Extrapolation in Numerical Integration Romberg Integration Matthew Battaglia Joshua Berge Sara Case Yoobin Ji Jimu Ryoo Noah Wichrowski Introduction Extrapolation: the process of estimating beyond the

More information

1 Solutions to selected problems

1 Solutions to selected problems Solutions to selected problems Section., #a,c,d. a. p x = n for i = n : 0 p x = xp x + i end b. z = x, y = x for i = : n y = y + x i z = zy end c. y = (t x ), p t = a for i = : n y = y(t x i ) p t = p

More information

1 Review of Interpolation using Cubic Splines

1 Review of Interpolation using Cubic Splines cs412: introduction to numerical analysis 10/10/06 Lecture 12: Instructor: Professor Amos Ron Cubic Hermite Spline Interpolation Scribes: Yunpeng Li, Mark Cowlishaw 1 Review of Interpolation using Cubic

More information

L1 2.1 Long Division of Polynomials and The Remainder Theorem Lesson MHF4U Jensen

L1 2.1 Long Division of Polynomials and The Remainder Theorem Lesson MHF4U Jensen L1 2.1 Long Division of Polynomials and The Remainder Theorem Lesson MHF4U Jensen In this section you will apply the method of long division to divide a polynomial by a binomial. You will also learn to

More information

Core Mathematics 1 Quadratics

Core Mathematics 1 Quadratics Regent College Maths Department Core Mathematics 1 Quadratics Quadratics September 011 C1 Note Quadratic functions and their graphs. The graph of y ax bx c. (i) a 0 (ii) a 0 The turning point can be determined

More information

SPLINE INTERPOLATION

SPLINE INTERPOLATION Spline Background SPLINE INTERPOLATION Problem: high degree interpolating polynomials often have extra oscillations. Example: Runge function f(x = 1 1+4x 2, x [ 1, 1]. 1 1/(1+4x 2 and P 8 (x and P 16 (x

More information

POLYNOMIAL FUNCTIONS. Chapter 5

POLYNOMIAL FUNCTIONS. Chapter 5 POLYNOMIAL FUNCTIONS Chapter 5 5.1 EXPLORING THE GRAPHS OF POLYNOMIAL FUNCTIONS 5.2 CHARACTERISTICS OF THE EQUATIONS OF POLYNOMIAL FUNCTIONS Chapter 5 POLYNOMIAL FUNCTIONS What s a polynomial? A polynomial

More information

Unit 1 Vocabulary. A function that contains 1 or more or terms. The variables may be to any non-negative power.

Unit 1 Vocabulary. A function that contains 1 or more or terms. The variables may be to any non-negative power. MODULE 1 1 Polynomial A function that contains 1 or more or terms. The variables may be to any non-negative power. 1 Modeling Mathematical modeling is the process of using, and to represent real world

More information

Data Analysis-I. Interpolation. Soon-Hyung Yook. December 4, Soon-Hyung Yook Data Analysis-I December 4, / 1

Data Analysis-I. Interpolation. Soon-Hyung Yook. December 4, Soon-Hyung Yook Data Analysis-I December 4, / 1 Data Analysis-I Interpolation Soon-Hyung Yook December 4, 2015 Soon-Hyung Yook Data Analysis-I December 4, 2015 1 / 1 Table of Contents Soon-Hyung Yook Data Analysis-I December 4, 2015 2 / 1 Introduction

More information

Chapter 3 Interpolation and Polynomial Approximation

Chapter 3 Interpolation and Polynomial Approximation Chapter 3 Interpolation and Polynomial Approximation Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128A Numerical Analysis Polynomial Interpolation

More information

Ch 7 Summary - POLYNOMIAL FUNCTIONS

Ch 7 Summary - POLYNOMIAL FUNCTIONS Ch 7 Summary - POLYNOMIAL FUNCTIONS 1. An open-top box is to be made by cutting congruent squares of side length x from the corners of a 8.5- by 11-inch sheet of cardboard and bending up the sides. a)

More information

AB ExamSolutions Texas A&M High School Math Contest November 8, 2014

AB ExamSolutions Texas A&M High School Math Contest November 8, 2014 AB ExamSolutions Texas A&M High School Math Contest November 8, 2014 1. What is the largest power of 2 that divides 2 2013 + 10 2013? ANSWER: 2 2014 Solution: 2 2013 + 10 2013 = 2 2013 (1 + 5 2013 ). Since

