Alternatives. The D Operator

Size: px
Start display at page:

Download "Alternatives. The D Operator"

Transcription

1 Using Smoothness Alternatives Text: Chapter 5 Some disadvantages of basis expansions Discrete choice of number of basis functions additional variability. Non-hierarchical bases (eg B-splines) make life more complicated. Not necessarily easy to tailor to problems at hand Kernel Methods: One "bump" function K i (t) at each data point calculate a weighted average: x(t) = y i K i (t/h)/ K i (t/h) Use the bandwidth, h, to regulate smoothness. Define smoothness and regulate it explicitly. What do we mean by smoothness? Some things are fairly clearly smooth: constants straight lines What we really want to do is eliminate small wiggles in the data. The D Operator We use the notation that for a function x(t), Dx(t) = d dt x(t) We can also define further derivatives in terms of powers of D: D 2 x(t) = d 2 dt 2 x(t),...,dk x(t) = d k dt k x(t),... Dx(t) is the instantaneous slope of x(t); D 2 x(t) is its curvature. We measure the size of the curvature for all of f by J 2 (x) = [D 2 x(t) ] 2 dt

2 Curvature of Vancouver Precipitation Curvature of Vancouver Precipitation 3 Fourier bases: 13 Fourier bases: Curvature of Vancouver Precipitation Curvature of Vancouver Precipitation 25 Fourier bases: 53 Fourier bases:

3 The Roughness of Derivatives Penalized Squared Error Sometimes we may want to examine a derivative of x(t), say D 2 x(t). We then should consider the roughness of that derivative This means we measure D 2 [ D 2 x(t) ] = D 4 x(t) J 4 [x] = [D 4 x(t) ] 2 dt And the roughness of the mth derivative is J m+2 [x] = [D m+2 x(t) ] 2 dt We now have two competing desires: fit to data and smoothness. We will explicitly trade them off by minimizing penalized squared error: PENSSE λ (x) =[y x(t)] T [y x(t)] + λj 2 [x] λ is a smoothing parameter measuring compromise between fit and smoothness. As λ increases, roughness is increasingly penalized and x(t) will become linear. As λ decreases, the penalty is reduced and allows x(t) to fit the data better. log λ = 1 log λ = 3

4 log λ = 7 log λ = 11 log λ = 15 log λ = 19

5 The Smoothing Spline Theorem Computing the smoothing spline Consider the usual penalized squared error: PENSSE λ (x) =[y x(t)] T [y x(t)] + λ [D 2 x(t) ] 2 dt A remarkable theorem tells us that the function x(t) that minimizes PENSSE λ (x) is a spline function of order 4 (piecewise cubic) with a knot at each sample point t j this is often referred to simply as cubic spline smoothing. The theorem tells us that x(t) is of the form x(t) =φ(t) T c where φ(t) is a vector of B-spline basis functions. The number of basis functions is (n 2)+4 = n + 2wheren is the number of sampling points How do we calculate c? Calculating the Penalized Fit When x(t) =Φ(t)c, wehavethat [D m x(t)] 2 dt = c T D m Φ(t)D m Φ(t) T c = c T Rc R is known as the penalty matrix. The penalized least squares estimate for c is now ĉ = This is still a linear smoother: [ Φ T W Φ + λr] 1 Φ T W y [ 1 ŷ = Φ Φ T W Φ + λr] Φ T W y Linear Smooths and Influence A procedure is a linear smooth if for some S. Eg ŷ = Sy [ 1 S λ = Φ Φ T W Φ + λr] Φ T W Computing the smoothing spline is also a linear operator [ 1 ˆx(t) =Φ(t) Φ T W Φ + λr] Φ T W y and we can calculate the influence of each y i on the curve.

6 Influence in Vancouver Precipitation Linear Smooths and Degrees of Freedom In least squares fitting, the degrees of freedom used to smooth the data is exactly K, the number of basis functions In penalized smoothing, we can have K > n. The smoothing penalty reduces the flexibility of the smooth (ie, we say we know something). The degrees of freedom are controlled by λ. A natural measure turns out to be df (λ) =traces λ Vancouver precipitation above was fit with 365 basis functions, λ = 10 4 resulting in df = Alternative Definitions of Roughness Harmonic Acceleration in Vancouver Precipitation D 2 x(t) is only one way to measure the roughness of x. If we were interested in D 2 x(t), we might think of penalizing D 4 x(t) cubic polynomials are not rough. What about the weather data? we know it s periodic, and not very different from a sinusoid. The Harmonic acceleration of x is and L cos(ωt) =0 = L sin(ωt). Lx = ω 2 Dx + D 3 x We can measure departures from a sinusoid by J L (x) = [Lx(t)] 2 dt

