Best approximation in the 2-norm

Size: px
Start display at page:

Download "Best approximation in the 2-norm"

Transcription

1 Best approximation in the 2-norm Department of Mathematical Sciences, NTNU september 26th 2012

2 Vector space A real vector space V is a set with a 0 element and three operations: Addition: x, y V then x + y V Inverse: for all x V there is x V such that x + ( x) = 0 Scalar multiplication: λ R, x V then λ x V 1 x + y = y + x 2 (x + y) + z = x + (y + z) x = x + 0 = x 4 0 x = x = x 6 (λ µ) x = λ (µ x) 7 λ (x + y) = λx + λy 8 (λ + µ) x = λx + µx

3 Inner product spaces: 9.2 Definition of inner product space Let V be a linear space over R. A function, : V V R, is called an inner product on V if: 1 f + g, h = f, h + g, h for all f, g, h in V ; 2 λf, g = λ f, g for all f, g in V and λ R; 3 f, g = g, f for all f, g in V ; 4 f, f > 0 if f 0, f V.

4 Inner product spaces: 9.2 Definition of inner product space Let V be a linear space over R. A function, : V V R, is called an inner product on V if: 1 f + g, h = f, h + g, h for all f, g, h in V ; 2 λf, g = λ f, g for all f, g in V and λ R; 3 f, g = g, f for all f, g in V ; 4 f, f > 0 if f 0, f V. A linear space with an inner product is an inner product space.

5 Inner product spaces: 9.2 Definition of inner product space Let V be a linear space over R. A function, : V V R, is called an inner product on V if: 1 f + g, h = f, h + g, h for all f, g, h in V ; 2 λf, g = λ f, g for all f, g in V and λ R; 3 f, g = g, f for all f, g in V ; 4 f, f > 0 if f 0, f V. A linear space with an inner product is an inner product space. Example The n-dimensional Euclidean space R n is an inner product space u, b = n u i v i, i=0 u, v R n and u = [u 1,..., u n ] T, v = [v 1,..., v n ] T.

6 Inner product spaces: orthogonality and norm Orthogonality If in an inner product space V we have f, g = 0 then we say that f is orthogonal to g.

7 Inner product spaces: orthogonality and norm Orthogonality If in an inner product space V we have f, g = 0 then we say that f is orthogonal to g. Induced norm In an inner product space we can define the norm f := f, f 1 2, this is called norm induced by the inner product.

8 Inner product spaces: orthogonality and norm Orthogonality If in an inner product space V we have f, g = 0 then we say that f is orthogonal to g. Induced norm In an inner product space we can define the norm f := f, f 1 2, this is called norm induced by the inner product. Theorem An inner product space V over R with the induced norm defined above is a normed space. Proof. Need to prove that the induced norm satisfies the axioms of norm, the proof makes use of the Cauchy-Schwarz inequality.

9 Lemma: Cauchy-Schwarz inequality f, g f g, f, g V. Proof Similar to the one seen in chapter 2 for the inner product in R n.

10 Lemma: Cauchy-Schwarz inequality f, g f g, f, g V. Proof Similar to the one seen in chapter 2 for the inner product in R n. Using the lemma we prove the triangular inequality for the induced norm: f + g 2 = f + g, f + g = f f, g + g 2 from Cauchy-Schwarz we get f + g 2 f f g + g 2 = ( f + g ) 2 so f + g f + g.

11 Lemma: Cauchy-Schwarz inequality f, g f g, f, g V. Proof Similar to the one seen in chapter 2 for the inner product in R n. Using the lemma we prove the triangular inequality for the induced norm: f + g 2 = f + g, f + g = f f, g + g 2 from Cauchy-Schwarz we get f + g 2 f f g + g 2 = ( f + g ) 2 so f + g f + g. The other two axioms of norm are directly proved using the definition of induced norm.

12 Space of continuous functions Example (9.3) C[a, b] (continuous functions defined on the closed interval [a, b]) is an inner product space with the inner product f, g = b a w(x)f (x)g(x)dx, and w is a weight function defined, positive, continuous and integrable on (a, b). The induced norm is ( b f 2 = a ) 1 w(x) f (x) 2 2 dx. This norm is called the 2-norm on C[a, b].

13 Space of square integrable functions: L 2 We do not need f to be continuous in order for f 2 to be finite, it is sufficient that f 2 w is integrable on [a, b].

14 Space of square integrable functions: L 2 We do not need f to be continuous in order for f 2 to be finite, it is sufficient that f 2 w is integrable on [a, b]. Example L 2 w (a, b) := {f : (a, b) R w(x) f (x) 2 is integrable on (a, b)}. This is an inner product space with the inner product f, g = b a w(x)f (x)g(x)dx, and w is a weight function defined, positive, continuous and integrable on (a, b). The induced norm is ( ) 1 b 2 f 2 = w(x) f (x) 2 dx. a This norm is called the L 2 -norm. Note C[a, b] L 2 w (a, b). In the case w 1 then we write L 2 (a, b).

