Statistical Analysis of Spatio-temporal Point Process Data. Peter J Diggle

Size: px
Start display at page:

Download "Statistical Analysis of Spatio-temporal Point Process Data. Peter J Diggle"

Transcription

1 Statistical Analysis of Spatio-temporal Point Process Data Peter J Diggle Department of Medicine, Lancaster University and Department of Biostatistics, Johns Hopkins University School of Public Health

2 Gastroenteric disease in Hampshire, UK

3 Gastroenteric disease in Hampshire, UK 3374 incident cases, 1 August 2000 to 26 August largely sporadic incidence pattern concentration in population centres occasional clusters of cases?

4 Questions establish normal spatio-temporal pattern of reported cases (NHS Direct) identify spatially and temporally localised anomalies in incidence pattern (real-time surveillance)

5 The 2001 UK FMD epidemic First confirmed case 20 February 2001 Approximately 140,000 at-risk farms in the UK (cattle and/or sheep) Outbreaks in 44 counties, epidemic particularly severe in Cumbria and Devon Last confirmed case 30 September 2001 Consequences included: more than 6 million animals slaughtered (4 million for disease control, 2 million for welfare reasons ) estimated direct cost 8 billion

6 y y March February x 30 April 31 May y y x x x y y June x x

7 Progress of the epidemic in Cumbria predominant pattern is of transmission between nearneighbouring farms but also some apparently spontaneous outbreaks qualitatively similar pattern in other English counties

8 Questions What factors affected the spread of the epidemic? How effective were control strategies in limiting the spread?

9 Analysis strategies for continuous-time processes 1. Empirical: log-gaussian Cox process models Poisson process with space-time intensity Λ(x, t) = exp{s(x, t)} 2. Mechanistic: work with conditional intensity function H t = λ(x, t H t ) = complete history (locations and times of events) conditional intensity (hazard) for new event at location x, time t, given history H t

10 Analysis strategies for continuous-time processes (1) log-gaussian Cox process model relatively tractable (eg closed-form expressions for second-moment structure) also able to generate a wide range of aggregated patterns scientifically natural if major determinant of pattern is environmental variation otherwise, often still a sensible empirical model

11 Model for gastroenteric disease data Notation λ 0 (x, t) = λ(x, t) = R(x, t) = normal intensity of incident cases actual intensity of incident cases spatio-temporal variation from normal pattern λ(x, t) = λ 0 (x, t)r(x, t) Scientific objective Use incident data up to time t to construct predictive distribution for current risk surface, R(x, t), hence identify anomalies, for further investigation.

12 Spatio-temporal model formulation λ(x, t) = λ 0 (x, t)r(x, t) λ 0 (x, t) = λ 0 (x)µ 0 (t) R(x, t) = exp{s(x, t)} S(x, t) = spatio-temporal Gaussian process: E[S(x, t)] = 0.5σ 2 Var{S(x, t)} = σ 2 Corr{S(x, t), S(x u, t v)} = ρ(u, v) conditional on R(x, t), incident cases form an inhomogeneous Poisson process with intensity λ(x, t)

13 Parameter estimation λ 0 (x) : locally adaptive kernel smootihng µ 0 (t) : Poisson log-linear regression σ 2, ρ(u, v) : matching empirical and theoretical second moments (but could also use Monte Carlo MLE)

14 Spatial prediction plug-in for estimated model parameters MCMC to generate samples from conditional distribution of S(x, t) given data up to time t choose critical threshold value c > 1 map empirical exceedance probabilities, p t (x) = P (exp{s(x, t)} > c data) web-reporting with daily updates Do we need to take account of parameter uncertainty?

