Examination paper for TMA4145 Linear Methods

Size: px
Start display at page:

Download "Examination paper for TMA4145 Linear Methods"

Transcription

1 Department of Mathematical Sciences Examination paper for TMA4145 Linear Methods Academic contact during examination: Franz Luef Phone: Examination date: Examination time (from to): 09:00-13:00 Permitted examination support material: D:No written or handwritten material. Calculator Casio fx-8es PLUS, Citizen SR-70X, Hewlett Packard HP30S Other information: The exam consists of 1 problems, but the grade is based on your 10 best solutions. Although the problems are only formulated in English you can answer either in English or your favorite Norwegian language. Language: English Number of pages: 9 Number of pages enclosed: 0 Checked by: Informasjon om trykking av eksamensoppgave Originalen er: 1-sidig -sidig sort/hvit farger skal ha flervalgskjema Date Signature

2

3 TMA4145 Linear Methods Page 1 of 9 Problem 1 Let A be a non-empty subset of the real line R. a) Define the following notions: (a) the infimum of A; (b) the supremum of A; (3) the closure of A; (4) the interior of A; (5) the boundary of A. 1. If m is a lower bound of A such that m m for every lower bound m, then m is called the infimum of A, denoted by m = inf A.. If M is an upper bound of A such that M M for every upper bound M, then M is called the supremum of A, denoted by M = sup A. 3. The closure of A, denoted by A, is the intersection of all closed sets containg A. 4. The interior of a subset of A of R, denoted by inta, is the union of all open subsets of R contained in A. 5. The boundary of a subset A of R, denoted by bda, is the set A\intA. b) Assume that A is bounded from above. Show that the supremum of A lies in the closure of A. Let A R be bounded from above. By the axiom of completeness, the supremum of A exists (as a real number), that is, sup A R. Let ε > 0. Since sup A is the least upper bound of A, we have that sup A ε cannot be an upper bound for A, so there is some element a ε A such that a ε > sup A ε. Furthermore, since sup A is an upper bound of A, and since a ε A, we must have that a ε sup A. Thus sup A ε < a ε sup A. For every n 1 we may choose ε = 1. n element a n A such that Using the above, there is some sup A 1 n < a n sup A. We have obtained a sequence (a n ) A such that sup A 1 n < a n sup A for all n 1. Subtracting sup A from all sides of this inequality, we get that 1 n < a n sup A 0,

4 Page of 9 TMA4145 Linear Methods which implies a n sup A 1 n 0 as n, so a n sup A. Problem Consider the initial value problem: dx dt = f(t, x), and x(t 0) = x 0, where f is a function f : U V R defined on U V of R such that t 0 lies in the interior of the interval U and x 0 in the interior of the interval V, respectively. a) Formulate the theorem of Picard-Lindelöf. Assume that f is continuous in t and uniformly Lipschitz in x: f(t, x) f(t, x ) L x x for all t U, x, x V. Then the IVP has a unique local solution, i.e. there exists a δ > 0 such that the IVP has a solution x on (x 0 δ, x 0 + δ). b) Solve the initial value problem dx dt = t(1 + x), and x(0) = 0, by applying the theorem of Picard-Lindelöf. Compute the first three Picard iterations x 1 (t), x (t) and x 3 (t) starting from x 0 (t) = 0. In this problem f(x, t) = t(1 + x), which is continuous in t and uniformly continuous on the closed interval [ B, B] for any B > 0. Hence there exists a unique local solution. The formula for the Picard iteration is x n+1 (t) = Since x 0 (t) = 0 we have t 0 s(1 + x n (s))ds = t + t 0 sx n (s)ds. x 1 (t) = t, x (t) = t + t4!, x 3(t) = t + t4! + t6 3!. Note that x n (t) is the Taylor expansion of e t 1. Hence x n (t) e t 1 and thus the solution actually exists for all t R.

5 TMA4145 Linear Methods Page 3 of 9 Problem 3 Given the matrix 1 A =. 1 a) Compute the singular value decomposition of A. ( ) A A = has as characteristic polynomial x x + 17 = (x 17)(x 1). Hence the eigenvalues of A A are λ 1 = 17 and ) λ = 1. ( The corresponding normalized eigenvectors are v 1 = ) 1 ( 1 1. Consequently, we have ( ). and v =. The singular values of A are σ 1 = 17 and σ = 1. Thus 17 0 Σ = The first two columns of U are given by and by u 1 = 1 1 Av 1 = 1 1 ( ) 1 = u = 1 1 Av = 1 1 ( ) 1 = Consequently, U has the form 1 34 x x 1 34 x 3