15 Best approximation in the 2-norm: ch 9.3 The problem of best approximation in the 2-norm can be formulated as follows: Best approximation problem in the 2-norm Given that f L 2 w (a, b), find p n Π n such that f p n 2 = inf q Π n f q 2 such p n is called a polynomial of best approximation of degree n to the function f in the 2-norm on (a, b).

16 Best approximation in the 2-norm: ch 9.3 The problem of best approximation in the 2-norm can be formulated as follows: Best approximation problem in the 2-norm Given that f L 2 w (a, b), find p n Π n such that f p n 2 = inf q Π n f q 2 such p n is called a polynomial of best approximation of degree n to the function f in the 2-norm on (a, b). Theorem 9.2 Let f L 2 w (a, b), there exists a unique polynomial p n Π n such that f p n 2 = min q Π n f q 2.

17 Example: best approximation in 2 vs Let ɛ > 0 fixed f (x) = 1 e x ɛ, x [0, 1] find p0 2 norm and p0 norm

18 In general, to find p n (x) = c 0 + c 1 x + + c n x n best approximation in the two norm on [0, 1]:

19 In general, to find p n (x) = c 0 + c 1 x + + c n x n best approximation in the two norm on [0, 1]: Solve where M is the Hilbert matrix: M c = b M j,k = 1 0 x k+j dx = 1 k + j + 1 j, k = 0,..., n, and b T = b 0. b n, b j = 1 0 f (x)x j dx.

20 Alternatively write p n (x) = γ 0 ϕ 0 + γ 1 ϕ 1 (x) + + γ n ϕ n (x) best approximation in the two norm on [a, b]: and Π n = span{1, x,..., x n } = span{ϕ 0, ϕ 1..., ϕ n }, and find γ 0,..., γ n minimizing b n E(γ 0,..., γ n ) := f (x) γ j ϕ j 2. a j=0

21 Alternatively write p n (x) = γ 0 ϕ 0 + γ 1 ϕ 1 (x) + + γ n ϕ n (x) best approximation in the two norm on [a, b]: and Π n = span{1, x,..., x n } = span{ϕ 0, ϕ 1..., ϕ n }, and find γ 0,..., γ n minimizing b n E(γ 0,..., γ n ) := f (x) γ j ϕ j 2. a j=0 This leads to M γ = b where γ = [γ 0,..., γ n ] T, M is the matrix: M j,k = ϕ k, ϕ j j, k = 0,..., n, and b = [b 0,..., b n ] T b j = f, ϕ j. We d like M diagonal (i.e. ϕ k, ϕ j = δ k,j ).

22 Def 9.4: Orthogonal polynomials Given a weight function w on (a, b) we say that the sequence of polynomials ϕ j, j = 0, 1,... is a system of orthogonal polynomials on (a, b) with respect to w, if each ϕ j is of exact degree j and ϕ j, ϕ k = δ j,k. To construct a system of orthogonal polynomials we can use a Gram-Schmidt process.

23 Gram-Schmidt orthogonalization Let ϕ 0 1 and assume ϕ j j = 0,..., n n 0 are already orthogonal so ϕ k, ϕ j = consider and take THEN b a w(x)ϕ k (x)ϕ j (x) dx = 0, k, j {0,..., n}, k j q(x) = x n+1 a 0 ϕ 0 (x) a n ϕ n (x) Π n+1, a j = x n+1, ϕ j ϕ j, ϕ j, j = 0,..., n

24 Gram-Schmidt orthogonalization Let ϕ 0 1 and assume ϕ j j = 0,..., n n 0 are already orthogonal so ϕ k, ϕ j = consider and take THEN b a w(x)ϕ k (x)ϕ j (x) dx = 0, k, j {0,..., n}, k j q(x) = x n+1 a 0 ϕ 0 (x) a n ϕ n (x) Π n+1, a j = x n+1, ϕ j ϕ j, ϕ j, j = 0,..., n q, ϕ j = x n+1, ϕ j a j ϕ j, ϕ j = 0,

25 Gram-Schmidt orthogonalization Let ϕ 0 1 and assume ϕ j j = 0,..., n n 0 are already orthogonal so ϕ k, ϕ j = consider and take THEN b a and we can take w(x)ϕ k (x)ϕ j (x) dx = 0, k, j {0,..., n}, k j q(x) = x n+1 a 0 ϕ 0 (x) a n ϕ n (x) Π n+1, with α a scaling constant. a j = x n+1, ϕ j ϕ j, ϕ j, j = 0,..., n q, ϕ j = x n+1, ϕ j a j ϕ j, ϕ j = 0, ϕ n+1 = α q

26 Example (9.6 Legendre polynomials) (a, b) = ( 1, 1) w(x) 1: ϕ 0 (x) 1 ϕ 1 (x) = x ϕ 2 (x) = 3 2 x ϕ 2 (x) = 5 2 x x Example (9.6 Chebishev polynomials) (a, b) = ( 1, 1) w(x) (1 x 2 ) 1/2 T n (x) = cos(n arcos(x)), n = 0, 1,....