7 A Very General Notion We can be even more general and allow roughness penalties to use any linear differential operator Lx(t) = m α m (t)d m x(t) k=1 Then x is smooth if Lx(t) =0. Wewillseelateronthatwecanevenaskthedatatotelluswhat should be smooth. However, we will rarely need to use anything so sophisticated. Basis Expansions and Roughness There is always a function x minimizing PENSSE L (x) =(y x(t)) T (y x(t)) + λ [Lx(t)] 2 dt However, it can be annoying (and expensive) to calculate explicitly. Instead, we simply use a basis expansion with R = LΦ(t)LΦ(t) T dt This is given by formulae for simple cases, but may need to be evaluated numerically. Although the handwriting data potentially needs 1403 cubic B-splines, 50 does a very nice job. There are mathematical results to back this up. Choosing the Smoothing Parameter Generalized Cross Validation There are a number of data-driven methods for choosing smoothing parameters. Ordinary Cross Validation: leave one point out and see how well you can predict it. For any linear smooth OCV(λ) = 1 (yi x(t i )) 2 n (1 S ii ) 2 where S is the smoothing matrix. Generalized cross validation (see next slide) Various information criteria (not used here) ReML estimation GCV(λ) = n 1 (y i x(t i )) 2 [n 1 trace(i S)] 2 Doesn t actually generalize anything We can re-write this as ( GCV(λ) = n n df (λ) )( SSE ) n df (λ) SSE is discounted for degrees of freedom like usual, but we then also make a discount for minimizing over λ. GCV smooths more than OCV; even then, it may need to be tweaked a little to produce pleasing results.

8 Various Statistics on Vancouver Precipitation Confidence Intervals for Linear Probes Optimal λ = Most of the quantities that we are interested in are linear functionals of x. N t [x] =x(t), N Dt [x] =Dx(t), N ρ [x] = ρ(t)x(t)dt All possess the property that That is the are linear. This means that N[x] =N[Φ]c. N[ax 1 + bx 2 ]=an[x 1 ]+bn[x 2 ] Confidence Intervals for Linear Probes Recall c = Cy, y (x(t), Σ) Confidence Intervals for a Derivative We have Dx(t) =DΦ(t)Cy Var[Dx(t)] = DΦ(t)CVar[y]C T DΦ(t) T Then Var(c) =CΣC T and Var(N[x]) = N[Φ]CΣC T N[Φ] T So that a confidence interval for N[x] can be given by N[ˆx] ± 2 N[Φ]CΣC T N[Φ] T

9 A Probe for the Summer Dip Summary p = 0.5(x(190)+x(230)) x(210) =[0.5(Φ(190)+Φ(230)) Φ(210)] Cy Test the "dip" in summer by contrast between day 210 and average of days 190 and Defined smoothness in terms of derivatives of x. 2 We can use smoothness as a way to regularize the estimate of x. 3 Use of λ to trade-off smoothness and fit. 4 GCVasameansofchoosingλ 5 Linear smooths and linear probes gives a means of providing confidence for features of x. p ± 2se ( p) = ±

An Introduction to Functional Data Analysis

An Introduction to Functional Data Analysis An Introduction to Functional Data Analysis Chongzhi Di Fred Hutchinson Cancer Research Center cdi@fredhutch.org Biotat 578A: Special Topics in (Genetic) Epidemiology November 10, 2015 Textbook Ramsay

More information

Alternatives to Basis Expansions. Kernels in Density Estimation. Kernels and Bandwidth. Idea Behind Kernel Methods

Alternatives to Basis Expansions. Kernels in Density Estimation. Kernels and Bandwidth. Idea Behind Kernel Methods Alternatives to Basis Expansions Basis expansions require either choice of a discrete set of basis or choice of smoothing penalty and smoothing parameter Both of which impose prior beliefs on data. Alternatives

More information

Cubic Splines; Bézier Curves

Cubic Splines; Bézier Curves Cubic Splines; Bézier Curves 1 Cubic Splines piecewise approximation with cubic polynomials conditions on the coefficients of the splines 2 Bézier Curves computer-aided design and manufacturing MCS 471

More information

Nonparametric Regression. Badr Missaoui

Nonparametric Regression. Badr Missaoui Badr Missaoui Outline Kernel and local polynomial regression. Penalized regression. We are given n pairs of observations (X 1, Y 1 ),...,(X n, Y n ) where Y i = r(x i ) + ε i, i = 1,..., n and r(x) = E(Y

More information

Statistical Models. Functional Linear Regression. A First Idea. Models for Scalar Responses

Statistical Models. Functional Linear Regression. A First Idea. Models for Scalar Responses Statistical Models Functional Linear Regression So far we have focussed on exploratory data analysis Smoothing Functional covariance Functional PCA/CCA Now we wish to examine predictive relationships generalization