6 Page 4 of 9 TMA4145 Linear Methods The last column is determined by the assumption that it has to be orthogonal to the first two columns. The choice u 3 = satisfies these conditions, but there are many other ways to complete the first two columns to become an orthonormal basis for C 3, The SVD of A is ( b) Use the result of a) to find: (1) Bases for the following vector spaces: ker(a), ker(a ), ran(a), ran(a ). ker(a ) = {u 3 }, ker(a) = {0}, ran(a ) = {v 1, v }, ran(a) = {u 1, u }. (3) The pseudo-inverse of A. ). A = ( ) ( ) Problem 4 Let. a and. b be two norms on a vector space X. a) Show that x := ( x a + x b) 1/ is a norm on X. Furthermore, show if a sequence (x n ) converges in (X,. ), then it converges in (X,. a ) and in (X,. b ). x := ( x a + x b) 1/ is a norm, because

7 TMA4145 Linear Methods Page 5 of 9 1. x = 0 if and only if x a = 0 and x b = 0, which is the case only if x = 0.. λx = ( λx a + ax b) 1/ = (λ x a + λ x b) 1/ = λ ( x a + x b) 1/ = λ x. 3. There is a direct way to demonstrate the triangle inequality via brute force computation or one can use the Minkowski inequality. Here is the first approach: Let us compute x + y and ( x + y ). ( x + y ) = ( x a + x b ) + ( y a + y b ) = x a + x b + y a + y b+ x a y a + y a x b + x a y b + x b y b x + y = x + y a + x + y b ( x a + y a ) + ( x b + y b ) = x a + x b + y a + y b+ which gives us x a x b + y a y b, ( x + y ) x + y = y a x b + x a y b 0 and consequently x + y x + y. Second approach: Let us use the Minkowski inequality on R. Take x = ( x a, x b ) and y = ( y a, y b ). Then we have (( x a + y a ) +( x b + y b ) ) 1/ (( x a+ x b) 1/ +( y a+ y b)) 1/ by Minkowski s inequality for p =. The argument is valid for a general p [1, ) and thus x = ( x p a + x p b )1/p defines a norm on X, too. For the convergence statement, we just observe that x a x and x b x, which yields the desired assertions. b) Suppose there exist constants C 1, C > 0 such that C 1 x b x a C x b holds for all x X, i.e.. a and. b are equivalent norms on X.

8 Page 6 of 9 TMA4145 Linear Methods Show that there exist constants C 1, C > 0 such that holds for all x X. C 1 x a x b C x a implies that C 1 x b x a, hence and from x a C x b we deduce. Consequently, we have so C 1 = C 1, C = C 1 1. C 1 x b x a C x b x b C 1 1 x a, C 1 x a x b C 1 x a x b C 1 1 x a, Determine the constants C 1 and C for the sup-norm. and. p -norm, 1 p <. on R n : C 1 x x p C x. We have C 1 = 1 and C = n 1/p, because max{ x i : i = 1,..., n} = max{ x i p : i = 1,..., n} 1/p ( n i=1 x i p ) 1/p and ( n i=1 x i p ) 1/p ( n i=1 max{ x i : i = 1,..., n} p ) 1/p n 1/p max{ x i : i = 1,..., n}. Problem 5 Let M be the subspace of l defined by M = {x = (x k ) k N l : x k = 0 for k = 1,,...}. a) Show that M is a closed subspace of l and determine its orthogonal complement M.

9 TMA4145 Linear Methods Page 7 of 9 Suppose (x n ) n N, where x n = (x n k) k N, is a sequence in M converging to x = (x k ) k N in l. Since x n j = 0 for j = 1,,... we have x j = x j x n j = ( x j x n j ) 1/ ( x j x n j ) 1/ = x x k j N for all j, j N. Hence in the limit as k we get that x j = 0 for all j N. Thus x M and M is a closed subspace of l. The natural candidate for the orthogonal complement of M is the subspace N = {(x k ) k N x j 1 = 0, j = 1,,...}. Now, for x M and y N we have x, y = 0. Hence N M. Suppose y M. Then x, y = 0 for all x M. Let us take the standard basis {e k : k N}. Then we e j 1 M for all j and we have for x = e j 1 that x, e j 1 = x j 1 = 0. Consequently, y N and thus M = N. b) Determine the orthogonal projection P from l onto M without using the projection theorem and show that P = P and its operator norm P = 1. The orthogonal projection P x of x onto M is the best approximation of x in M such that its error is in the orthogonal complement. Hence x P x M, i.e x P x, y = 0 for all y M. Hence x P x = (x j 1 ), so P x = (x j ) = (x, x 4, x 6,...). We also have that M M = {0} since (x 1, x, x 3,...) = (x, x 4,...) + (x 1, x 3,...) for all x l. Hence P = P and P x, y = x ky k = x, P y, k=1 i.e. P = P. By Pythagoras we have x = P x + y where y M. Thus P x x. On the other hand there exists an x l such that P x 0, but P (P x) = P x. Thus P (P x) = P x, so we have P 1. Hence P = 1. Now for x l to M. Problem 6 Let X be a separable Hilbert space and {e k : k = 0, 1,,...} an orthonormal basis for X. We define the linear operator S by S(e k ) = e k+1 for k = 0, 1,,....