More information

Fixed point iteration and root finding

Fixed point iteration and root finding Fixed point iteration and root finding The sign function is defined as x > 0 sign(x) = 0 x = 0 x < 0. It can be evaluated via an iteration which is useful for some problems. One such iteration is given

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

1. Definition of a Polynomial

1. Definition of a Polynomial 1. Definition of a Polynomial What is a polynomial? A polynomial P(x) is an algebraic expression of the form Degree P(x) = a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 3 x 3 + a 2 x 2 + a 1 x + a 0 Leading

More information

Interpolation and Approximation

Interpolation and Approximation Interpolation and Approximation The Basic Problem: Approximate a continuous function f(x), by a polynomial p(x), over [a, b]. f(x) may only be known in tabular form. f(x) may be expensive to compute. Definition:

More information

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn Review Taylor Series and Error Analysis Roots of Equations Linear Algebraic Equations Optimization Numerical Differentiation and Integration Ordinary Differential Equations Partial Differential Equations

More information

L1 2.1 Long Division of Polynomials and The Remainder Theorem Lesson MHF4U Jensen

L1 2.1 Long Division of Polynomials and The Remainder Theorem Lesson MHF4U Jensen L1 2.1 Long Division of Polynomials and The Remainder Theorem Lesson MHF4U Jensen In this section you will apply the method of long division to divide a polynomial by a binomial. You will also learn to

More information

Synthetic Division. Vicky Chen, Manjot Rai, Patricia Seun, Sherri Zhen S.Z.

Synthetic Division. Vicky Chen, Manjot Rai, Patricia Seun, Sherri Zhen S.Z. Synthetic Division By: Vicky Chen, Manjot Rai, Patricia Seun, Sherri Zhen S.Z. What is Synthetic Division? Synthetic Division is a simpler way to divide a polynomial by a linear factor. You can consider

More information

Examples of solutions to the examination in Computational Physics (FYTN03), October 24, 2016

Examples of solutions to the examination in Computational Physics (FYTN03), October 24, 2016 Examples of solutions to the examination in Computational Physics (FYTN3), October 4, 6 Allowed calculation aids: TEFYMA or Physics Handbook. The examination consists of eight problems each worth five

More information

Final exam (practice) UCLA: Math 31B, Spring 2017

Final exam (practice) UCLA: Math 31B, Spring 2017 Instructor: Noah White Date: Final exam (practice) UCLA: Math 3B, Spring 207 This exam has 8 questions, for a total of 80 points. Please print your working and answers neatly. Write your solutions in the

More information

Warm-Up. Use long division to divide 5 into

Warm-Up. Use long division to divide 5 into Warm-Up Use long division to divide 5 into 3462. 692 5 3462-30 46-45 12-10 2 Warm-Up Use long division to divide 5 into 3462. Divisor 692 5 3462-30 46-45 12-10 2 Quotient Dividend Remainder Warm-Up Use

More information

Ch. 12 Higher Degree Equations Rational Root

Ch. 12 Higher Degree Equations Rational Root Ch. 12 Higher Degree Equations Rational Root Sec 1. Synthetic Substitution ~ Division of Polynomials This first section was covered in the chapter on polynomial operations. I m reprinting it here because

More information

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. 29 May :45 11:45

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. 29 May :45 11:45 Two hours MATH20602 To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER NUMERICAL ANALYSIS 1 29 May 2015 9:45 11:45 Answer THREE of the FOUR questions. If more

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

Chapter 3-1 Polynomials

Chapter 3-1 Polynomials Chapter 3 notes: Chapter 3-1 Polynomials Obj: SWBAT identify, evaluate, add, and subtract polynomials A monomial is a number, a variable, or a product of numbers and variables with whole number exponents

More information

AFM Review Test Review

AFM Review Test Review Name: Class: Date: AFM Review Test Review Multiple Choice Identify the choice that best completes the statement or answers the question. What are the solutions of the inequality?. q + (q ) > 0 q < 3 q

More information

Curve Fitting and Interpolation

Curve Fitting and Interpolation Chapter 5 Curve Fitting and Interpolation 5.1 Basic Concepts Consider a set of (x, y) data pairs (points) collected during an experiment, Curve fitting: is a procedure to develop or evaluate mathematical

More information

1 Solving Algebraic Equations

1 Solving Algebraic Equations Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan 1 Solving Algebraic Equations This section illustrates the processes of solving linear and quadratic equations. The Geometry of Real

More information

Q 0 x if x 0 x x 1. S 1 x if x 1 x x 2. i 0,1,...,n 1, and L x L n 1 x if x n 1 x x n

Q 0 x if x 0 x x 1. S 1 x if x 1 x x 2. i 0,1,...,n 1, and L x L n 1 x if x n 1 x x n . - Piecewise Linear-Quadratic Interpolation Piecewise-polynomial Approximation: Problem: Givenn pairs of data points x i, y i, i,,...,n, find a piecewise-polynomial Sx S x if x x x Sx S x if x x x 2 :

More information

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Question 1: The graphs of y = p(x) are given in following figure, for some Polynomials p(x). Find the number of zeroes of p(x), in each case.

