Time Response of Systems


 Dayna Gibson
 1 years ago
 Views:
Transcription
1 Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) splane Time response p =0 s p =0,p 2 =0 s 2 t p = a, a > 0 s a e at p = a, a > 0 s+a e at 4
2 Lecture Notes on Control Systems/D. Ghose/ Poles F (s) f(t) splane Time response p = jb, p 2 = jb b s 2 +b 2 sin bt p = jb, p 2 = jb s s 2 +b 2 cos bt p = a + jb p 2 = a jb a>0, b>0 b (s+a) 2 +b 2 e at sin bt p = a + jb p 2 = a jb a>0, b>0 s+a (s+a) 2 +b 2 e at cos bt p = a + jb p 2 = a jb a<0, b>0 b (s+a) 2 +b 2 e at sin bt p = a + jb p 2 = a jb a<0, b>0 s+a (s+a) 2 +b 2 e at cos bt What do we observe from these time responses?. Poles are real No oscillations. 2. Poles are positive (on the right hand side of the splane Exponential increase, or unstable. 3. Poles are negative (on the left hand side of the splane Exponential decrease, or stable.
3 Lecture Notes on Control Systems/D. Ghose/ Poles are imaginary Oscillations with no damping. 5. Poles are complex Damped oscillations. These can be summarized in the following figure. PROBLEM SET 3 Figure 0.: Time response for different pole placements. Find the partial fraction expansions of the following transfer functions: (a) G(s) = s+2 s 2 +5s+2 (b) G(s) = s 2 + (s+) 2 (s+3) (c) G(s) = s 2 +3 s 3 +3s 2 +5s+6 2. Find the time response of the following systems, driven by unit step input signals, using Laplace transforms: (a) d2 x dt 2 +5 dx dt +3x =3u(t)
4 Lecture Notes on Control Systems/D. Ghose/ (b) Massspring system. 0ẍ +3x =5u(t) (c) Springmassdamper system. 6ẍ +2ẋ +3x =2u(t) Note that the initial conditions can be nonzero. What is an oscillation? It is a result of energy transfer between two energy storage elements. For example, in a springmassdamper system: mass: kinetic energy spring: potential energy damper: energy dissipator Figure 0.2: Springmassdamper system What is damping? It is the result of energy dissipation. 0.2 Time Response Characteristics What are the main system time response characteristics? These can be classified in the following three categories.. Transient response (Output signal soon after the input signal is applied) 2. Steadystate response (Output signal long time after the input signal is applied) 3. Stability Our main objective is to find the behaviour of a system (in terms of the output y(t)) for various input signals r(t). Normally, the input r(t) is not known in advance since all we may know is the system transfer function G(s). So, it is customary to check the behaviour of a system for the following types of inputs:. Unit Step: r(t) =u(t) R(s) = s
5 Lecture Notes on Control Systems/D. Ghose/ Unit Ramp: r(t) =tu(t) R(s) = s 2 3. Unit Impulse: r(t) = δ(t) R(s) = 4. Sinusoid: r(t) =u(t)sinωt R(s) = ω s 2 +ω 2 Usually designers assume that if the system behaviour is OK for these functions then most probably it will be ok for other signals too. In fact one usually looks at system behaviour against step functions only. Why? Because most piecewise continuous signals can be represented as a collection of pulses (which in turn can be created by algebraic manipulation of unit step functions). This we have already seen. Another Assumption. Any linear constantcoefficient system can be broken down into a cascade of first and second order systems (remember that we did this when we did the partial fraction expansion). Figure 0.3: A LTI system represented as a cascade of smaller systems So it is logical to first examine the time response of first and second order systems against step inputs. 0.3 Characteristics of First Order Systems Consider the first order system (assuming zero initial condition), a ẏ + a 0 y = b 0 r Taking Laplace transforms on both sides (a s + a 0 )Y (s) =b 0 R(s)
6 Lecture Notes on Control Systems/D. Ghose/ So, the transfer function G(s) is given by, G(s) = Y (s) R(s) = b 0 a s + a 0 = b 0 a s + a 0 a The poles of G(s) are the roots of the denominator polynomial. Define, Define, So, p = a 0 a = a 0 a Time constant Bandwidth K = b 0 Open loop gain or DC gain a 0 G(s) = b 0 a s + a 0 = b 0 a s + a 0 a = b 0 a 0 a 0 a s + a 0 a = K s + Suppose, Figure 0.4: Position of pole and the impulse response of a first order system r(t) =δ(t)