27 Characterization of the best approximation in the 2-norm Theorem 9.3 p n Π n is such that f p n 2 = min q Π n f q 2, f L 2 w (a, b), if and only if f p n, q = 0, q Π n Remark: This theorem relates best approximation to orthogonality.

28 Example On (0, 1) and w(x) 1 on (0, 1) by Gram-Schmidt orthogonalization we get So for ϕ 0 = 1, ϕ 1 = x 1 2, ϕ 2(x) = x 2 x f (x) = 1 e x ɛ, x [0, 1] the best approximation p 3 is p 3 (x) = γ 0 + γ 1 ϕ 1 (x) + γ 2 ϕ 2 (x)

29 Example On (0, 1) and w(x) 1 on (0, 1) by Gram-Schmidt orthogonalization we get So for ϕ 0 = 1, ϕ 1 = x 1 2, ϕ 2(x) = x 2 x f (x) = 1 e x ɛ, x [0, 1] the best approximation p 3 is p 3 (x) = γ 0 + γ 1 ϕ 1 (x) + γ 2 ϕ 2 (x) γ 0 = γ 1 = γ 1 = (1 e x ɛ ) dx, 0 (1 e x ɛ )(x 1 2 ) dx 1 0 (x, 1 2 )2 dx 1 0 (1 e x ɛ )(x 2 x ) dx 1 0 (x, 2 x )2 dx

APPENDIX B GRAM-SCHMIDT PROCEDURE OF ORTHOGONALIZATION. Let V be a finite dimensional inner product space spanned by basis vector functions

APPENDIX B GRAM-SCHMIDT PROCEDURE OF ORTHOGONALIZATION. Let V be a finite dimensional inner product space spanned by basis vector functions 301 APPENDIX B GRAM-SCHMIDT PROCEDURE OF ORTHOGONALIZATION Let V be a finite dimensional inner product space spanned by basis vector functions {w 1, w 2,, w n }. According to the Gram-Schmidt Process an

More information

Inner products. Theorem (basic properties): Given vectors u, v, w in an inner product space V, and a scalar k, the following properties hold:

Inner products. Theorem (basic properties): Given vectors u, v, w in an inner product space V, and a scalar k, the following properties hold: Inner products Definition: An inner product on a real vector space V is an operation (function) that assigns to each pair of vectors ( u, v) in V a scalar u, v satisfying the following axioms: 1. u, v

More information

Projection Theorem 1

Projection Theorem 1 Projection Theorem 1 Cauchy-Schwarz Inequality Lemma. (Cauchy-Schwarz Inequality) For all x, y in an inner product space, [ xy, ] x y. Equality holds if and only if x y or y θ. Proof. If y θ, the inequality

More information

INNER PRODUCT SPACE. Definition 1

INNER PRODUCT SPACE. Definition 1 INNER PRODUCT SPACE Definition 1 Suppose u, v and w are all vectors in vector space V and c is any scalar. An inner product space on the vectors space V is a function that associates with each pair of

More information

96 CHAPTER 4. HILBERT SPACES. Spaces of square integrable functions. Take a Cauchy sequence f n in L 2 so that. f n f m 1 (b a) f n f m 2.

96 CHAPTER 4. HILBERT SPACES. Spaces of square integrable functions. Take a Cauchy sequence f n in L 2 so that. f n f m 1 (b a) f n f m 2. 96 CHAPTER 4. HILBERT SPACES 4.2 Hilbert Spaces Hilbert Space. An inner product space is called a Hilbert space if it is complete as a normed space. Examples. Spaces of sequences The space l 2 of square

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Linear Algebra. Session 12

Linear Algebra. Session 12 Linear Algebra. Session 12 Dr. Marco A Roque Sol 08/01/2017 Example 12.1 Find the constant function that is the least squares fit to the following data x 0 1 2 3 f(x) 1 0 1 2 Solution c = 1 c = 0 f (x)

More information

Chapter 6 Inner product spaces

Chapter 6 Inner product spaces Chapter 6 Inner product spaces 6.1 Inner products and norms Definition 1 Let V be a vector space over F. An inner product on V is a function, : V V F such that the following conditions hold. x+z,y = x,y

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

Section 7.5 Inner Product Spaces

Section 7.5 Inner Product Spaces Section 7.5 Inner Product Spaces With the dot product defined in Chapter 6, we were able to study the following properties of vectors in R n. ) Length or norm of a vector u. ( u = p u u ) 2) Distance of

More information

orthogonal relations between vectors and subspaces Then we study some applications in vector spaces and linear systems, including Orthonormal Basis,

orthogonal relations between vectors and subspaces Then we study some applications in vector spaces and linear systems, including Orthonormal Basis, 5 Orthogonality Goals: We use scalar products to find the length of a vector, the angle between 2 vectors, projections, orthogonal relations between vectors and subspaces Then we study some applications

More information

Hilbert Spaces: Infinite-Dimensional Vector Spaces

Hilbert Spaces: Infinite-Dimensional Vector Spaces Hilbert Spaces: Infinite-Dimensional Vector Spaces PHYS 500 - Southern Illinois University October 27, 2016 PHYS 500 - Southern Illinois University Hilbert Spaces: Infinite-Dimensional Vector Spaces October

More information

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space.