10 Page 8 of 9 TMA4145 Linear Methods a) Suppose a = (a 0, a 1,...) l is the coefficient sequence of x X: x = a k e k. Describe the operator S in terms of the coefficient sequence (a 0, a 1,...), i.e. as an operator on l. Determine S on l and find S (e k ) for k = 0, 1,... Compute the operator norm of S. By definition we have S(x) = a k S(e k ) = a k e k+1. In order to get the action of S on l we have to change the summation index:. a k S(e k ) = a k 1 e k = 0e 0 + a 0 e 1 + a 1 e + k=1 Hence for a = (a 0, a 1,...) we have S(a 0, a 1,...) = (0, a 0, a 1, a,...) is a shift operator. Then we have that the adjoint of S is defined by Sa, b = a k 1 b k = a k b k+1 = a, S b. Hence S is the other shift operator on l S (a 0, a 1,...) = (a 1,...), and in terms of the basis elements S is defined by S e 0 = 0 and S e k = e k 1 for k = 1,,....The operator norm of S equals S = sup{ Sa : a l with a = 1}. Since Sa = a 0 + a 1 + a + = a we have that S = 1. b) Determine if S and S are injective and/or surjective, respectively. Determine S S and SS, their kernels and ranges, respectively.

11 TMA4145 Linear Methods Page 9 of 9 We consider S and S as linear operators on l. S is not injective, (1, 0, 0,...) gets mapped to (0, 0,...), and it is surjective: any a l lies in the range of S : S (0, a 0, a 1,...) = (a 0, a 1,...). The map S is injective and not surjective: Sa = (0, a 0, a 1,...) = 0 if and only if a = 0; and (1, 0, 0,..) does not lie in the range of S. S Sa = (a 0, a 1, a,...) and SS = (0, a 1, a,...). Hence the kernel of SS is {(α, 0, 0,...) : α C} and the range of SS is l. Since S S = I its kernel is just {0} and its range is l.

Examination paper for TMA4285 Time Series Models

Examination paper for TMA4285 Time Series Models Department of Mathematical Sciences Examination paper for TMA4285 Series Models Academic contact during examination: Professor Jarle Tufto Phone: 99 70 55 19 Examination date: December 8, 2016 Examination

More information

Examination paper for TMA4195 Mathematical Modeling

Examination paper for TMA4195 Mathematical Modeling Department of Mathematical Sciences Examination paper for TMA4195 Mathematical Modeling Academic contact during examination: Espen R. Jakobsen Phone: 73 59 35 12 Examination date: December 16, 2017 Examination

More information

Examination paper for TMA4255 Applied statistics

Examination paper for TMA4255 Applied statistics Department of Mathematical Sciences Examination paper for TMA4255 Applied statistics Academic contact during examination: Nikolai Ushakov Phone: 45128897 Examination date: 02 June 2018 Examination time

More information

Examination paper for TMA4130 Matematikk 4N: SOLUTION

Examination paper for TMA4130 Matematikk 4N: SOLUTION Department of Mathematical Sciences Examination paper for TMA4 Matematikk 4N: SOLUTION Academic contact during examination: Morten Nome Phone: 9 84 97 8 Examination date: December 7 Examination time (from

More information

Examination paper for TMA4130 Matematikk 4N

Examination paper for TMA4130 Matematikk 4N Department of Mathematical Sciences Examination paper for TMA4130 Matematikk 4N Academic contact during examination: Morten Nome Phone: 90 84 97 83 Examination date: 13 December 2017 Examination time (from

More information

Examination paper for TMA4110 Matematikk 3

Examination paper for TMA4110 Matematikk 3 Department of Mathematical Sciences Examination paper for TMA11 Matematikk 3 Academic contact during examination: Eugenia Malinnikova Phone: 735557 Examination date: 6th May, 15 Examination time (from

More information

Fall TMA4145 Linear Methods. Exercise set Given the matrix 1 2

Fall TMA4145 Linear Methods. Exercise set Given the matrix 1 2 Norwegian University of Science and Technology Department of Mathematical Sciences TMA445 Linear Methods Fall 07 Exercise set Please justify your answers! The most important part is how you arrive at an

More information

Examination paper for TMA4195 Mathematical Modeling

Examination paper for TMA4195 Mathematical Modeling Department of Mathematical Sciences Examination paper for TMA4195 Mathematical Modeling Academic contact during examination: Harald Hanche-Olsen Phone: 73 59 35 25 Examination date: December 14, 2016 Examination

More information

Analysis Preliminary Exam Workshop: Hilbert Spaces

Analysis Preliminary Exam Workshop: Hilbert Spaces Analysis Preliminary Exam Workshop: Hilbert Spaces 1. Hilbert spaces A Hilbert space H is a complete real or complex inner product space. Consider complex Hilbert spaces for definiteness. If (, ) : H H