7 Lecture Notes on Control Systems/D. Ghose/ which is an impulse function. Then, R(s) = and Taking inverse Laplace transform, Y (s) =G(s)R(s) =K s + y(t) =K e t = K e t t y(t) 0 K K e =0.37 K. is the time required for y(t) to reach 37% of its initial value. 2. The DC gain term arises from the observation that for a unit step input, y(t) K as t. Check: Y (s) =G(s)R(s) = K s + [ = K Taking inverse Laplace transform on both sides, y(t) =K [ ] e t So, s s + + s lim = K t So the idea is: Send in and get K, after things have settled down! Try getting the same result using the final value theorem. y( ) = lim s 0 sy (s) = lim What does the response look like? s 0 K s + = K ]
8 Lecture Notes on Control Systems/D. Ghose/ Figure 0.5: Unit step response of a first order system
Dr. Ian R. Manchester
Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus
More informationChapter 12. Feedback Control Characteristics of Feedback Systems
Chapter 1 Feedbac Control Feedbac control allows a system dynamic response to be modified without changing any system components. Below, we show an openloop system (a system without feedbac) and a closedloop
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More information12.7 Steady State Error
Lecture Notes on Control Systems/D. Ghose/01 106 1.7 Steady State Error For first order systems we have noticed an overall improvement in performance in terms of rise time and settling time. But there
More informationPoles, Zeros and System Response
Time Response After the engineer obtains a mathematical representation of a subsystem, the subsystem is analyzed for its transient and steady state responses to see if these characteristics yield the desired
More informationNotes for ECE320. Winter by R. Throne
Notes for ECE3 Winter 45 by R. Throne Contents Table of Laplace Transforms 5 Laplace Transform Review 6. Poles and Zeros.................................... 6. Proper and Strictly Proper Transfer Functions...................
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles
More informationLTI Systems (Continuous & Discrete)  Basics
LTI Systems (Continuous & Discrete)  Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and timeinvariant (b) linear and timevarying
More informationDynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology.
Dynamic Response Assoc. Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 3 Assoc. Prof. Enver Tatlicioglu (EEE@IYTE) EE362 Feedback Control
More informatione st f (t) dt = e st tf(t) dt = L {t f(t)} s
Additional operational properties How to find the Laplace transform of a function f (t) that is multiplied by a monomial t n, the transform of a special type of integral, and the transform of a periodic
More informationEE102 Homework 2, 3, and 4 Solutions
EE12 Prof. S. Boyd EE12 Homework 2, 3, and 4 Solutions 7. Some convolution systems. Consider a convolution system, y(t) = + u(t τ)h(τ) dτ, where h is a function called the kernel or impulse response of
More informationAnalysis and Design of Control Systems in the Time Domain
Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.
More informationEL2520 Control Theory and Practice
So far EL2520 Control Theory and Practice r Fr wu u G w z n Lecture 5: Multivariable systems Fy Mikael Johansson School of Electrical Engineering KTH, Stockholm, Sweden SISO control revisited: Signal
More informationLecture 7:Time Response PoleZero Maps Influence of Poles and Zeros Higher Order Systems and Pole Dominance Criterion
Cleveland State University MCE441: Intr. Linear Control Lecture 7:Time Influence of Poles and Zeros Higher Order and Pole Criterion Prof. Richter 1 / 26 FirstOrder Specs: Step : Pole Real inputs contain
More informationOneSided Laplace Transform and Differential Equations
OneSided Laplace Transform and Differential Equations As in the dcretetime case, the onesided transform allows us to take initial conditions into account. Preliminaries The onesided Laplace transform
More informationEE 3054: Signals, Systems, and Transforms Summer It is observed of some continuoustime LTI system that the input signal.
EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuoustime LTI system that the input signal = 3 u(t) produces
More informationControl System. Contents
Contents Chapter Topic Page Chapter Chapter Chapter3 Chapter4 Introduction Transfer Function, Block Diagrams and Signal Flow Graphs Mathematical Modeling Control System 35 Time Response Analysis of
More informationProfessor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley
Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the
More informationSystems Engineering/Process Control L4
1 / 24 Systems Engineering/Process Control L4 Inputoutput models Laplace transform Transfer functions Block diagram algebra Reading: Systems Engineering and Process Control: 4.1 4.4 2 / 24 Laplace transform
More informationDynamic circuits: Frequency domain analysis
Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution
More informationFrequency Response of Linear Time Invariant Systems
ME 328, Spring 203, Prof. Rajamani, University of Minnesota Frequency Response of Linear Time Invariant Systems Complex Numbers: Recall that every complex number has a magnitude and a phase. Example: z
More informationEE Homework 12  Solutions. 1. The transfer function of the system is given to be H(s) = s j j
EE3054  Homework 2  Solutions. The transfer function of the system is given to be H(s) = s 2 +3s+3. Decomposing into partial fractions, H(s) = 0.5774j s +.5 0.866j + 0.5774j s +.5 + 0.866j. () (a) The
More informationAn Introduction to Control Systems
An Introduction to Control Systems Signals and Systems: 3C1 Control Systems Handout 1 Dr. David Corrigan Electronic and Electrical Engineering corrigad@tcd.ie November 21, 2012 Recall the concept of a
More informationDynamic System Response. Dynamic System Response K. Craig 1
Dynamic System Response Dynamic System Response K. Craig 1 Dynamic System Response LTI Behavior vs. NonLTI Behavior Solution of Linear, ConstantCoefficient, Ordinary Differential Equations Classical
More informationTransient Response of a SecondOrder System
Transient Response of a SecondOrder System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a wellbehaved closedloop
More informationLecture 7: Laplace Transform and Its Applications Dr.Ing. Sudchai Boonto
DrIng Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkut s Unniversity of Technology Thonburi Thailand Outline Motivation The Laplace Transform The Laplace Transform
More informationLab Experiment 2: Performance of First order and second order systems
Lab Experiment 2: Performance of First order and second order systems Objective: The objective of this exercise will be to study the performance characteristics of first and second order systems using
More informationSection 6.4 DEs with Discontinuous Forcing Functions
Section 6.4 DEs with Discontinuous Forcing Functions Key terms/ideas: Discontinuous forcing function in nd order linear IVPs Application of Laplace transforms Comparison to viewing the problem s solution
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 5: Calculating the Laplace Transform of a Signal Introduction In this Lecture, you will learn: Laplace Transform of Simple
More information2.004 Dynamics and Control II Spring 2008
MIT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8 I * * Massachusetts
More informationReview of Linear TimeInvariant Network Analysis
D1 APPENDIX D Review of Linear TimeInvariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D1. If an input x 1 (t) produces an output y 1 (t), and an input x
More informationChapter 6 SteadyState Analysis of ContinuousTime Systems