More information

From Data To Functions Howdowegofrom. Basis Expansions From multiple linear regression: The Monomial Basis. The Monomial Basis

From Data To Functions Howdowegofrom. Basis Expansions From multiple linear regression: The Monomial Basis. The Monomial Basis From Data To Functions Howdowegofrom Basis Expansions From multiple linear regression: data to functions? Or if there is curvature: y i = β 0 + x 1i β 1 + x 2i β 2 + + ɛ i y i = β 0 + x i β 1 + xi 2 β

More information

Regression Analysis IV... More MLR and Model Building

Regression Analysis IV... More MLR and Model Building Regression Analysis IV... More MLR and Model Building This session finishes up presenting the formal methods of inference based on the MLR model and then begins discussion of "model building" (use of regression

More information

Functional responses, functional covariates and the concurrent model

Functional responses, functional covariates and the concurrent model 14 Functional responses, functional covariates and the concurrent model 14.1 Introduction We now consider a model for a functional response involving one or more functional covariates. In this chapter

More information

Spatially Adaptive Smoothing Splines

Spatially Adaptive Smoothing Splines Spatially Adaptive Smoothing Splines Paul Speckman University of Missouri-Columbia speckman@statmissouriedu September 11, 23 Banff 9/7/3 Ordinary Simple Spline Smoothing Observe y i = f(t i ) + ε i, =

More information

Functional Linear Models for Scalar Responses

Functional Linear Models for Scalar Responses Chapter 9 Functional Linear Models for Scalar Responses This is the first of two chapters on the functional linear model. Here we have a dependent or response variable whose value is to be predicted or

More information

Multivariable Calculus Notes. Faraad Armwood. Fall: Chapter 1: Vectors, Dot Product, Cross Product, Planes, Cylindrical & Spherical Coordinates

Multivariable Calculus Notes. Faraad Armwood. Fall: Chapter 1: Vectors, Dot Product, Cross Product, Planes, Cylindrical & Spherical Coordinates Multivariable Calculus Notes Faraad Armwood Fall: 2017 Chapter 1: Vectors, Dot Product, Cross Product, Planes, Cylindrical & Spherical Coordinates Chapter 2: Vector-Valued Functions, Tangent Vectors, Arc

More information

Recap. HW due Thursday by 5 pm Next HW coming on Thursday Logistic regression: Pr(G = k X) linear on the logit scale Linear discriminant analysis:

Recap. HW due Thursday by 5 pm Next HW coming on Thursday Logistic regression: Pr(G = k X) linear on the logit scale Linear discriminant analysis: 1 / 23 Recap HW due Thursday by 5 pm Next HW coming on Thursday Logistic regression: Pr(G = k X) linear on the logit scale Linear discriminant analysis: Pr(G = k X) Pr(X G = k)pr(g = k) Theory: LDA more

More information

Introduction to Regression

Introduction to Regression Introduction to Regression David E Jones (slides mostly by Chad M Schafer) June 1, 2016 1 / 102 Outline General Concepts of Regression, Bias-Variance Tradeoff Linear Regression Nonparametric Procedures

More information

Direct Learning: Linear Classification. Donglin Zeng, Department of Biostatistics, University of North Carolina

Direct Learning: Linear Classification. Donglin Zeng, Department of Biostatistics, University of North Carolina Direct Learning: Linear Classification Logistic regression models for classification problem We consider two class problem: Y {0, 1}. The Bayes rule for the classification is I(P(Y = 1 X = x) > 1/2) so

More information

Lecture 10 Polynomial interpolation

Lecture 10 Polynomial interpolation Lecture 10 Polynomial interpolation Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University, tieli@pku.edu.cn

More information

1 Piecewise Cubic Interpolation

1 Piecewise Cubic Interpolation Piecewise Cubic Interpolation Typically the problem with piecewise linear interpolation is the interpolant is not differentiable as the interpolation points (it has a kinks at every interpolation point)

More information

Inversion Base Height. Daggot Pressure Gradient Visibility (miles)

Inversion Base Height. Daggot Pressure Gradient Visibility (miles) Stanford University June 2, 1998 Bayesian Backtting: 1 Bayesian Backtting Trevor Hastie Stanford University Rob Tibshirani University of Toronto Email: trevor@stat.stanford.edu Ftp: stat.stanford.edu:

More information

10. Operators and the Exponential Response Formula

10. Operators and the Exponential Response Formula 52 10. Operators and the Exponential Response Formula 10.1. Operators. Operators are to functions as functions are to numbers. An operator takes a function, does something to it, and returns this modified