Question 1: The graphs of y = p(x) are given in following figure, for some Polynomials p(x). Find the number of zeroes of p(x), in each case. Class X - NCERT Maths EXERCISE NO:.1 Question 1: The graphs of y = p(x) are given in following figure, for some Polynomials p(x). Find the number of zeroes of p(x), in each case. (i) (ii) (iii) (iv) (v)

More information

Answers to Homework 9: Numerical Integration

Answers to Homework 9: Numerical Integration Math 8A Spring Handout # Sergey Fomel April 3, Answers to Homework 9: Numerical Integration. a) Suppose that the function f x) = + x ) is known at three points: x =, x =, and x 3 =. Interpolate the function

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 216 17 INTRODUCTION TO NUMERICAL ANALYSIS MTHE612B Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other questions.

More information

MATH 150 Pre-Calculus

MATH 150 Pre-Calculus MATH 150 Pre-Calculus Fall, 2014, WEEK 2 JoungDong Kim Week 2: 1D, 1E, 2A Chapter 1D. Rational Expression. Definition of a Rational Expression A rational expression is an expression of the form p, where

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA5 Numerical Methods Spring 5 Solutions to exercise set 9 Find approximate values of the following integrals using the adaptive

More information

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series:

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series: Math Rahman Week 0.8-0.0 Taylor Series Suppose the function f has the following power series: fx) c 0 + c x a) + c x a) + c 3 x a) 3 + c n x a) n. ) Can we figure out what the coefficients are? Yes, yes

More information

MA 3021: Numerical Analysis I Numerical Differentiation and Integration

MA 3021: Numerical Analysis I Numerical Differentiation and Integration MA 3021: Numerical Analysis I Numerical Differentiation and Integration Suh-Yuh Yang ( 楊肅煜 ) Department of Mathematics, National Central University Jhongli District, Taoyuan City 32001, Taiwan syyang@math.ncu.edu.tw

More information

Cubic Splines; Bézier Curves

Cubic Splines; Bézier Curves Cubic Splines; Bézier Curves 1 Cubic Splines piecewise approximation with cubic polynomials conditions on the coefficients of the splines 2 Bézier Curves computer-aided design and manufacturing MCS 471

More information

Caculus 221. Possible questions for Exam II. March 19, 2002

Caculus 221. Possible questions for Exam II. March 19, 2002 Caculus 221 Possible questions for Exam II March 19, 2002 These notes cover the recent material in a style more like the lecture than the book. The proofs in the book are in section 1-11. At the end there

More information

3.5. Dividing Polynomials. LEARN ABOUT the Math. Selecting a strategy to divide a polynomial by a binomial

3.5. Dividing Polynomials. LEARN ABOUT the Math. Selecting a strategy to divide a polynomial by a binomial 3.5 Dividing Polynomials GOAL Use a variety of strategies to determine the quotient when one polynomial is divided by another polynomial. LEARN ABOU the Math Recall that long division can be used to determine

More information

Chapter 5: Numerical Integration and Differentiation

Chapter 5: Numerical Integration and Differentiation Chapter 5: Numerical Integration and Differentiation PART I: Numerical Integration Newton-Cotes Integration Formulas The idea of Newton-Cotes formulas is to replace a complicated function or tabulated

More information

Chapter 4: Interpolation and Approximation. October 28, 2005

Chapter 4: Interpolation and Approximation. October 28, 2005 Chapter 4: Interpolation and Approximation October 28, 2005 Outline 1 2.4 Linear Interpolation 2 4.1 Lagrange Interpolation 3 4.2 Newton Interpolation and Divided Differences 4 4.3 Interpolation Error

More information

Vocabulary: I. Inverse Variation: Two variables x and y show inverse variation if they are related as. follows: where a 0

Vocabulary: I. Inverse Variation: Two variables x and y show inverse variation if they are related as. follows: where a 0 8.1: Model Inverse and Joint Variation I. Inverse Variation: Two variables x and y show inverse variation if they are related as follows: where a 0 * In this equation y is said to vary inversely with x.