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Hilbert Spaces Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Vector Space. Vector space, ν, over the field of complex numbers,

More information

5 Compact linear operators

5 Compact linear operators 5 Compact linear operators One of the most important results of Linear Algebra is that for every selfadjoint linear map A on a finite-dimensional space, there exists a basis consisting of eigenvectors.

More information

Lecture 20: 6.1 Inner Products

Lecture 20: 6.1 Inner Products Lecture 0: 6.1 Inner Products Wei-Ta Chu 011/1/5 Definition An inner product on a real vector space V is a function that associates a real number u, v with each pair of vectors u and v in V in such a way

More information

12.0 Properties of orthogonal polynomials

12.0 Properties of orthogonal polynomials 12.0 Properties of orthogonal polynomials In this section we study orthogonal polynomials to use them for the construction of quadrature formulas investigate projections on polynomial spaces and their

More information

Inner Product Spaces An inner product on a complex linear space X is a function x y from X X C such that. (1) (2) (3) x x > 0 for x 0.

Inner Product Spaces An inner product on a complex linear space X is a function x y from X X C such that. (1) (2) (3) x x > 0 for x 0. Inner Product Spaces An inner product on a complex linear space X is a function x y from X X C such that (1) () () (4) x 1 + x y = x 1 y + x y y x = x y x αy = α x y x x > 0 for x 0 Consequently, (5) (6)

More information

Linear Analysis Lecture 5

Linear Analysis Lecture 5 Linear Analysis Lecture 5 Inner Products and V Let dim V < with inner product,. Choose a basis B and let v, w V have coordinates in F n given by x 1. x n and y 1. y n, respectively. Let A F n n be the

More information

1. Subspaces A subset M of Hilbert space H is a subspace of it is closed under the operation of forming linear combinations;i.e.,

1. Subspaces A subset M of Hilbert space H is a subspace of it is closed under the operation of forming linear combinations;i.e., Abstract Hilbert Space Results We have learned a little about the Hilbert spaces L U and and we have at least defined H 1 U and the scale of Hilbert spaces H p U. Now we are going to develop additional

More information

Linear Normed Spaces (cont.) Inner Product Spaces

Linear Normed Spaces (cont.) Inner Product Spaces Linear Normed Spaces (cont.) Inner Product Spaces October 6, 017 Linear Normed Spaces (cont.) Theorem A normed space is a metric space with metric ρ(x,y) = x y Note: if x n x then x n x, and if {x n} is

More information

Introduction to Signal Spaces

Introduction to Signal Spaces Introduction to Signal Spaces Selin Aviyente Department of Electrical and Computer Engineering Michigan State University January 12, 2010 Motivation Outline 1 Motivation 2 Vector Space 3 Inner Product

More information

Functional Analysis Review

Functional Analysis Review Outline 9.520: Statistical Learning Theory and Applications February 8, 2010 Outline 1 2 3 4 Vector Space Outline A vector space is a set V with binary operations +: V V V and : R V V such that for all

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

Power Series Solutions to the Legendre Equation

Power Series Solutions to the Legendre Equation Power Series Solutions to the Legendre Equation Department of Mathematics IIT Guwahati The Legendre equation The equation (1 x 2 )y 2xy + α(α + 1)y = 0, (1) where α is any real constant, is called Legendre

More information

1. Foundations of Numerics from Advanced Mathematics. Linear Algebra

1. Foundations of Numerics from Advanced Mathematics. Linear Algebra Foundations of Numerics from Advanced Mathematics Linear Algebra Linear Algebra, October 23, 22 Linear Algebra Mathematical Structures a mathematical structure consists of one or several sets and one or

More information

Chapter 4 Euclid Space

Chapter 4 Euclid Space Chapter 4 Euclid Space Inner Product Spaces Definition.. Let V be a real vector space over IR. A real inner product on V is a real valued function on V V, denoted by (, ), which satisfies () (x, y) = (y,

More information

Prof. M. Saha Professor of Mathematics The University of Burdwan West Bengal, India

Prof. M. Saha Professor of Mathematics The University of Burdwan West Bengal, India CHAPTER 9 BY Prof. M. Saha Professor of Mathematics The University of Burdwan West Bengal, India E-mail : mantusaha.bu@gmail.com Introduction and Objectives In the preceding chapters, we discussed normed

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Week: December 4 8 Deadline to hand in the homework: your exercise class on week January 5. Exercises with solutions ) Let H, K be Hilbert spaces, and A : H K be a linear

More information

Mathematics Department Stanford University Math 61CM/DM Inner products

Mathematics Department Stanford University Math 61CM/DM Inner products Mathematics Department Stanford University Math 61CM/DM Inner products Recall the definition of an inner product space; see Appendix A.8 of the textbook. Definition 1 An inner product space V is a vector