15 Spatial prediction : results for 6 March 2003 c = 2

16 Analysis strategies for continuous-time processes (2) Analysis via conditional intensity function H t = λ(x, t H t ) = complete history (locations and times of events) conditional intensity (hazard) for new event at location x, time t, given history H t

17 Likelihood analysis Log-likelihood for data (x i, t i ) A [0, T ] : i = 1,..., n, with t 1 < t 2 <... < t n, is L(θ) = n log λ(x i, t i H ti ) i=1 T 0 A λ(x, t H t )dxdt Rarely tractable, but Monte Carlo methods are becoming available in special cases (eg log-gaussian Cox processes)

18 Partial likelihood analysis Data (x i, t i ) A [0, T ] : i = 1,..., n, with t 1 < t 2 <... < t n Condition on locations x i and times t i, derive log-likelihood for observed ordering 1, 2,..., n can allow for right-censored event-times if relevant R i = risk-set at time t i p i = λ(x i, t i H ti )/ j R i λ(x j, t i H ti ) (discrete R i ) p i = λ(x i, t i H ti )/ R i λ(x j, t i H ti )dx (continuous R i ) partial log-likelihood: L p (θ) = n i=1 log p i

19 A model for the FMD epidemic (after Keeling et al, 2001) Notation H t = history of process up to t λ(x, t H t ) = conditional intensity λ jk (t) = rate of transmission from farm j to farm k Farm-specific covariates for farm i n 1i = number of cows n 2i = number of sheep

20 Transmission kernel f(u) = exp{ (u/φ) 0.5 } + ρ At-risk indicator for transmission of infection I jk (t) = 1 if farm k not infected and not slaughtered by time t, and farm j infected and not slaughtered by time t Reporting delay Simplest assumption is that reporting date is infection date plus τ (latent period of disease plus reporting delay if any)

21 Resulting statistical model λ jk (t) = λ 0 (t)a j B k f( x j x k )I jk (t) λ 0 (t) = arbitrary A j = (αn 1j + n 2j ) B k = (βn 1k + n 2k )

22 Fitting the model rate of infection for farm k at time t is λ k (t) = j λ jk (t) partial likelihood contribution from ith case is p i = λ i (t i )/ k λ k (t i )

23 FMD results Common parameter values in Cumbria and Devon? Likelihood ratio test: χ 2 4 = 2.98 Parameter estimates (ˆα, ˆβ, ˆφ, ˆρ) = (4.92, 30.68, 0.39, ) But note that likelihood ratio test rejects ρ = 0.

24 Model extensions sub-linear dependence of infectivity/susceptibility on stock size A j = (αn γ 1j + nγ 2j ) B k = (βn γ 1k + nγ 2k ) Likelihood ratio test: χ 2 1 = other farm-specific covariates, eg z j = area of farm j and similarly for B k. A j = (αn γ 1j + nγ 2j ) exp(z j δ) Likelihood ratio test: χ 2 1 = 3.26

25 Baseline intensity: Nelson-Aalen estimator Write λ ij (t) as λ ij (t) = λ 0 (t)ρ ij (t) Nelson-Aalen estimator is ˆΛ 0 (t) = t 0 ˆρ(u) 1 dn(u) = i:t i t ˆρ(t i ) 1 where ˆρ(t) is plug-in from fitted model.

26 Nelson-Aalen estimates for Cumbria (solid line) and Devon (dotted line) cumulative hazard time (days since 1 Feb)

27 An ecological application data record locations x i and arrival times t i of nesting birds on several small off-shore islands birds known to prefer higher ground for nesting physical limit on distance between any two nests 25cm does spatio-temporal pattern of nesting sites show any evidence of spatial interaction beyond minimum separation distance?

28 Model for the pattern of nesting sites Interaction function h(u) = Conditional intensity is 0 : u δ 0 θ : δ < u δ 1 : u > δ λ(x, t H t ) = λ 0 (t) exp{z(x)β} g(x, t H t ) z(x) = elevation u (t) = min j:tj <t x x j g(x, t i H ti ) = h{u (t i )}

29 Final pattern on four islands Island 84 Island 74 y y x x Island 61 Island 56 y y x x

30 Confidence envelope for h(u) exp(theta) Distance (meter)

31 Conclusions spatio-temporal point process data-sets becoming widely available different problems require different modelling strategies temporal should often take precedence over spatial routine implementation is an important consideration