More information

Introduction to Regression

Introduction to Regression Introduction to Regression Chad M. Schafer May 20, 2015 Outline General Concepts of Regression, Bias-Variance Tradeoff Linear Regression Nonparametric Procedures Cross Validation Local Polynomial Regression

More information

Introduction to Regression

Introduction to Regression PSU Summer School in Statistics Regression Slide 1 Introduction to Regression Chad M. Schafer Department of Statistics & Data Science, Carnegie Mellon University cschafer@cmu.edu June 2018 PSU Summer School

More information

Introduction to Regression

Introduction to Regression Introduction to Regression Chad M. Schafer cschafer@stat.cmu.edu Carnegie Mellon University Introduction to Regression p. 1/100 Outline General Concepts of Regression, Bias-Variance Tradeoff Linear Regression

More information

Introduction to Regression

Introduction to Regression Introduction to Regression p. 1/97 Introduction to Regression Chad Schafer cschafer@stat.cmu.edu Carnegie Mellon University Introduction to Regression p. 1/97 Acknowledgement Larry Wasserman, All of Nonparametric

More information

Generalised Smoothing in Functional Data Analysis

Generalised Smoothing in Functional Data Analysis Generalised Smoothing in Functional Data Analysis Michelle Carey Department of Mathematics and Statistics University of Limerick A thesis submitted for the degree of Doctor of Philosophy (PhD) Supervised

More information

Local regression I. Patrick Breheny. November 1. Kernel weighted averages Local linear regression

Local regression I. Patrick Breheny. November 1. Kernel weighted averages Local linear regression Local regression I Patrick Breheny November 1 Patrick Breheny STA 621: Nonparametric Statistics 1/27 Simple local models Kernel weighted averages The Nadaraya-Watson estimator Expected loss and prediction

More information

Problem 1: Lagrangians and Conserved Quantities. Consider the following action for a particle of mass m moving in one dimension

Problem 1: Lagrangians and Conserved Quantities. Consider the following action for a particle of mass m moving in one dimension 105A Practice Final Solutions March 13, 01 William Kelly Problem 1: Lagrangians and Conserved Quantities Consider the following action for a particle of mass m moving in one dimension S = dtl = mc dt 1

More information

General Least Squares Fitting

General Least Squares Fitting Chapter 1 General Least Squares Fitting 1.1 Introduction Previously you have done curve fitting in two dimensions. Now you will learn how to extend that to multiple dimensions. 1.1.1 Non-linear Linearizable

More information

INTERPOLATION. and y i = cos x i, i = 0, 1, 2 This gives us the three points. Now find a quadratic polynomial. p(x) = a 0 + a 1 x + a 2 x 2.

INTERPOLATION. and y i = cos x i, i = 0, 1, 2 This gives us the three points. Now find a quadratic polynomial. p(x) = a 0 + a 1 x + a 2 x 2. INTERPOLATION Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). As an example, consider defining and x 0 = 0, x 1 = π/4, x

More information

Functional responses and functional covariates: The general case

Functional responses and functional covariates: The general case Functional responses and functional covariates: The general case Page 1 of 27 Overview The fundamental question is this: If we have a covariate z(s), how much of its variation over s should we use to fit

More information

8.7 MacLaurin Polynomials

8.7 MacLaurin Polynomials 8.7 maclaurin polynomials 67 8.7 MacLaurin Polynomials In this chapter you have learned to find antiderivatives of a wide variety of elementary functions, but many more such functions fail to have an antiderivative

More information

Time Series Analysis. Smoothing Time Series. 2) assessment of/accounting for seasonality. 3) assessment of/exploiting "serial correlation"

Time Series Analysis. Smoothing Time Series. 2) assessment of/accounting for seasonality. 3) assessment of/exploiting serial correlation Time Series Analysis 2) assessment of/accounting for seasonality This (not surprisingly) concerns the analysis of data collected over time... weekly values, monthly values, quarterly values, yearly values,

More information

CHAPTER 3 Further properties of splines and B-splines

CHAPTER 3 Further properties of splines and B-splines CHAPTER 3 Further properties of splines and B-splines In Chapter 2 we established some of the most elementary properties of B-splines. In this chapter our focus is on the question What kind of functions

More information

The Calculus of Variations

The Calculus of Variations Image Reconstruction Review The Calculus of Variations MA 348 Kurt Bryan Recall the image restoration problem we considered a couple weeks ago. An image in 1D can be considered as a function a(t) defined

More information

SYDE 112, LECTURE 7: Integration by Parts

SYDE 112, LECTURE 7: Integration by Parts SYDE 112, LECTURE 7: Integration by Parts 1 Integration By Parts Consider trying to take the integral of xe x dx. We could try to find a substitution but would quickly grow frustrated there is no substitution

More information

COS 424: Interacting with Data

COS 424: Interacting with Data COS 424: Interacting with Data Lecturer: Rob Schapire Lecture #14 Scribe: Zia Khan April 3, 2007 Recall from previous lecture that in regression we are trying to predict a real value given our data. Specically,

More information

Resonance and response

Resonance and response Chapter 2 Resonance and response Last updated September 20, 2008 In this section of the course we begin with a very simple system a mass hanging from a spring and see how some remarkable ideas emerge.