More information

Examination paper for TMA4125 Matematikk 4N

Examination paper for TMA4125 Matematikk 4N Department of Mathematical Sciences Examination paper for TMA45 Matematikk 4N Academic contact during examination: Anne Kværnø a, Louis-Philippe Thibault b Phone: a 9 66 38 4, b 9 3 0 95 Examination date:

More information

Functional Analysis Review

Functional Analysis Review Outline 9.520: Statistical Learning Theory and Applications February 8, 2010 Outline 1 2 3 4 Vector Space Outline A vector space is a set V with binary operations +: V V V and : R V V such that for all

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

Examination paper for TMA4110/TMA4115 Matematikk 3

Examination paper for TMA4110/TMA4115 Matematikk 3 Department of Mathematical Sciences Examination paper for TMA40/TMA45 Matematikk 3 Academic contact during examination: Gereon Quick Phone: 48 50 4 2 Examination date: 8 August 206 Examination time (from

More information

Math General Topology Fall 2012 Homework 11 Solutions

Math General Topology Fall 2012 Homework 11 Solutions Math 535 - General Topology Fall 2012 Homework 11 Solutions Problem 1. Let X be a topological space. a. Show that the following properties of a subset A X are equivalent. 1. The closure of A in X has empty

More information

5 Compact linear operators

5 Compact linear operators 5 Compact linear operators One of the most important results of Linear Algebra is that for every selfadjoint linear map A on a finite-dimensional space, there exists a basis consisting of eigenvectors.

More information

Fall TMA4145 Linear Methods. Solutions to exercise set 9. 1 Let X be a Hilbert space and T a bounded linear operator on X.

Fall TMA4145 Linear Methods. Solutions to exercise set 9. 1 Let X be a Hilbert space and T a bounded linear operator on X. TMA445 Linear Methods Fall 26 Norwegian University of Science and Technology Department of Mathematical Sciences Solutions to exercise set 9 Let X be a Hilbert space and T a bounded linear operator on

More information

NORMS ON SPACE OF MATRICES

NORMS ON SPACE OF MATRICES NORMS ON SPACE OF MATRICES. Operator Norms on Space of linear maps Let A be an n n real matrix and x 0 be a vector in R n. We would like to use the Picard iteration method to solve for the following system

More information

Examination paper for TPG4150 Reservoir Recovery Techniques

Examination paper for TPG4150 Reservoir Recovery Techniques 1 Department of Petroleum Engineering and Applied Geophysics Examination paper for TPG4150 Reservoir Recovery Techniques Academic contact during examination: Jon Kleppe Phone: 91897300/73594925 Examination

More information

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books.

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books. Applied Analysis APPM 44: Final exam 1:3pm 4:pm, Dec. 14, 29. Closed books. Problem 1: 2p Set I = [, 1]. Prove that there is a continuous function u on I such that 1 ux 1 x sin ut 2 dt = cosx, x I. Define

More information

Metric Spaces and Topology

Metric Spaces and Topology Chapter 2 Metric Spaces and Topology From an engineering perspective, the most important way to construct a topology on a set is to define the topology in terms of a metric on the set. This approach underlies

More information

Fall TMA4145 Linear Methods. Exercise set 10

Fall TMA4145 Linear Methods. Exercise set 10 Norwegian University of Science and Technology Department of Mathematical Sciences TMA445 Linear Methods Fall 207 Exercise set 0 Please justify your answers! The most important part is how you arrive at

More information

Hilbert spaces. 1. Cauchy-Schwarz-Bunyakowsky inequality

Hilbert spaces. 1. Cauchy-Schwarz-Bunyakowsky inequality (October 29, 2016) Hilbert spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/fun/notes 2016-17/03 hsp.pdf] Hilbert spaces are

More information

235 Final exam review questions

235 Final exam review questions 5 Final exam review questions Paul Hacking December 4, 0 () Let A be an n n matrix and T : R n R n, T (x) = Ax the linear transformation with matrix A. What does it mean to say that a vector v R n is an

More information

Math Solutions to homework 5

Math Solutions to homework 5 Math 75 - Solutions to homework 5 Cédric De Groote November 9, 207 Problem (7. in the book): Let {e n } be a complete orthonormal sequence in a Hilbert space H and let λ n C for n N. Show that there is

More information

Chapter 3: Baire category and open mapping theorems

Chapter 3: Baire category and open mapping theorems MA3421 2016 17 Chapter 3: Baire category and open mapping theorems A number of the major results rely on completeness via the Baire category theorem. 3.1 The Baire category theorem 3.1.1 Definition. A

More information

I teach myself... Hilbert spaces

I teach myself... Hilbert spaces I teach myself... Hilbert spaces by F.J.Sayas, for MATH 806 November 4, 2015 This document will be growing with the semester. Every in red is for you to justify. Even if we start with the basic definition

More information

Functional Analysis. Martin Brokate. 1 Normed Spaces 2. 2 Hilbert Spaces The Principle of Uniform Boundedness 32