More information

Math 255 Honors: Gram-Schmidt Orthogonalization on the Space of Polynomials

Math 255 Honors: Gram-Schmidt Orthogonalization on the Space of Polynomials Math 55 Honors: Gram-Schmidt Orthogonalization on the Space of Polynomials David Moore May, 03 Abstract Gram-Schmidt Orthogonalization is a process to construct orthogonal vectors from some basis for a

More information

j=1 [We will show that the triangle inequality holds for each p-norm in Chapter 3 Section 6.] The 1-norm is A F = tr(a H A).

j=1 [We will show that the triangle inequality holds for each p-norm in Chapter 3 Section 6.] The 1-norm is A F = tr(a H A). Math 344 Lecture #19 3.5 Normed Linear Spaces Definition 3.5.1. A seminorm on a vector space V over F is a map : V R that for all x, y V and for all α F satisfies (i) x 0 (positivity), (ii) αx = α x (scale

More information

Vectors in Function Spaces

Vectors in Function Spaces Jim Lambers MAT 66 Spring Semester 15-16 Lecture 18 Notes These notes correspond to Section 6.3 in the text. Vectors in Function Spaces We begin with some necessary terminology. A vector space V, also

More information

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis.

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis. Vector spaces DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Vector space Consists of: A set V A scalar

More information

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms.

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. Vector Spaces Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. For each two vectors a, b ν there exists a summation procedure: a +

More information

Linear Algebra Review

Linear Algebra Review January 29, 2013 Table of contents Metrics Metric Given a space X, then d : X X R + 0 and z in X if: d(x, y) = 0 is equivalent to x = y d(x, y) = d(y, x) d(x, y) d(x, z) + d(z, y) is a metric is for all

More information

MATH 235: Inner Product Spaces, Assignment 7

MATH 235: Inner Product Spaces, Assignment 7 MATH 235: Inner Product Spaces, Assignment 7 Hand in questions 3,4,5,6,9, by 9:3 am on Wednesday March 26, 28. Contents Orthogonal Basis for Inner Product Space 2 2 Inner-Product Function Space 2 3 Weighted

More information

Curve Fitting and Approximation

Curve Fitting and Approximation Department of Physics Cotton College State University, Panbazar Guwahati 781001, Assam December 6, 2016 Outline Curve Fitting 1 Curve Fitting Outline Curve Fitting 1 Curve Fitting Topics in the Syllabus

More information

Functional Analysis MATH and MATH M6202

Functional Analysis MATH and MATH M6202 Functional Analysis MATH 36202 and MATH M6202 1 Inner Product Spaces and Normed Spaces Inner Product Spaces Functional analysis involves studying vector spaces where we additionally have the notion of

More information

Function Space and Convergence Types

Function Space and Convergence Types Function Space and Convergence Types PHYS 500 - Southern Illinois University November 1, 2016 PHYS 500 - Southern Illinois University Function Space and Convergence Types November 1, 2016 1 / 7 Recall

More information

Lecture 23: 6.1 Inner Products

Lecture 23: 6.1 Inner Products Lecture 23: 6.1 Inner Products Wei-Ta Chu 2008/12/17 Definition An inner product on a real vector space V is a function that associates a real number u, vwith each pair of vectors u and v in V in such

More information

Definitions and Properties of R N

Definitions and Properties of R N Definitions and Properties of R N R N as a set As a set R n is simply the set of all ordered n-tuples (x 1,, x N ), called vectors. We usually denote the vector (x 1,, x N ), (y 1,, y N ), by x, y, or

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space.

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space. Chapter 1 Preliminaries The purpose of this chapter is to provide some basic background information. Linear Space Hilbert Space Basic Principles 1 2 Preliminaries Linear Space The notion of linear space

More information

1. General Vector Spaces

1. General Vector Spaces 1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule

More information

Linear Algebra. Paul Yiu. Department of Mathematics Florida Atlantic University. Fall A: Inner products

Linear Algebra. Paul Yiu. Department of Mathematics Florida Atlantic University. Fall A: Inner products Linear Algebra Paul Yiu Department of Mathematics Florida Atlantic University Fall 2011 6A: Inner products In this chapter, the field F = R or C. We regard F equipped with a conjugation χ : F F. If F =

More information

Math 24 Spring 2012 Sample Homework Solutions Week 8

Math 24 Spring 2012 Sample Homework Solutions Week 8 Math 4 Spring Sample Homework Solutions Week 8 Section 5. (.) Test A M (R) for diagonalizability, and if possible find an invertible matrix Q and a diagonal matrix D such that Q AQ = D. ( ) 4 (c) A =.