More information

(0, 0), (1, ), (2, ), (3, ), (4, ), (5, ), (6, ).

(0, 0), (1, ), (2, ), (3, ), (4, ), (5, ), (6, ). 1 Interpolation: The method of constructing new data points within the range of a finite set of known data points That is if (x i, y i ), i = 1, N are known, with y i the dependent variable and x i [x

More information

Penalized Splines, Mixed Models, and Recent Large-Sample Results

Penalized Splines, Mixed Models, and Recent Large-Sample Results Penalized Splines, Mixed Models, and Recent Large-Sample Results David Ruppert Operations Research & Information Engineering, Cornell University Feb 4, 2011 Collaborators Matt Wand, University of Wollongong

More information

Physics 6010, Fall Relevant Sections in Text: Introduction

Physics 6010, Fall Relevant Sections in Text: Introduction Physics 6010, Fall 2016 Introduction. Configuration space. Equations of Motion. Velocity Phase Space. Relevant Sections in Text: 1.1 1.4 Introduction This course principally deals with the variational

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations for Engineers and Scientists Gregg Waterman Oregon Institute of Technology c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

Statistics 203: Introduction to Regression and Analysis of Variance Course review

Statistics 203: Introduction to Regression and Analysis of Variance Course review Statistics 203: Introduction to Regression and Analysis of Variance Course review Jonathan Taylor - p. 1/?? Today Review / overview of what we learned. - p. 2/?? General themes in regression models Specifying

More information

Lecture 02 Linear classification methods I

Lecture 02 Linear classification methods I Lecture 02 Linear classification methods I 22 January 2016 Taylor B. Arnold Yale Statistics STAT 365/665 1/32 Coursewebsite: A copy of the whole course syllabus, including a more detailed description of

More information

Computational Physics

Computational Physics Interpolation, Extrapolation & Polynomial Approximation Lectures based on course notes by Pablo Laguna and Kostas Kokkotas revamped by Deirdre Shoemaker Spring 2014 Introduction In many cases, a function

More information

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X.

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X. Estimating σ 2 We can do simple prediction of Y and estimation of the mean of Y at any value of X. To perform inferences about our regression line, we must estimate σ 2, the variance of the error term.

More information

Complex Dynamic Systems: Qualitative vs Quantitative analysis

Complex Dynamic Systems: Qualitative vs Quantitative analysis Complex Dynamic Systems: Qualitative vs Quantitative analysis Complex Dynamic Systems Chiara Mocenni Department of Information Engineering and Mathematics University of Siena (mocenni@diism.unisi.it) Dynamic

More information

Inner product spaces. Layers of structure:

Inner product spaces. Layers of structure: Inner product spaces Layers of structure: vector space normed linear space inner product space The abstract definition of an inner product, which we will see very shortly, is simple (and by itself is pretty

More information

Spatial Process Estimates as Smoothers: A Review

Spatial Process Estimates as Smoothers: A Review Spatial Process Estimates as Smoothers: A Review Soutir Bandyopadhyay 1 Basic Model The observational model considered here has the form Y i = f(x i ) + ɛ i, for 1 i n. (1.1) where Y i is the observed

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

Option 1: Landmark Registration We can try to align specific points. The Registration Problem. Landmark registration. Time-Warping Functions

Option 1: Landmark Registration We can try to align specific points. The Registration Problem. Landmark registration. Time-Warping Functions The Registration Problem Most analyzes only account for variation in amplitude. Frequently, observed data exhibit features that vary in time. Option 1: Landmark Registration We can try to align specific

More information

Functional responses, functional covariates and the concurrent model

Functional responses, functional covariates and the concurrent model Functional responses, functional covariates and the concurrent model Page 1 of 14 1. Predicting precipitation profiles from temperature curves Precipitation is much harder to predict than temperature.