Modelling spatio-temporal patterns of disease

Modelling spatio-temporal patterns of disease Modelling spatio-temporal patterns of disease Peter J Diggle CHICAS combining health information, computation and statistics References AEGISS Brix, A. and Diggle, P.J. (2001). Spatio-temporal prediction

More information

Spatio-temporal Point Processes: Methods and Applications

Spatio-temporal Point Processes: Methods and Applications Johns Hopkins University, Dept. of Biostatistics Working Papers 6-27-2005 Spatio-temporal Point Processes: Methods and Applications Peter J. Diggle Medical Statistics Unit, Lancaster University, UK & Department

More information

A Tale of Two Parasites

A Tale of Two Parasites A Tale of Two Parasites Geostatistical Modelling for Tropical Disease Mapping Peter J Diggle Lancaster University and University of Liverpool CHICAS combining health information, computation and statistics

More information

Multistate Modeling and Applications

Multistate Modeling and Applications Multistate Modeling and Applications Yang Yang Department of Statistics University of Michigan, Ann Arbor IBM Research Graduate Student Workshop: Statistics for a Smarter Planet Yang Yang (UM, Ann Arbor)

More information

Robust MCMC Algorithms for Bayesian Inference in Stochastic Epidemic Models.

Robust MCMC Algorithms for Bayesian Inference in Stochastic Epidemic Models. Robust MCMC Algorithms for Bayesian Inference in Stochastic Epidemic Models. An Application to the 2001 UK Foot-and-Mouth Outbreak Theodore Kypraios @ University of Nottingham Gareth O. Roberts @ Lancaster

More information

Physician Performance Assessment / Spatial Inference of Pollutant Concentrations

Physician Performance Assessment / Spatial Inference of Pollutant Concentrations Physician Performance Assessment / Spatial Inference of Pollutant Concentrations Dawn Woodard Operations Research & Information Engineering Cornell University Johns Hopkins Dept. of Biostatistics, April

More information

Fast Likelihood-Free Inference via Bayesian Optimization

Fast Likelihood-Free Inference via Bayesian Optimization Fast Likelihood-Free Inference via Bayesian Optimization Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology

More information

Andrew B. Lawson 2019 BMTRY 763

Andrew B. Lawson 2019 BMTRY 763 BMTRY 763 FMD Foot and mouth disease (FMD) is a viral disease of clovenfooted animals and being extremely contagious it spreads rapidly. It reduces animal production, and can sometimes be fatal in young

More information

USING CLUSTERING SOFTWARE FOR EXPLORING SPATIAL AND TEMPORAL PATTERNS IN NON-COMMUNICABLE DISEASES

USING CLUSTERING SOFTWARE FOR EXPLORING SPATIAL AND TEMPORAL PATTERNS IN NON-COMMUNICABLE DISEASES USING CLUSTERING SOFTWARE FOR EXPLORING SPATIAL AND TEMPORAL PATTERNS IN NON-COMMUNICABLE DISEASES Mariana Nagy "Aurel Vlaicu" University of Arad Romania Department of Mathematics and Computer Science

More information

Quasi-likelihood Scan Statistics for Detection of

Quasi-likelihood Scan Statistics for Detection of for Quasi-likelihood for Division of Biostatistics and Bioinformatics, National Health Research Institutes & Department of Mathematics, National Chung Cheng University 17 December 2011 1 / 25 Outline for

More information

Estimating the Exponential Growth Rate and R 0

Estimating the Exponential Growth Rate and R 0 Junling Ma Department of Mathematics and Statistics, University of Victoria May 23, 2012 Introduction Daily pneumonia and influenza (P&I) deaths of 1918 pandemic influenza in Philadelphia. 900 800 700

More information

Model Selection in Bayesian Survival Analysis for a Multi-country Cluster Randomized Trial