Functional Analysis. Martin Brokate. 1 Normed Spaces 2. 2 Hilbert Spaces The Principle of Uniform Boundedness 32 Functional Analysis Martin Brokate Contents 1 Normed Spaces 2 2 Hilbert Spaces 2 3 The Principle of Uniform Boundedness 32 4 Extension, Reflexivity, Separation 37 5 Compact subsets of C and L p 46 6 Weak

More information

Intertibility and spectrum of the multiplication operator on the space of square-summable sequences

Intertibility and spectrum of the multiplication operator on the space of square-summable sequences Intertibility and spectrum of the multiplication operator on the space of square-summable sequences Objectives Establish an invertibility criterion and calculate the spectrum of the multiplication operator

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t Analysis Comprehensive Exam Questions Fall 2. Let f L 2 (, ) be given. (a) Prove that ( x 2 f(t) dt) 2 x x t f(t) 2 dt. (b) Given part (a), prove that F L 2 (, ) 2 f L 2 (, ), where F(x) = x (a) Using

More information

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis Real Analysis, 2nd Edition, G.B.Folland Chapter 5 Elements of Functional Analysis Yung-Hsiang Huang 5.1 Normed Vector Spaces 1. Note for any x, y X and a, b K, x+y x + y and by ax b y x + b a x. 2. It

More information

Lecture 9 Metric spaces. The contraction fixed point theorem. The implicit function theorem. The existence of solutions to differenti. equations.

Lecture 9 Metric spaces. The contraction fixed point theorem. The implicit function theorem. The existence of solutions to differenti. equations. Lecture 9 Metric spaces. The contraction fixed point theorem. The implicit function theorem. The existence of solutions to differential equations. 1 Metric spaces 2 Completeness and completion. 3 The contraction

More information

Functional Analysis I

Functional Analysis I Functional Analysis I Course Notes by Stefan Richter Transcribed and Annotated by Gregory Zitelli Polar Decomposition Definition. An operator W B(H) is called a partial isometry if W x = X for all x (ker

More information

Examination paper for FY3403 Particle physics

Examination paper for FY3403 Particle physics Department of physics Examination paper for FY3403 Particle physics Academic contact during examination: Jan Myrheim Phone: 900 75 7 Examination date: December 6, 07 Examination time: 9 3 Permitted support

More information

Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson

Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson Name: TA Name and section: NO CALCULATORS, SHOW ALL WORK, NO OTHER PAPERS ON DESK. There is very little actual work to be done on this exam if

More information

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space.

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Hilbert Spaces Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Vector Space. Vector space, ν, over the field of complex numbers,

More information

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set Analysis Finite and Infinite Sets Definition. An initial segment is {n N n n 0 }. Definition. A finite set can be put into one-to-one correspondence with an initial segment. The empty set is also considered

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

Linear Algebra. Session 12

Linear Algebra. Session 12 Linear Algebra. Session 12 Dr. Marco A Roque Sol 08/01/2017 Example 12.1 Find the constant function that is the least squares fit to the following data x 0 1 2 3 f(x) 1 0 1 2 Solution c = 1 c = 0 f (x)

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

Maths 212: Homework Solutions

Maths 212: Homework Solutions Maths 212: Homework Solutions 1. The definition of A ensures that x π for all x A, so π is an upper bound of A. To show it is the least upper bound, suppose x < π and consider two cases. If x < 1, then

More information

MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003

MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003 MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003 1. True or False (28 points, 2 each) T or F If V is a vector space

More information

Spectral Theory, with an Introduction to Operator Means. William L. Green

Spectral Theory, with an Introduction to Operator Means. William L. Green Spectral Theory, with an Introduction to Operator Means William L. Green January 30, 2008 Contents Introduction............................... 1 Hilbert Space.............................. 4 Linear Maps

More information

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms.

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. Vector Spaces Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. For each two vectors a, b ν there exists a summation procedure: a +

More information

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA address:

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA  address: Topology Xiaolong Han Department of Mathematics, California State University, Northridge, CA 91330, USA E-mail address: Xiaolong.Han@csun.edu Remark. You are entitled to a reward of 1 point toward a homework

More information

Review of Some Concepts from Linear Algebra: Part 2

Review of Some Concepts from Linear Algebra: Part 2 Review of Some Concepts from Linear Algebra: Part 2 Department of Mathematics Boise State University January 16, 2019 Math 566 Linear Algebra Review: Part 2 January 16, 2019 1 / 22 Vector spaces A set

More information

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms (February 24, 2017) 08a. Operators on Hilbert spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2016-17/08a-ops

More information

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability... Functional Analysis Franck Sueur 2018-2019 Contents 1 Metric spaces 1 1.1 Definitions........................................ 1 1.2 Completeness...................................... 3 1.3 Compactness......................................