More information

Review of Classical Mechanics

Review of Classical Mechanics Review of Classical Mechanics VBS/MRC Review of Classical Mechanics 0 Some Questions Why does a tennis racket wobble when flipped along a certain axis? What do hear when you pluck a Veena string? How do

More information

5th-order differentiation

5th-order differentiation ARBITRARY-ORDER REAL-TIME EXACT ROBUST DIFFERENTIATION A. Levant Applied Mathematics Dept., Tel-Aviv University, Israel E-mail: levant@post.tau.ac.il Homepage: http://www.tau.ac.il/~levant/ 5th-order differentiation

More information

CS 5014: Research Methods in Computer Science

CS 5014: Research Methods in Computer Science Computer Science Clifford A. Shaffer Department of Computer Science Virginia Tech Blacksburg, Virginia Fall 2010 Copyright c 2010 by Clifford A. Shaffer Computer Science Fall 2010 1 / 207 Correlation and

More information

L = 1 2 a(q) q2 V (q).

L = 1 2 a(q) q2 V (q). Physics 3550, Fall 2011 Motion near equilibrium - Small Oscillations Relevant Sections in Text: 5.1 5.6 Motion near equilibrium 1 degree of freedom One of the most important situations in physics is motion

More information

We consider the problem of finding a polynomial that interpolates a given set of values:

We consider the problem of finding a polynomial that interpolates a given set of values: Chapter 5 Interpolation 5. Polynomial Interpolation We consider the problem of finding a polynomial that interpolates a given set of values: x x 0 x... x n y y 0 y... y n where the x i are all distinct.

More information

To factor an expression means to write it as a product of factors instead of a sum of terms. The expression 3x

To factor an expression means to write it as a product of factors instead of a sum of terms. The expression 3x Factoring trinomials In general, we are factoring ax + bx + c where a, b, and c are real numbers. To factor an expression means to write it as a product of factors instead of a sum of terms. The expression

More information

1 Chapter 2, Problem Set 1

1 Chapter 2, Problem Set 1 1 Chapter 2, Problem Set 1 1. The first model is the smoothest because it imposes a straight line. Only two degrees of freedom are lost. The second model exhibits the most jagged fit because each distinct

More information

2.2 Average vs. Instantaneous Description

2.2 Average vs. Instantaneous Description 2 KINEMATICS 2.2 Average vs. Instantaneous Description Name: 2.2 Average vs. Instantaneous Description 2.2.1 Average vs. Instantaneous Velocity In the previous activity, you figured out that you can calculate

More information

Fitting functions to data

Fitting functions to data 1 Fitting functions to data 1.1 Exact fitting 1.1.1 Introduction Suppose we have a set of real-number data pairs x i, y i, i = 1, 2,, N. These can be considered to be a set of points in the xy-plane. They

More information

Lecture 18: Simple Linear Regression

Lecture 18: Simple Linear Regression Lecture 18: Simple Linear Regression BIOS 553 Department of Biostatistics University of Michigan Fall 2004 The Correlation Coefficient: r The correlation coefficient (r) is a number that measures the strength

More information

for changing independent variables. Most simply for a function f(x) the Legendre transformation f(x) B(s) takes the form B(s) = xs f(x) with s = df

for changing independent variables. Most simply for a function f(x) the Legendre transformation f(x) B(s) takes the form B(s) = xs f(x) with s = df Physics 106a, Caltech 1 November, 2018 Lecture 10: Hamiltonian Mechanics I The Hamiltonian In the Hamiltonian formulation of dynamics each second order ODE given by the Euler- Lagrange equation in terms

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 7 Interpolation Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

CHAPTER 1. FUNCTIONS 7

CHAPTER 1. FUNCTIONS 7 CHAPTER 1. FUNCTIONS 7 1.3.2 Polynomials A polynomial is a function P with a general form P (x) a 0 + a 1 x + a 2 x 2 + + a n x n, (1.4) where the coe cients a i (i 0, 1,...,n) are numbers and n is a non-negative

More information

Time Series. Anthony Davison. c

Time Series. Anthony Davison. c Series Anthony Davison c 2008 http://stat.epfl.ch Periodogram 76 Motivation............................................................ 77 Lutenizing hormone data..................................................

More information

A Modern Look at Classical Multivariate Techniques

A Modern Look at Classical Multivariate Techniques A Modern Look at Classical Multivariate Techniques Yoonkyung Lee Department of Statistics The Ohio State University March 16-20, 2015 The 13th School of Probability and Statistics CIMAT, Guanajuato, Mexico

More information

General Least Squares Fitting

General Least Squares Fitting Appendix B General Least Squares Fitting B.1 Introduction Previously you have done curve fitting in two dimensions. Now you will learn how to extend that to multiple dimensions. B.1.1 Linearizable Non-linear

More information

Final Exam May 4, 2016

Final Exam May 4, 2016 1 Math 425 / AMCS 525 Dr. DeTurck Final Exam May 4, 2016 You may use your book and notes on this exam. Show your work in the exam book. Work only the problems that correspond to the section that you prepared.