Chapter 6 SteadyState Analysis of ContinuousTime Systems 6.1 INTRODUCTION One of the objectives of a control systems engineer is to minimize the steadystate error of the closedloop system response
More informationLecture 9 Infinite Impulse Response Filters
Lecture 9 Infinite Impulse Response Filters Outline 9 Infinite Impulse Response Filters 9 FirstOrder LowPass Filter 93 IIR Filter Design 5 93 CT Butterworth filter design 5 93 Bilinear transform 7 9
More informationRichiami di Controlli Automatici
Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici
More informationControl Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli
Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)
More informationSolving a RLC Circuit using Convolution with DERIVE for Windows
Solving a RLC Circuit using Convolution with DERIVE for Windows Michel Beaudin École de technologie supérieure, rue NotreDame Ouest Montréal (Québec) Canada, H3C K3 mbeaudin@seg.etsmtl.ca  Introduction
More informationSection 6.5 Impulse Functions
Section 6.5 Impulse Functions Key terms/ideas: Unit impulse function (technically a generalized function or distribution ) Dirac delta function Laplace transform of the Dirac delta function IVPs with forcing
More informationPerformance of Feedback Control Systems
Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steadystate Error and Type 0, Type
More informationMath Shifting theorems
Math 37  Shifting theorems Erik Kjær Pedersen November 29, 2005 Let us recall the Dirac delta function. It is a function δ(t) which is 0 everywhere but at t = 0 it is so large that b a (δ(t)dt = when
More informationDefinition of the Laplace transform. 0 x(t)e st dt
Definition of the Laplace transform Bilateral Laplace Transform: X(s) = x(t)e st dt Unilateral (or onesided) Laplace Transform: X(s) = 0 x(t)e st dt ECE352 1 Definition of the Laplace transform (cont.)
More informationIntroduction to Feedback Control
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationLecture 1 From ContinuousTime to DiscreteTime
Lecture From ContinuousTime to DiscreteTime Outline. Continuous and DiscreteTime Signals and Systems................. What is a signal?................................2 What is a system?.............................
More informationFourier series. XE31EO2  Pavel Máša. Electrical Circuits 2 Lecture1. XE31EO2  Pavel Máša  Fourier Series
Fourier series Electrical Circuits Lecture  Fourier Series Filtr RLC defibrillator MOTIVATION WHAT WE CAN'T EXPLAIN YET Source voltage rectangular waveform Resistor voltage sinusoidal waveform  Fourier
More informationLecture 9 Timedomain properties of convolution systems
EE 12 spring 2122 Handout #18 Lecture 9 Timedomain properties of convolution systems impulse response step response fading memory DC gain peak gain stability 9 1 Impulse response if u = δ we have y(t)
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationPole placement control: state space and polynomial approaches Lecture 2
: state space and polynomial approaches Lecture 2 : a state O. Sename 1 1 Gipsalab, CNRSINPG, FRANCE Olivier.Sename@gipsalab.fr www.gipsalab.fr/ o.sename based November 21, 2017 Outline : a state
More information(an improper integral)
Chapter 7 Laplace Transforms 7.1 Introduction: A Mixing Problem 7.2 Definition of the Laplace Transform Def 7.1. Let f(t) be a function on [, ). The Laplace transform of f is the function F (s) defined
More informationLecture 13: H(s) PolesZeros & BIBO Stability. (a) What are poles and zeros? Answer: HS math and calculus review.