More information

Mathematical Analysis Outline. William G. Faris

Mathematical Analysis Outline. William G. Faris Mathematical Analysis Outline William G. Faris January 8, 2007 2 Chapter 1 Metric spaces and continuous maps 1.1 Metric spaces A metric space is a set X together with a real distance function (x, x ) d(x,

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

homogeneous 71 hyperplane 10 hyperplane 34 hyperplane 69 identity map 171 identity map 186 identity map 206 identity matrix 110 identity matrix 45

homogeneous 71 hyperplane 10 hyperplane 34 hyperplane 69 identity map 171 identity map 186 identity map 206 identity matrix 110 identity matrix 45 address 12 adjoint matrix 118 alternating 112 alternating 203 angle 159 angle 33 angle 60 area 120 associative 180 augmented matrix 11 axes 5 Axiom of Choice 153 basis 178 basis 210 basis 74 basis test

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Introduction and a quick repetition of analysis/linear algebra First lecture, 12.04.2010 Jun.-Prof. Matthias Hein Organization of the lecture Advanced course, 2+2 hours,

More information

Functional Analysis (2006) Homework assignment 2

Functional Analysis (2006) Homework assignment 2 Functional Analysis (26) Homework assignment 2 All students should solve the following problems: 1. Define T : C[, 1] C[, 1] by (T x)(t) = t x(s) ds. Prove that this is a bounded linear operator, and compute

More information

C.6 Adjoints for Operators on Hilbert Spaces

C.6 Adjoints for Operators on Hilbert Spaces C.6 Adjoints for Operators on Hilbert Spaces 317 Additional Problems C.11. Let E R be measurable. Given 1 p and a measurable weight function w: E (0, ), the weighted L p space L p s (R) consists of all

More information

1. Foundations of Numerics from Advanced Mathematics. Linear Algebra

1. Foundations of Numerics from Advanced Mathematics. Linear Algebra Foundations of Numerics from Advanced Mathematics Linear Algebra Linear Algebra, October 23, 22 Linear Algebra Mathematical Structures a mathematical structure consists of one or several sets and one or

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T.

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T. Notes on singular value decomposition for Math 54 Recall that if A is a symmetric n n matrix, then A has real eigenvalues λ 1,, λ n (possibly repeated), and R n has an orthonormal basis v 1,, v n, where

More information

7: FOURIER SERIES STEVEN HEILMAN

7: FOURIER SERIES STEVEN HEILMAN 7: FOURIER SERIES STEVE HEILMA Contents 1. Review 1 2. Introduction 1 3. Periodic Functions 2 4. Inner Products on Periodic Functions 3 5. Trigonometric Polynomials 5 6. Periodic Convolutions 7 7. Fourier

More information

Examination paper for TFY4245 Faststoff-fysikk, videregående kurs

Examination paper for TFY4245 Faststoff-fysikk, videregående kurs Side 1 av 7 Department of Physics Examination paper for TFY445 Faststoff-fysikk, videregående kurs Academic contact during examination: Ragnvald Mathiesen Phone: 976913 Examination date: 08.06.017 Examination

More information

Math Real Analysis II

Math Real Analysis II Math 4 - Real Analysis II Solutions to Homework due May Recall that a function f is called even if f( x) = f(x) and called odd if f( x) = f(x) for all x. We saw that these classes of functions had a particularly

More information

Examination paper for TMA4215 Numerical Mathematics

Examination paper for TMA4215 Numerical Mathematics Department of Mathematical Sciences Examination paper for TMA425 Numerical Mathematics Academic contact during examination: Trond Kvamsdal Phone: 93058702 Examination date: 6th of December 207 Examination

More information

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions Economics 24 Fall 211 Problem Set 2 Suggested Solutions 1. Determine whether the following sets are open, closed, both or neither under the topology induced by the usual metric. (Hint: think about limit

More information

CONTENTS. 4 Hausdorff Measure Introduction The Cantor Set Rectifiable Curves Cantor Set-Like Objects...

CONTENTS. 4 Hausdorff Measure Introduction The Cantor Set Rectifiable Curves Cantor Set-Like Objects... Contents 1 Functional Analysis 1 1.1 Hilbert Spaces................................... 1 1.1.1 Spectral Theorem............................. 4 1.2 Normed Vector Spaces.............................. 7 1.2.1

More information

Math 312 Final Exam Jerry L. Kazdan May 5, :00 2:00

Math 312 Final Exam Jerry L. Kazdan May 5, :00 2:00 Math 32 Final Exam Jerry L. Kazdan May, 204 2:00 2:00 Directions This exam has three parts. Part A has shorter questions, (6 points each), Part B has 6 True/False questions ( points each), and Part C has

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

COMPACT OPERATORS. 1. Definitions

COMPACT OPERATORS. 1. Definitions COMPACT OPERATORS. Definitions S:defi An operator M : X Y, X, Y Banach, is compact if M(B X (0, )) is relatively compact, i.e. it has compact closure. We denote { E:kk (.) K(X, Y ) = M L(X, Y ), M compact

More information

ANALYSIS WORKSHEET II: METRIC SPACES

ANALYSIS WORKSHEET II: METRIC SPACES ANALYSIS WORKSHEET II: METRIC SPACES Definition 1. A metric space (X, d) is a space X of objects (called points), together with a distance function or metric d : X X [0, ), which associates to each pair