More information

Lecture 3: Review of Linear Algebra

Lecture 3: Review of Linear Algebra ECE 83 Fall 2 Statistical Signal Processing instructor: R Nowak Lecture 3: Review of Linear Algebra Very often in this course we will represent signals as vectors and operators (eg, filters, transforms,

More information

Class notes: Approximation

Class notes: Approximation Class notes: Approximation Introduction Vector spaces, linear independence, subspace The goal of Numerical Analysis is to compute approximations We want to approximate eg numbers in R or C vectors in R

More information

Lecture 3: Review of Linear Algebra

Lecture 3: Review of Linear Algebra ECE 83 Fall 2 Statistical Signal Processing instructor: R Nowak, scribe: R Nowak Lecture 3: Review of Linear Algebra Very often in this course we will represent signals as vectors and operators (eg, filters,

More information

Orthonormal Bases Fall Consider an inner product space V with inner product f, g and norm

Orthonormal Bases Fall Consider an inner product space V with inner product f, g and norm 8.03 Fall 203 Orthonormal Bases Consider an inner product space V with inner product f, g and norm f 2 = f, f Proposition (Continuity) If u n u 0 and v n v 0 as n, then u n u ; u n, v n u, v. Proof. Note

More information

MATH 167: APPLIED LINEAR ALGEBRA Chapter 3

MATH 167: APPLIED LINEAR ALGEBRA Chapter 3 MATH 167: APPLIED LINEAR ALGEBRA Chapter 3 Jesús De Loera, UC Davis February 18, 2012 Orthogonal Vectors and Subspaces (3.1). In real life vector spaces come with additional METRIC properties!! We have

More information

I teach myself... Hilbert spaces

I teach myself... Hilbert spaces I teach myself... Hilbert spaces by F.J.Sayas, for MATH 806 November 4, 2015 This document will be growing with the semester. Every in red is for you to justify. Even if we start with the basic definition

More information

Approximation theory

Approximation theory Approximation theory Xiaojing Ye, Math & Stat, Georgia State University Spring 2019 Numerical Analysis II Xiaojing Ye, Math & Stat, Georgia State University 1 1 1.3 6 8.8 2 3.5 7 10.1 Least 3squares 4.2

More information

Analysis IV : Assignment 3 Solutions John Toth, Winter ,...). In particular for every fixed m N the sequence (u (n)

Analysis IV : Assignment 3 Solutions John Toth, Winter ,...). In particular for every fixed m N the sequence (u (n) Analysis IV : Assignment 3 Solutions John Toth, Winter 203 Exercise (l 2 (Z), 2 ) is a complete and separable Hilbert space. Proof Let {u (n) } n N be a Cauchy sequence. Say u (n) = (..., u 2, (n) u (n),

More information

2. Review of Linear Algebra

2. Review of Linear Algebra 2. Review of Linear Algebra ECE 83, Spring 217 In this course we will represent signals as vectors and operators (e.g., filters, transforms, etc) as matrices. This lecture reviews basic concepts from linear

More information

Solutions for MAS277 Problems

Solutions for MAS277 Problems Solutions for MAS77 Problems Solutions for Chapter problems: Inner product spaces 1. No. The only part that fails, however, is the condition that f, f should mean that f. If f is a non-zero function that

More information

Lecture IX. Definition 1 A non-singular Sturm 1 -Liouville 2 problem consists of a second order linear differential equation of the form.

Lecture IX. Definition 1 A non-singular Sturm 1 -Liouville 2 problem consists of a second order linear differential equation of the form. Lecture IX Abstract When solving PDEs it is often necessary to represent the solution in terms of a series of orthogonal functions. One way to obtain an orthogonal family of functions is by solving a particular

More information

Inner product spaces. Layers of structure:

Inner product spaces. Layers of structure: Inner product spaces Layers of structure: vector space normed linear space inner product space The abstract definition of an inner product, which we will see very shortly, is simple (and by itself is pretty

More information

Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition

Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 205 Motivation When working with an inner product space, the most

More information

Fall TMA4145 Linear Methods. Exercise set 10

Fall TMA4145 Linear Methods. Exercise set 10 Norwegian University of Science and Technology Department of Mathematical Sciences TMA445 Linear Methods Fall 207 Exercise set 0 Please justify your answers! The most important part is how you arrive at

More information

Lecture # 3 Orthogonal Matrices and Matrix Norms. We repeat the definition an orthogonal set and orthornormal set.

Lecture # 3 Orthogonal Matrices and Matrix Norms. We repeat the definition an orthogonal set and orthornormal set. Lecture # 3 Orthogonal Matrices and Matrix Norms We repeat the definition an orthogonal set and orthornormal set. Definition A set of k vectors {u, u 2,..., u k }, where each u i R n, is said to be an

More information

University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra Ph.D. Preliminary Exam January 13, 2014

University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra Ph.D. Preliminary Exam January 13, 2014 University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra Ph.D. Preliminary Exam January 13, 2014 Name: Exam Rules: This is a closed book exam. Once the exam

More information

MATH 240 Spring, Chapter 1: Linear Equations and Matrices

MATH 240 Spring, Chapter 1: Linear Equations and Matrices MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear

More information

4.4. Orthogonality. Note. This section is awesome! It is very geometric and shows that much of the geometry of R n holds in Hilbert spaces.

4.4. Orthogonality. Note. This section is awesome! It is very geometric and shows that much of the geometry of R n holds in Hilbert spaces. 4.4. Orthogonality 1 4.4. Orthogonality Note. This section is awesome! It is very geometric and shows that much of the geometry of R n holds in Hilbert spaces. Definition. Elements x and y of a Hilbert

More information

UNIT 6: The singular value decomposition.