1. Introduction Lecture 13: H(s) PolesZeros & BIBO Stability (a) What are poles and zeros? Answer: HS math and calculus review. (b) What are nice inputs? Answer: nice inputs are bounded inputs; if you
More informationSecond Order and Higher Order Systems
Second Order and Higher Order Systems 1. Second Order System In this section, we shall obtain the response of a typical secondorder control system to a step input. In terms of damping ratio and natural
More informationSolution via Laplace transform and matrix exponential
EE263 Autumn 2015 S. Boyd and S. Lall Solution via Laplace transform and matrix exponential Laplace transform solving ẋ = Ax via Laplace transform state transition matrix matrix exponential qualitative
More informationMA 266 Review Topics  Exam # 2 (updated)
MA 66 Reiew Topics  Exam # updated Spring First Order Differential Equations Separable, st Order Linear, Homogeneous, Exact Second Order Linear Homogeneous with Equations Constant Coefficients The differential
More informationECE 3793 Matlab Project 3 Solution
ECE 3793 Matlab Project 3 Solution Spring 27 Dr. Havlicek. (a) In text problem 9.22(d), we are given X(s) = s + 2 s 2 + 7s + 2 4 < Re {s} < 3. The following Matlab statements determine the partial fraction
More informationEEE105 Teori Litar I Chapter 7 Lecture #3. Dr. Shahrel Azmin Suandi Emel:
EEE105 Teori Litar I Chapter 7 Lecture #3 Dr. Shahrel Azmin Suandi Emel: shahrel@eng.usm.my What we have learnt so far? Chapter 7 introduced us to firstorder circuit From the last lecture, we have learnt
More informationLecture: Sampling. Automatic Control 2. Sampling. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Sampling Prof. Alberto Bemporad University of rento Academic year 20102011 Prof. Alberto Bemporad (University of rento) Automatic Control 2 Academic year 20102011 1 / 31 imediscretization
More informationECE 3620: Laplace Transforms: Chapter 3:
ECE 3620: Laplace Transforms: Chapter 3: 3.13.4 Prof. K. Chandra ECE, UMASS Lowell September 21, 2016 1 Analysis of LTI Systems in the Frequency Domain Thus far we have understood the relationship between
More information10 Transfer Matrix Models
MIT EECS 6.241 (FALL 26) LECTURE NOTES BY A. MEGRETSKI 1 Transfer Matrix Models So far, transfer matrices were introduced for finite order state space LTI models, in which case they serve as an important
More informationHomework 7  Solutions
Homework 7  Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
More informationNonlinear System Analysis
Nonlinear System Analysis Lyapunov Based Approach Lecture 4 Module 1 Dr. Laxmidhar Behera Department of Electrical Engineering, Indian Institute of Technology, Kanpur. January 4, 2003 Intelligent Control
More information6.003 Homework #10 Solutions
6.3 Homework # Solutions Problems. DT Fourier Series Determine the Fourier Series coefficients for each of the following DT signals, which are periodic in N = 8. x [n] / n x [n] n x 3 [n] n x 4 [n] / n
More informationModeling. Transition between the TF to SS and SS to TF will also be discussed.
Modeling This lecture we will consentrate on how to do system modeling based on two commonly used techniques In frequency domain using Transfer Function (TF) representation In time domain via using State
More informationOn the Stability of Linear Systems
On the Stability of Linear Systems by Daniele Sasso * Abstract The criteria of stability defined in the standard theory of linear systems aren t exhaustive and show some inconsistencies. In this article
More information1 (30 pts) Dominant Pole
EECS C8/ME C34 Fall Problem Set 9 Solutions (3 pts) Dominant Pole For the following transfer function: Y (s) U(s) = (s + )(s + ) a) Give state space description of the system in parallel form (ẋ = Ax +
More informationGeneralizing the DTFT!
The Transform Generaliing the DTFT! The forward DTFT is defined by X e jω ( ) = x n e jωn in which n= Ω is discretetime radian frequency, a real variable. The quantity e jωn is then a complex sinusoid
More informationControl Systems Design
ELEC4410 Control Systems Design Lecture 13: Stability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 13: Stability p.1/20 Outline InputOutput
More information8 sin 3 V. For the circuit given, determine the voltage v for all time t. Assume that no energy is stored in the circuit before t = 0.