More information

Math 164-1: Optimization Instructor: Alpár R. Mészáros

Math 164-1: Optimization Instructor: Alpár R. Mészáros Math 164-1: Optimization Instructor: Alpár R. Mészáros First Midterm, April 20, 2016 Name (use a pen): Student ID (use a pen): Signature (use a pen): Rules: Duration of the exam: 50 minutes. By writing

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Week 9 November 13 November Deadline to hand in the homeworks: your exercise class on week 16 November 20 November Exercises (1) Show that if T B(X, Y ) and S B(Y, Z)

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

Least Squares. Tom Lyche. October 26, Centre of Mathematics for Applications, Department of Informatics, University of Oslo

Least Squares. Tom Lyche. October 26, Centre of Mathematics for Applications, Department of Informatics, University of Oslo Least Squares Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo October 26, 2010 Linear system Linear system Ax = b, A C m,n, b C m, x C n. under-determined

More information

In English, this means that if we travel on a straight line between any two points in C, then we never leave C.

In English, this means that if we travel on a straight line between any two points in C, then we never leave C. Convex sets In this section, we will be introduced to some of the mathematical fundamentals of convex sets. In order to motivate some of the definitions, we will look at the closest point problem from

More information

Fredholm Theory. April 25, 2018

Fredholm Theory. April 25, 2018 Fredholm Theory April 25, 208 Roughly speaking, Fredholm theory consists of the study of operators of the form I + A where A is compact. From this point on, we will also refer to I + A as Fredholm operators.

More information

Set, functions and Euclidean space. Seungjin Han

Set, functions and Euclidean space. Seungjin Han Set, functions and Euclidean space Seungjin Han September, 2018 1 Some Basics LOGIC A is necessary for B : If B holds, then A holds. B A A B is the contraposition of B A. A is sufficient for B: If A holds,

More information

Some Background Material

Some Background Material Chapter 1 Some Background Material In the first chapter, we present a quick review of elementary - but important - material as a way of dipping our toes in the water. This chapter also introduces important

More information

UNBOUNDED OPERATORS ON HILBERT SPACES. Let X and Y be normed linear spaces, and suppose A : X Y is a linear map.

UNBOUNDED OPERATORS ON HILBERT SPACES. Let X and Y be normed linear spaces, and suppose A : X Y is a linear map. UNBOUNDED OPERATORS ON HILBERT SPACES EFTON PARK Let X and Y be normed linear spaces, and suppose A : X Y is a linear map. Define { } Ax A op = sup x : x 0 = { Ax : x 1} = { Ax : x = 1} If A

More information

Last name: First name: Signature: Student number:

Last name: First name: Signature: Student number: MAT 2141 The final exam Instructor: K. Zaynullin Last name: First name: Signature: Student number: Do not detach the pages of this examination. You may use the back of the pages as scrap paper for calculations,

More information

Linear Analysis Lecture 5

Linear Analysis Lecture 5 Linear Analysis Lecture 5 Inner Products and V Let dim V < with inner product,. Choose a basis B and let v, w V have coordinates in F n given by x 1. x n and y 1. y n, respectively. Let A F n n be the

More information

V. SUBSPACES AND ORTHOGONAL PROJECTION

V. SUBSPACES AND ORTHOGONAL PROJECTION V. SUBSPACES AND ORTHOGONAL PROJECTION In this chapter we will discuss the concept of subspace of Hilbert space, introduce a series of subspaces related to Haar wavelet, explore the orthogonal projection

More information

Iowa State University. Instructor: Alex Roitershtein Summer Exam #1. Solutions. x u = 2 x v

Iowa State University. Instructor: Alex Roitershtein Summer Exam #1. Solutions. x u = 2 x v Math 501 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 015 Exam #1 Solutions This is a take-home examination. The exam includes 8 questions.

More information

Analysis II Lecture notes

Analysis II Lecture notes Analysis II Lecture notes Christoph Thiele (lectures 11,12 by Roland Donninger lecture 22 by Diogo Oliveira e Silva) Summer term 2015 Universität Bonn July 5, 2016 Contents 1 Analysis in several variables

More information

2) Let X be a compact space. Prove that the space C(X) of continuous real-valued functions is a complete metric space.

2) Let X be a compact space. Prove that the space C(X) of continuous real-valued functions is a complete metric space. University of Bergen General Functional Analysis Problems with solutions 6 ) Prove that is unique in any normed space. Solution of ) Let us suppose that there are 2 zeros and 2. Then = + 2 = 2 + = 2. 2)

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

The following definition is fundamental.