UNIT 6: The singular value decomposition. UNIT 6: The singular value decomposition. María Barbero Liñán Universidad Carlos III de Madrid Bachelor in Statistics and Business Mathematical methods II 2011-2012 A square matrix is symmetric if A T

More information

Functional Analysis, Math 7320 Lecture Notes from August taken by Yaofeng Su

Functional Analysis, Math 7320 Lecture Notes from August taken by Yaofeng Su Functional Analysis, Math 7320 Lecture Notes from August 30 2016 taken by Yaofeng Su 1 Essentials of Topology 1.1 Continuity Next we recall a stronger notion of continuity: 1.1.1 Definition. Let (X, d

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

4 Hilbert spaces. The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan

4 Hilbert spaces. The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan Wir müssen wissen, wir werden wissen. David Hilbert We now continue to study a special class of Banach spaces,

More information

Fall TMA4145 Linear Methods. Solutions to exercise set 9. 1 Let X be a Hilbert space and T a bounded linear operator on X.

Fall TMA4145 Linear Methods. Solutions to exercise set 9. 1 Let X be a Hilbert space and T a bounded linear operator on X. TMA445 Linear Methods Fall 26 Norwegian University of Science and Technology Department of Mathematical Sciences Solutions to exercise set 9 Let X be a Hilbert space and T a bounded linear operator on

More information

Def. The euclidian distance between two points x = (x 1,...,x p ) t and y = (y 1,...,y p ) t in the p-dimensional space R p is defined as

Def. The euclidian distance between two points x = (x 1,...,x p ) t and y = (y 1,...,y p ) t in the p-dimensional space R p is defined as MAHALANOBIS DISTANCE Def. The euclidian distance between two points x = (x 1,...,x p ) t and y = (y 1,...,y p ) t in the p-dimensional space R p is defined as d E (x, y) = (x 1 y 1 ) 2 + +(x p y p ) 2

More information

Real Variables # 10 : Hilbert Spaces II

Real Variables # 10 : Hilbert Spaces II randon ehring Real Variables # 0 : Hilbert Spaces II Exercise 20 For any sequence {f n } in H with f n = for all n, there exists f H and a subsequence {f nk } such that for all g H, one has lim (f n k,

More information

The Gram matrix in inner product modules over C -algebras

The Gram matrix in inner product modules over C -algebras The Gram matrix in inner product modules over C -algebras Ljiljana Arambašić (joint work with D. Bakić and M.S. Moslehian) Department of Mathematics University of Zagreb Applied Linear Algebra May 24 28,

More information

Basic Calculus Review

Basic Calculus Review Basic Calculus Review Lorenzo Rosasco ISML Mod. 2 - Machine Learning Vector Spaces Functionals and Operators (Matrices) Vector Space A vector space is a set V with binary operations +: V V V and : R V

More information

3 Orthogonality and Fourier series

3 Orthogonality and Fourier series 3 Orthogonality and Fourier series We now turn to the concept of orthogonality which is a key concept in inner product spaces and Hilbert spaces. We start with some basic definitions. Definition 3.1. Let

More information

The 'linear algebra way' of talking about "angle" and "similarity" between two vectors is called "inner product". We'll define this next.

The 'linear algebra way' of talking about angle and similarity between two vectors is called inner product. We'll define this next. Orthogonality and QR The 'linear algebra way' of talking about "angle" and "similarity" between two vectors is called "inner product". We'll define this next. So, what is an inner product? An inner product

More information

The following definition is fundamental.

The following definition is fundamental. 1. Some Basics from Linear Algebra With these notes, I will try and clarify certain topics that I only quickly mention in class. First and foremost, I will assume that you are familiar with many basic

More information

Approximation Theory

Approximation Theory Approximation Theory Function approximation is the task of constructing, for a given function, a simpler function so that the difference between the two functions is small and to then provide a quantifiable

More information

Chapter 5. Basics of Euclidean Geometry

Chapter 5. Basics of Euclidean Geometry Chapter 5 Basics of Euclidean Geometry 5.1 Inner Products, Euclidean Spaces In Affine geometry, it is possible to deal with ratios of vectors and barycenters of points, but there is no way to express the

More information

Recall: Dot product on R 2 : u v = (u 1, u 2 ) (v 1, v 2 ) = u 1 v 1 + u 2 v 2, u u = u u 2 2 = u 2. Geometric Meaning:

Recall: Dot product on R 2 : u v = (u 1, u 2 ) (v 1, v 2 ) = u 1 v 1 + u 2 v 2, u u = u u 2 2 = u 2. Geometric Meaning: Recall: Dot product on R 2 : u v = (u 1, u 2 ) (v 1, v 2 ) = u 1 v 1 + u 2 v 2, u u = u 2 1 + u 2 2 = u 2. Geometric Meaning: u v = u v cos θ. u θ v 1 Reason: The opposite side is given by u v. u v 2 =