For the circuit given, determine the voltage v for all time t. Assume that no energy is stored in the circuit before t = 0. Spring 2015, Exam #5, Problem #1 4t Answer: e tut 8 sin 3 V 1 For the circuit
More informationAutonomous Mobile Robot Design
Autonomous Mobile Robot Design Topic: Guidance and Control Introduction and PID Loops Dr. Kostas Alexis (CSE) Autonomous Robot Challenges How do I control where to go? Autonomous Mobile Robot Design Topic:
More informationANALOG AND DIGITAL SIGNAL PROCESSING CHAPTER 3 : LINEAR SYSTEM RESPONSE (GENERAL CASE)
3. Linear System Response (general case) 3. INTRODUCTION In chapter 2, we determined that : a) If the system is linear (or operate in a linear domain) b) If the input signal can be assumed as periodic
More informationSchool of Mechanical Engineering Purdue University. ME375 Feedback Control  1
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationModule 4 : Laplace and Z Transform Problem Set 4
Module 4 : Laplace and Z Transform Problem Set 4 Problem 1 The input x(t) and output y(t) of a causal LTI system are related to the block diagram representation shown in the figure. (a) Determine a differential
More informationModeling and Control Overview
Modeling and Control Overview D R. T A R E K A. T U T U N J I A D V A N C E D C O N T R O L S Y S T E M S M E C H A T R O N I C S E N G I N E E R I N G D E P A R T M E N T P H I L A D E L P H I A U N I
More informationLinear Control Systems Solution to Assignment #1
Linear Control Systems Solution to Assignment # Instructor: H. Karimi Issued: Mehr 0, 389 Due: Mehr 8, 389 Solution to Exercise. a) Using the superposition property of linear systems we can compute the
More informationEssence of the Root Locus Technique
Essence of the Root Locus Technique In this chapter we study a method for finding locations of system poles. The method is presented for a very general setup, namely for the case when the closedloop
More informationUsing MATLB for stability analysis in Controls engineering Cyrus Hagigat Ph.D., PE College of Engineering University of Toledo, Toledo, Ohio
Using MATLB for stability analysis in Controls engineering Cyrus Hagigat Ph.D., PE College of Engineering University of Toledo, Toledo, Ohio Abstract Analyses of control systems require solution of differential
More informationHomework Assignment 3
ECE382/ME482 Fall 2008 Homework 3 Solution October 20, 2008 1 Homework Assignment 3 Assigned September 30, 2008. Due in lecture October 7, 2008. Note that you must include all of your work to obtain full
More informationDamped harmonic motion
Damped harmonic motion March 3, 016 Harmonic motion is studied in the presence of a damping force proportional to the velocity. The complex method is introduced, and the different cases of underdamping,
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #22 Dr. Ian C. Bruce Room: CRL229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Friday, March 5, 24 More General Effects of Open Loop Poles
More informationReview of Fourier Transform
Review of Fourier Transform Fourier series works for periodic signals only. What s about aperiodic signals? This is very large & important class of signals Aperiodic signal can be considered as periodic
More informationMAT 275 Laboratory 7 Laplace Transform and the Symbolic Math Toolbox
Laplace Transform and the Symbolic Math Toolbox 1 MAT 275 Laboratory 7 Laplace Transform and the Symbolic Math Toolbox In this laboratory session we will learn how to 1. Use the Symbolic Math Toolbox 2.
More informationTuning PI controllers in nonlinear uncertain closedloop systems with interval analysis
Tuning PI controllers in nonlinear uncertain closedloop systems with interval analysis J. Alexandre dit Sandretto, A. Chapoutot and O. Mullier U2IS, ENSTA ParisTech SYNCOP April 11, 2015 Closedloop
More informationComputational Physics (6810): Session 8
Computational Physics (6810): Session 8 Dick Furnstahl Nuclear Theory Group OSU Physics Department February 24, 2014 Differential equation solving Session 7 Preview Session 8 Stuff Solving differential
More informationLecture 13: Internal Model Principle and Repetitive Control
ME 233, UC Berkeley, Spring 2014 Xu Chen Lecture 13: Internal Model Principle and Repetitive Control Big picture review of integral control in PID design example: 0 Es) C s) Ds) + + P s) Y s) where P s)
More informationEDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1  TRIGONOMETRICAL GRAPHS
EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1  TRIGONOMETRICAL GRAPHS CONTENTS 3 Be able to understand how to manipulate trigonometric expressions and apply
More informationExam. 135 minutes + 15 minutes reading time
Exam January 23, 27 Control Systems I (559L) Prof. Emilio Frazzoli Exam Exam Duration: 35 minutes + 5 minutes reading time Number of Problems: 45 Number of Points: 53 Permitted aids: Important: 4 pages
More informationAlireza Mousavi Brunel University
Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 OpenLoop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched
More informationHOMEWORK 4: MATH 265: SOLUTIONS. y p = cos(ω 0t) 9 ω 2 0
HOMEWORK 4: MATH 265: SOLUTIONS. Find the solution to the initial value problems y + 9y = cos(ωt) with y(0) = 0, y (0) = 0 (account for all ω > 0). Draw a plot of the solution when ω = and when ω = 3.
More informationAutomatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21211 1 / 39 Feedback
More informationLecture 6: TimeDomain Analysis of ContinuousTime Systems Dr.Ing. Sudchai Boonto
Lecture 6: TimeDomain Analysis of ContinuousTime Systems DrIng Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkut s Unniversity of Technology Thonburi Thailand
More information100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
More informationSignals and Systems. Problem Set: The ztransform and DT Fourier Transform
Signals and Systems Problem Set: The ztransform and DT Fourier Transform Updated: October 9, 7 Problem Set Problem  Transfer functions in MATLAB A discretetime, causal LTI system is described by the
More informationTopic 3: Fourier Series (FS)
ELEC264: Signals And Systems Topic 3: Fourier Series (FS) o o o o Introduction to frequency analysis of signals CT FS Fourier series of CT periodic signals Signal Symmetry and CT Fourier Series Properties
More informationForced Response  Particular Solution x p (t)
Governing Equation 1.003J/1.053J Dynamics and Control I, Spring 007 Proessor Peacoc 5/7/007 Lecture 1 Vibrations: Second Order Systems  Forced Response Governing Equation Figure 1: Cart attached to spring
More informationEEL2216 Control Theory CT1: PID Controller Design
EEL6 Control Theory CT: PID Controller Design. Objectives (i) To design proportionalintegralderivative (PID) controller for closed loop control. (ii) To evaluate the performance of different controllers
More informationModeling and Analysis of Systems Lecture #8  Transfer Function. Guillaume Drion Academic year
Modeling and Analysis of Systems Lecture #8  Transfer Function Guillaume Drion Academic year 20152016 1 Inputoutput representation of LTI systems Can we mathematically describe a LTI system using the
More information6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski. Solutions to Problem Set 1 1. Massachusetts Institute of Technology
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Solutions to Problem Set 1 1 Problem 1.1T Consider the
More information1 (20 pts) Nyquist Exercise
EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically
More information6 OUTPUT FEEDBACK DESIGN
6 OUTPUT FEEDBACK DESIGN When the whole sate vector is not available for feedback, i.e, we can measure only y = Cx. 6.1 Review of observer design Recall from the first class in linear systems that a simple
More information1. The Transition Matrix (Hint: Recall that the solution to the linear equation ẋ = Ax + Bu is
ECE 55, Fall 2007 Problem Set #4 Solution The Transition Matrix (Hint: Recall that the solution to the linear equation ẋ Ax + Bu is x(t) e A(t ) x( ) + e A(t τ) Bu(τ)dτ () This formula is extremely important
More informationTransfer Functions. Chapter Introduction. 6.2 The Transfer Function
Chapter 6 Transfer Functions As a matter of idle curiosity, I once counted to find out what the order of the set of equations in an amplifier I had just designed would have been, if I had worked with the
More informationReglerteknik Allmän Kurs. Del 2. Lösningar till Exempelsamling. Läsår 2015/16
Reglerteknik Allmän Kurs Del Lösningar till Exempelsamling Läsår 5/6 Avdelningen för Reglerteknik, KTH, SE 44 Stockholm, SWEDEN AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET Reglerteknik
More informationCh 6.2: Solution of Initial Value Problems
Ch 6.2: Solution of Initial Value Problems! The Laplace transform is named for the French mathematician Laplace, who studied this transform in 1782.! The techniques described in this chapter were developed
More information