More information

Differential Equations

Differential Equations Electricity and Magnetism I (P331) M. R. Shepherd October 14, 2008 Differential Equations The purpose of this note is to provide some supplementary background on differential equations. The problems discussed

More information

Q You mentioned that in complex analysis we study analytic functions, or, in another name, holomorphic functions. Pray tell me, what are they?

Q You mentioned that in complex analysis we study analytic functions, or, in another name, holomorphic functions. Pray tell me, what are they? COMPLEX ANALYSIS PART 2: ANALYTIC FUNCTIONS Q You mentioned that in complex analysis we study analytic functions, or, in another name, holomorphic functions. Pray tell me, what are they? A There are many

More information

Function Approximation

Function Approximation 1 Function Approximation This is page i Printer: Opaque this 1.1 Introduction In this chapter we discuss approximating functional forms. Both in econometric and in numerical problems, the need for an approximating

More information

lecture 4: Constructing Finite Difference Formulas

lecture 4: Constructing Finite Difference Formulas 5 lecture 4: Constructing Finite Difference Formulas 17 Application: Interpolants for Finite Difference Formulas The most obvious use of interpolants is to construct polynomial models of more complicated

More information

22s:152 Applied Linear Regression. Chapter 5: Ordinary Least Squares Regression. Part 1: Simple Linear Regression Introduction and Estimation

22s:152 Applied Linear Regression. Chapter 5: Ordinary Least Squares Regression. Part 1: Simple Linear Regression Introduction and Estimation 22s:152 Applied Linear Regression Chapter 5: Ordinary Least Squares Regression Part 1: Simple Linear Regression Introduction and Estimation Methods for studying the relationship of two or more quantitative

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

Curve Fitting and Interpolation

Curve Fitting and Interpolation Chapter 5 Curve Fitting and Interpolation 5.1 Basic Concepts Consider a set of (x, y) data pairs (points) collected during an experiment, Curve fitting: is a procedure to develop or evaluate mathematical

More information

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression.

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression. 10/3/011 Functional Connectivity Correlation and Regression Variance VAR = Standard deviation Standard deviation SD = Unbiased SD = 1 10/3/011 Standard error Confidence interval SE = CI = = t value for

More information

Lectures 9-10: Polynomial and piecewise polynomial interpolation

Lectures 9-10: Polynomial and piecewise polynomial interpolation Lectures 9-1: Polynomial and piecewise polynomial interpolation Let f be a function, which is only known at the nodes x 1, x,, x n, ie, all we know about the function f are its values y j = f(x j ), j

More information

PHYSICS 107. Lecture 27 What s Next?

PHYSICS 107. Lecture 27 What s Next? PHYSICS 107 Lecture 27 What s Next? The origin of the elements Apart from the expansion of the universe and the cosmic microwave background radiation, the Big Bang theory makes another important set of

More information

Linear Models for Regression

Linear Models for Regression Linear Models for Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Empirical Models Interpolation Polynomial Models

Empirical Models Interpolation Polynomial Models Mathematical Modeling Lia Vas Empirical Models Interpolation Polynomial Models Lagrange Polynomial. Recall that two points (x 1, y 1 ) and (x 2, y 2 ) determine a unique line y = ax + b passing them (obtained

More information

Data Analysis-I. Interpolation. Soon-Hyung Yook. December 4, Soon-Hyung Yook Data Analysis-I December 4, / 1

Data Analysis-I. Interpolation. Soon-Hyung Yook. December 4, Soon-Hyung Yook Data Analysis-I December 4, / 1 Data Analysis-I Interpolation Soon-Hyung Yook December 4, 2015 Soon-Hyung Yook Data Analysis-I December 4, 2015 1 / 1 Table of Contents Soon-Hyung Yook Data Analysis-I December 4, 2015 2 / 1 Introduction

More information

In practice one often meets a situation where the function of interest, f(x), is only represented by a discrete set of tabulated points,

In practice one often meets a situation where the function of interest, f(x), is only represented by a discrete set of tabulated points, 1 Interpolation 11 Introduction In practice one often meets a situation where the function of interest, f(x), is only represented by a discrete set of tabulated points, {x i, y i = f(x i ) i = 1 n, obtained,

More information

Mathematics for Economics MA course

Mathematics for Economics MA course Mathematics for Economics MA course Simple Linear Regression Dr. Seetha Bandara Simple Regression Simple linear regression is a statistical method that allows us to summarize and study relationships between

More information

Math 426H (Differential Geometry) Final Exam April 24, 2006.