Model Selection in Bayesian Survival Analysis for a Multi-country Cluster Randomized Trial Model Selection in Bayesian Survival Analysis for a Multi-country Cluster Randomized Trial Jin Kyung Park International Vaccine Institute Min Woo Chae Seoul National University R. Leon Ochiai International

More information

Spatio-temporal modeling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique

Spatio-temporal modeling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique Spatio-temporal modeling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique Katie Colborn, PhD Department of Biostatistics and Informatics University of Colorado

More information

Cluster Analysis using SaTScan

Cluster Analysis using SaTScan Cluster Analysis using SaTScan Summary 1. Statistical methods for spatial epidemiology 2. Cluster Detection What is a cluster? Few issues 3. Spatial and spatio-temporal Scan Statistic Methods Probability

More information

Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis

Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis Jonathan Taylor & Kristin Cobb Statistics 262: Intermediate Biostatistics p.1/?? Overview of today s class Kaplan-Meier Curve

More information

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes:

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes: Practice Exam 1 1. Losses for an insurance coverage have the following cumulative distribution function: F(0) = 0 F(1,000) = 0.2 F(5,000) = 0.4 F(10,000) = 0.9 F(100,000) = 1 with linear interpolation

More information

Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL

Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL The Cox PH model: λ(t Z) = λ 0 (t) exp(β Z). How do we estimate the survival probability, S z (t) = S(t Z) = P (T > t Z), for an individual with covariates

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What?

You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What? You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What?) I m not goin stop (What?) I m goin work harder (What?) Sir David

More information

Disease mapping with Gaussian processes

Disease mapping with Gaussian processes EUROHEIS2 Kuopio, Finland 17-18 August 2010 Aki Vehtari (former Helsinki University of Technology) Department of Biomedical Engineering and Computational Science (BECS) Acknowledgments Researchers - Jarno

More information

Spatio-temporal Statistical Modelling for Environmental Epidemiology

Spatio-temporal Statistical Modelling for Environmental Epidemiology Spatio-temporal Statistical Modelling for Environmental Epidemiology Peter Diggle Department of Medicine, Lancaster University and Department of Biostatistics, Johns Hopkins University WHO Geneva, September

More information

Survival Analysis Math 434 Fall 2011

Survival Analysis Math 434 Fall 2011 Survival Analysis Math 434 Fall 2011 Part IV: Chap. 8,9.2,9.3,11: Semiparametric Proportional Hazards Regression Jimin Ding Math Dept. www.math.wustl.edu/ jmding/math434/fall09/index.html Basic Model Setup

More information

ESTIMATING FUNCTIONS FOR INHOMOGENEOUS COX PROCESSES

ESTIMATING FUNCTIONS FOR INHOMOGENEOUS COX PROCESSES ESTIMATING FUNCTIONS FOR INHOMOGENEOUS COX PROCESSES Rasmus Waagepetersen Department of Mathematics, Aalborg University, Fredrik Bajersvej 7G, DK-9220 Aalborg, Denmark (rw@math.aau.dk) Abstract. Estimation

More information

A general mixed model approach for spatio-temporal regression data

A general mixed model approach for spatio-temporal regression data A general mixed model approach for spatio-temporal regression data Thomas Kneib, Ludwig Fahrmeir & Stefan Lang Department of Statistics, Ludwig-Maximilians-University Munich 1. Spatio-temporal regression

More information

Hypothesis Testing Based on the Maximum of Two Statistics from Weighted and Unweighted Estimating Equations

Hypothesis Testing Based on the Maximum of Two Statistics from Weighted and Unweighted Estimating Equations Hypothesis Testing Based on the Maximum of Two Statistics from Weighted and Unweighted Estimating Equations Takeshi Emura and Hisayuki Tsukuma Abstract For testing the regression parameter in multivariate

More information

Cluster Analysis using SaTScan. Patrick DeLuca, M.A. APHEO 2007 Conference, Ottawa October 16 th, 2007