More information

Fourier and Wavelet Signal Processing

Fourier and Wavelet Signal Processing Ecole Polytechnique Federale de Lausanne (EPFL) Audio-Visual Communications Laboratory (LCAV) Fourier and Wavelet Signal Processing Martin Vetterli Amina Chebira, Ali Hormati Spring 2011 2/25/2011 1 Outline

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II February 23 2017 Separation of variables Wave eq. (PDE) 2 u t (t, x) = 2 u 2 c2 (t, x), x2 c > 0 constant. Describes small vibrations in a homogeneous string. u(t, x)

More information

Chapter 4: Interpolation and Approximation. October 28, 2005

Chapter 4: Interpolation and Approximation. October 28, 2005 Chapter 4: Interpolation and Approximation October 28, 2005 Outline 1 2.4 Linear Interpolation 2 4.1 Lagrange Interpolation 3 4.2 Newton Interpolation and Divided Differences 4 4.3 Interpolation Error

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008. This chapter is available free to all individuals, on the understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

Inner Product Spaces

Inner Product Spaces Inner Product Spaces Introduction Recall in the lecture on vector spaces that geometric vectors (i.e. vectors in two and three-dimensional Cartesian space have the properties of addition, subtraction,

More information

1 Functional Analysis

1 Functional Analysis 1 Functional Analysis 1 1.1 Banach spaces Remark 1.1. In classical mechanics, the state of some physical system is characterized as a point x in phase space (generalized position and momentum coordinates).

More information

Dot product and linear least squares problems

Dot product and linear least squares problems Dot product and linear least squares problems Dot Product For vectors u,v R n we define the dot product Note that we can also write this as u v = u,,u n u v = u v + + u n v n v v n = u v + + u n v n The

More information

CS 143 Linear Algebra Review

CS 143 Linear Algebra Review CS 143 Linear Algebra Review Stefan Roth September 29, 2003 Introductory Remarks This review does not aim at mathematical rigor very much, but instead at ease of understanding and conciseness. Please see

More information

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books.

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books. Applied Analysis APPM 44: Final exam 1:3pm 4:pm, Dec. 14, 29. Closed books. Problem 1: 2p Set I = [, 1]. Prove that there is a continuous function u on I such that 1 ux 1 x sin ut 2 dt = cosx, x I. Define

More information

Applied Linear Algebra

Applied Linear Algebra Applied Linear Algebra Peter J. Olver School of Mathematics University of Minnesota Minneapolis, MN 55455 olver@math.umn.edu http://www.math.umn.edu/ olver Chehrzad Shakiban Department of Mathematics University

More information

The Gram Schmidt Process

The Gram Schmidt Process u 2 u The Gram Schmidt Process Now we will present a procedure, based on orthogonal projection, that converts any linearly independent set of vectors into an orthogonal set. Let us begin with the simple

More information

The Gram Schmidt Process

The Gram Schmidt Process The Gram Schmidt Process Now we will present a procedure, based on orthogonal projection, that converts any linearly independent set of vectors into an orthogonal set. Let us begin with the simple case

More information

1 angle.mcd Inner product and angle between two vectors. Note that a function is a special case of a vector. Instructor: Nam Sun Wang. x.

1 angle.mcd Inner product and angle between two vectors. Note that a function is a special case of a vector. Instructor: Nam Sun Wang. x. angle.mcd Inner product and angle between two vectors. Note that a function is a special case of a vector. Instructor: Nam Sun Wang Define angle between two vectors & y:. y. y. cos( ) (, y). y. y Projection

More information

homogeneous 71 hyperplane 10 hyperplane 34 hyperplane 69 identity map 171 identity map 186 identity map 206 identity matrix 110 identity matrix 45

homogeneous 71 hyperplane 10 hyperplane 34 hyperplane 69 identity map 171 identity map 186 identity map 206 identity matrix 110 identity matrix 45 address 12 adjoint matrix 118 alternating 112 alternating 203 angle 159 angle 33 angle 60 area 120 associative 180 augmented matrix 11 axes 5 Axiom of Choice 153 basis 178 basis 210 basis 74 basis test

More information

Numerical Linear Algebra

Numerical Linear Algebra University of Alabama at Birmingham Department of Mathematics Numerical Linear Algebra Lecture Notes for MA 660 (1997 2014) Dr Nikolai Chernov April 2014 Chapter 0 Review of Linear Algebra 0.1 Matrices

More information

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces.

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces. Math 350 Fall 2011 Notes about inner product spaces In this notes we state and prove some important properties of inner product spaces. First, recall the dot product on R n : if x, y R n, say x = (x 1,...,

More information

Lecture 5. Ch. 5, Norms for vectors and matrices. Norms for vectors and matrices Why?

Lecture 5. Ch. 5, Norms for vectors and matrices. Norms for vectors and matrices Why? KTH ROYAL INSTITUTE OF TECHNOLOGY Norms for vectors and matrices Why? Lecture 5 Ch. 5, Norms for vectors and matrices Emil Björnson/Magnus Jansson/Mats Bengtsson April 27, 2016 Problem: Measure size of

More information