Math 426H (Differential Geometry) Final Exam April 24, 2006. Math 426H Differential Geometry Final Exam April 24, 6. 8 8 8 6 1. Let M be a surface and let : [0, 1] M be a smooth loop. Let φ be a 1-form on M. a Suppose φ is exact i.e. φ = df for some f : M R. Show

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

Introduction to Path Integrals

Introduction to Path Integrals Introduction to Path Integrals Consider ordinary quantum mechanics of a single particle in one space dimension. Let s work in the coordinate space and study the evolution kernel Ut B, x B ; T A, x A )

More information

Outline Introduction The modell Calculating y Calculating x Displaying a ball The program Request for support. Bouncing Ball

Outline Introduction The modell Calculating y Calculating x Displaying a ball The program Request for support. Bouncing Ball Bernd Ulmann ulmann@vaxman.de Vintage Computer Festival Europe 2007 29th April 1st May 2007 Munich 1 Introduction 2 The modell 3 Calculating y 4 Calculating x 5 Displaying a ball 6 The program 7 Request

More information

2.3 Damping, phases and all that

2.3 Damping, phases and all that 2.3. DAMPING, PHASES AND ALL THAT 107 2.3 Damping, phases and all that If we imagine taking our idealized mass on a spring and dunking it in water or, more dramatically, in molasses), then there will be

More information

41903: Introduction to Nonparametrics

41903: Introduction to Nonparametrics 41903: Notes 5 Introduction Nonparametrics fundamentally about fitting flexible models: want model that is flexible enough to accommodate important patterns but not so flexible it overspecializes to specific

More information

Input: A set (x i -yy i ) data. Output: Function value at arbitrary point x. What for x = 1.2?

Input: A set (x i -yy i ) data. Output: Function value at arbitrary point x. What for x = 1.2? Applied Numerical Analysis Interpolation Lecturer: Emad Fatemizadeh Interpolation Input: A set (x i -yy i ) data. Output: Function value at arbitrary point x. 0 1 4 1-3 3 9 What for x = 1.? Interpolation

More information

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics MATHS 101: Calculus I

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics   MATHS 101: Calculus I Preliminaries 2 1 2 Lectures Department of Mathematics http://www.abdullaeid.net/maths101 MATHS 101: Calculus I (University of Bahrain) Prelim 1 / 35 Pre Calculus MATHS 101: Calculus MATHS 101 is all about

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Concepts Paul Dawkins Table of Contents Preface... Basic Concepts... 1 Introduction... 1 Definitions... Direction Fields... 8 Final Thoughts...19 007 Paul Dawkins i http://tutorial.math.lamar.edu/terms.aspx

More information

Exam C Solutions Spring 2005

Exam C Solutions Spring 2005 Exam C Solutions Spring 005 Question # The CDF is F( x) = 4 ( + x) Observation (x) F(x) compare to: Maximum difference 0. 0.58 0, 0. 0.58 0.7 0.880 0., 0.4 0.680 0.9 0.93 0.4, 0.6 0.53. 0.949 0.6, 0.8

More information

Traffic Flow I. Kurt Bryan

Traffic Flow I. Kurt Bryan Introduction Traffic Flow I Kurt Bryan Consider a stretch of freeway with no entrance or eit ramps. On such a stretch of freeway we clearly have conservation of cars, barring any wrecks. Thus in our conservation

More information

Chapter 4: Interpolation and Approximation. October 28, 2005

Chapter 4: Interpolation and Approximation. October 28, 2005 Chapter 4: Interpolation and Approximation October 28, 2005 Outline 1 2.4 Linear Interpolation 2 4.1 Lagrange Interpolation 3 4.2 Newton Interpolation and Divided Differences 4 4.3 Interpolation Error

More information

Hilbert Space Methods in Learning

Hilbert Space Methods in Learning Hilbert Space Methods in Learning guest lecturer: Risi Kondor 6772 Advanced Machine Learning and Perception (Jebara), Columbia University, October 15, 2003. 1 1. A general formulation of the learning problem

More information

Business Statistics. Lecture 9: Simple Regression

Business Statistics. Lecture 9: Simple Regression Business Statistics Lecture 9: Simple Regression 1 On to Model Building! Up to now, class was about descriptive and inferential statistics Numerical and graphical summaries of data Confidence intervals

More information

Mathematics (MEI) Advanced Subsidiary GCE Core 1 (4751) May 2010

Mathematics (MEI) Advanced Subsidiary GCE Core 1 (4751) May 2010 Link to past paper on OCR website: http://www.mei.org.uk/files/papers/c110ju_ergh.pdf These solutions are for your personal use only. DO NOT photocopy or pass on to third parties. If you are a school or

More information

Data Analysis, Standard Error, and Confidence Limits E80 Spring 2015 Notes

Data Analysis, Standard Error, and Confidence Limits E80 Spring 2015 Notes Data Analysis Standard Error and Confidence Limits E80 Spring 05 otes We Believe in the Truth We frequently assume (believe) when making measurements of something (like the mass of a rocket motor) that

More information