More information

Input: A set (x i -yy i ) data. Output: Function value at arbitrary point x. What for x = 1.2?

Input: A set (x i -yy i ) data. Output: Function value at arbitrary point x. What for x = 1.2? Applied Numerical Analysis Interpolation Lecturer: Emad Fatemizadeh Interpolation Input: A set (x i -yy i ) data. Output: Function value at arbitrary point x. 0 1 4 1-3 3 9 What for x = 1.? Interpolation

More information

AP Physics C Mechanics Calculus Basics

AP Physics C Mechanics Calculus Basics AP Physics C Mechanics Calculus Basics Among other things, calculus involves studying analytic geometry (analyzing graphs). The above graph should be familiar to anyone who has studied elementary algebra.

More information

Interpolation. Chapter Interpolation. 7.2 Existence, Uniqueness and conditioning

Interpolation. Chapter Interpolation. 7.2 Existence, Uniqueness and conditioning 76 Chapter 7 Interpolation 7.1 Interpolation Definition 7.1.1. Interpolation of a given function f defined on an interval [a,b] by a polynomial p: Given a set of specified points {(t i,y i } n with {t

More information

Inverses. Stephen Boyd. EE103 Stanford University. October 28, 2017

Inverses. Stephen Boyd. EE103 Stanford University. October 28, 2017 Inverses Stephen Boyd EE103 Stanford University October 28, 2017 Outline Left and right inverses Inverse Solving linear equations Examples Pseudo-inverse Left and right inverses 2 Left inverses a number

More information

Lecture 10 Polynomial interpolation

Lecture 10 Polynomial interpolation Lecture 10 Polynomial interpolation Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University, tieli@pku.edu.cn

More information

Math /Foundations of Algebra/Fall 2017 Numbers at the Foundations: Real Numbers In calculus, the derivative of a function f(x) is defined

Math /Foundations of Algebra/Fall 2017 Numbers at the Foundations: Real Numbers In calculus, the derivative of a function f(x) is defined Math 400-001/Foundations of Algebra/Fall 2017 Numbers at the Foundations: Real Numbers In calculus, the derivative of a function f(x) is defined using limits. As a particular case, the derivative of f(x)

More information

Advanced Math Quiz Review Name: Dec Use Synthetic Division to divide the first polynomial by the second polynomial.

Advanced Math Quiz Review Name: Dec Use Synthetic Division to divide the first polynomial by the second polynomial. Advanced Math Quiz 3.1-3.2 Review Name: Dec. 2014 Use Synthetic Division to divide the first polynomial by the second polynomial. 1. 5x 3 + 6x 2 8 x + 1, x 5 1. Quotient: 2. x 5 10x 3 + 5 x 1, x + 4 2.

More information

Math 1314 Lesson 1: Prerequisites. Example 1: Simplify and write the answer without using negative exponents:

Math 1314 Lesson 1: Prerequisites. Example 1: Simplify and write the answer without using negative exponents: Math 1314 Lesson 1: Prerequisites 1. Exponents 1 m n n n m Recall: x = x = x n x Example 1: Simplify and write the answer without using negative exponents: a. x 5 b. ( x) 5 Example : Write as a radical:

More information

Midterm Review. Name: Class: Date: ID: A. Short Answer. 1. For each graph, write the equation of a radical function of the form y = a b(x h) + k.

Midterm Review. Name: Class: Date: ID: A. Short Answer. 1. For each graph, write the equation of a radical function of the form y = a b(x h) + k. Name: Class: Date: ID: A Midterm Review Short Answer 1. For each graph, write the equation of a radical function of the form y = a b(x h) + k. a) b) c) 2. Determine the domain and range of each function.

More information

Calculation of Orthogonal Polynomials and Their Derivatives

Calculation of Orthogonal Polynomials and Their Derivatives Biostatistics Department R eport Technical BST2017-0 01 C alculation of Orthogonal Polynomials T heir Derivatives and C harles R. Katholi, PhD M ay 2017 D epartment of Biostatistics S chool of Public Health

More information

Core Mathematics 3 Algebra

Core Mathematics 3 Algebra http://kumarmathsweeblycom/ Core Mathematics 3 Algebra Edited by K V Kumaran Core Maths 3 Algebra Page Algebra fractions C3 The specifications suggest that you should be able to do the following: Simplify

More information