The following definition is fundamental. 1. Some Basics from Linear Algebra With these notes, I will try and clarify certain topics that I only quickly mention in class. First and foremost, I will assume that you are familiar with many basic

More information

MASTERS EXAMINATION IN MATHEMATICS SOLUTIONS

MASTERS EXAMINATION IN MATHEMATICS SOLUTIONS MASTERS EXAMINATION IN MATHEMATICS PURE MATHEMATICS OPTION SPRING 010 SOLUTIONS Algebra A1. Let F be a finite field. Prove that F [x] contains infinitely many prime ideals. Solution: The ring F [x] of

More information

1 Math 241A-B Homework Problem List for F2015 and W2016

1 Math 241A-B Homework Problem List for F2015 and W2016 1 Math 241A-B Homework Problem List for F2015 W2016 1.1 Homework 1. Due Wednesday, October 7, 2015 Notation 1.1 Let U be any set, g be a positive function on U, Y be a normed space. For any f : U Y let

More information

Math Linear Algebra II. 1. Inner Products and Norms

Math Linear Algebra II. 1. Inner Products and Norms Math 342 - Linear Algebra II Notes 1. Inner Products and Norms One knows from a basic introduction to vectors in R n Math 254 at OSU) that the length of a vector x = x 1 x 2... x n ) T R n, denoted x,

More information

4 Linear operators and linear functionals

4 Linear operators and linear functionals 4 Linear operators and linear functionals The next section is devoted to studying linear operators between normed spaces. Definition 4.1. Let V and W be normed spaces over a field F. We say that T : V

More information

Hilbert space methods for quantum mechanics. S. Richard

Hilbert space methods for quantum mechanics. S. Richard Hilbert space methods for quantum mechanics S. Richard Spring Semester 2016 2 Contents 1 Hilbert space and bounded linear operators 5 1.1 Hilbert space................................ 5 1.2 Vector-valued

More information

Problem Set 6: Solutions Math 201A: Fall a n x n,

Problem Set 6: Solutions Math 201A: Fall a n x n, Problem Set 6: Solutions Math 201A: Fall 2016 Problem 1. Is (x n ) n=0 a Schauder basis of C([0, 1])? No. If f(x) = a n x n, n=0 where the series converges uniformly on [0, 1], then f has a power series

More information

LECTURE 7. k=1 (, v k)u k. Moreover r

LECTURE 7. k=1 (, v k)u k. Moreover r LECTURE 7 Finite rank operators Definition. T is said to be of rank r (r < ) if dim T(H) = r. The class of operators of rank r is denoted by K r and K := r K r. Theorem 1. T K r iff T K r. Proof. Let T

More information

1. General Vector Spaces

1. General Vector Spaces 1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule

More information

Mathematics Department Stanford University Math 61CM/DM Inner products

Mathematics Department Stanford University Math 61CM/DM Inner products Mathematics Department Stanford University Math 61CM/DM Inner products Recall the definition of an inner product space; see Appendix A.8 of the textbook. Definition 1 An inner product space V is a vector

More information

5 Measure theory II. (or. lim. Prove the proposition. 5. For fixed F A and φ M define the restriction of φ on F by writing.

5 Measure theory II. (or. lim. Prove the proposition. 5. For fixed F A and φ M define the restriction of φ on F by writing. 5 Measure theory II 1. Charges (signed measures). Let (Ω, A) be a σ -algebra. A map φ: A R is called a charge, (or signed measure or σ -additive set function) if φ = φ(a j ) (5.1) A j for any disjoint

More information

There are six more problems on the next two pages

There are six more problems on the next two pages Math 435 bg & bu: Topics in linear algebra Summer 25 Final exam Wed., 8/3/5. Justify all your work to receive full credit. Name:. Let A 3 2 5 Find a permutation matrix P, a lower triangular matrix L with

More information

Solution of the 7 th Homework

Solution of the 7 th Homework Solution of the 7 th Homework Sangchul Lee December 3, 2014 1 Preliminary In this section we deal with some facts that are relevant to our problems but can be coped with only previous materials. 1.1 Maximum

More information

3 Orthogonality and Fourier series

3 Orthogonality and Fourier series 3 Orthogonality and Fourier series We now turn to the concept of orthogonality which is a key concept in inner product spaces and Hilbert spaces. We start with some basic definitions. Definition 3.1. Let

More information

1 Orthonormal sets in Hilbert space

1 Orthonormal sets in Hilbert space Math 857 Fall 15 1 Orthonormal sets in Hilbert space Let S H. We denote by [S] the span of S, i.e., the set of all linear combinations of elements from S. A set {u α : α A} is called orthonormal, if u

More information

Analysis and Linear Algebra. Lectures 1-3 on the mathematical tools that will be used in C103

Analysis and Linear Algebra. Lectures 1-3 on the mathematical tools that will be used in C103 Analysis and Linear Algebra Lectures 1-3 on the mathematical tools that will be used in C103 Set Notation A, B sets AcB union A1B intersection A\B the set of objects in A that are not in B N. Empty set

More information

4 Hilbert spaces. The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan

4 Hilbert spaces. The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan Wir müssen wissen, wir werden wissen. David Hilbert We now continue to study a special class of Banach spaces,

More information