Cluster Analysis using SaTScan. Patrick DeLuca, M.A. APHEO 2007 Conference, Ottawa October 16 th, 2007 Cluster Analysis using SaTScan Patrick DeLuca, M.A. APHEO 2007 Conference, Ottawa October 16 th, 2007 Outline Clusters & Cluster Detection Spatial Scan Statistic Case Study 28 September 2007 APHEO Conference

More information

Statistical Inference and Methods

Statistical Inference and Methods Department of Mathematics Imperial College London d.stephens@imperial.ac.uk http://stats.ma.ic.ac.uk/ das01/ 31st January 2006 Part VI Session 6: Filtering and Time to Event Data Session 6: Filtering and

More information

Introduction to Bayes and non-bayes spatial statistics

Introduction to Bayes and non-bayes spatial statistics Introduction to Bayes and non-bayes spatial statistics Gabriel Huerta Department of Mathematics and Statistics University of New Mexico http://www.stat.unm.edu/ ghuerta/georcode.txt General Concepts Spatial

More information

Analysing geoadditive regression data: a mixed model approach

Analysing geoadditive regression data: a mixed model approach Analysing geoadditive regression data: a mixed model approach Institut für Statistik, Ludwig-Maximilians-Universität München Joint work with Ludwig Fahrmeir & Stefan Lang 25.11.2005 Spatio-temporal regression

More information

11 Survival Analysis and Empirical Likelihood

11 Survival Analysis and Empirical Likelihood 11 Survival Analysis and Empirical Likelihood The first paper of empirical likelihood is actually about confidence intervals with the Kaplan-Meier estimator (Thomas and Grunkmeier 1979), i.e. deals with

More information

Survival Analysis. Lu Tian and Richard Olshen Stanford University

Survival Analysis. Lu Tian and Richard Olshen Stanford University 1 Survival Analysis Lu Tian and Richard Olshen Stanford University 2 Survival Time/ Failure Time/Event Time We will introduce various statistical methods for analyzing survival outcomes What is the survival

More information

Summary statistics for inhomogeneous spatio-temporal marked point patterns

Summary statistics for inhomogeneous spatio-temporal marked point patterns Summary statistics for inhomogeneous spatio-temporal marked point patterns Marie-Colette van Lieshout CWI Amsterdam The Netherlands Joint work with Ottmar Cronie Summary statistics for inhomogeneous spatio-temporal

More information

Model Based Clustering of Count Processes Data

Model Based Clustering of Count Processes Data Model Based Clustering of Count Processes Data Tin Lok James Ng, Brendan Murphy Insight Centre for Data Analytics School of Mathematics and Statistics May 15, 2017 Tin Lok James Ng, Brendan Murphy (Insight)

More information

Multi-state Models: An Overview

Multi-state Models: An Overview Multi-state Models: An Overview Andrew Titman Lancaster University 14 April 2016 Overview Introduction to multi-state modelling Examples of applications Continuously observed processes Intermittently observed

More information

A spatio-temporal model for extreme precipitation simulated by a climate model

A spatio-temporal model for extreme precipitation simulated by a climate model A spatio-temporal model for extreme precipitation simulated by a climate model Jonathan Jalbert Postdoctoral fellow at McGill University, Montréal Anne-Catherine Favre, Claude Bélisle and Jean-François

More information

Efficient Likelihood-Free Inference

Efficient Likelihood-Free Inference Efficient Likelihood-Free Inference Michael Gutmann http://homepages.inf.ed.ac.uk/mgutmann Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh 8th November 2017

More information

STAT331. Cox s Proportional Hazards Model

STAT331. Cox s Proportional Hazards Model STAT331 Cox s Proportional Hazards Model In this unit we introduce Cox s proportional hazards (Cox s PH) model, give a heuristic development of the partial likelihood function, and discuss adaptations

More information

Power and Sample Size Calculations with the Additive Hazards Model

Power and Sample Size Calculations with the Additive Hazards Model Journal of Data Science 10(2012), 143-155 Power and Sample Size Calculations with the Additive Hazards Model Ling Chen, Chengjie Xiong, J. Philip Miller and Feng Gao Washington University School of Medicine

More information

On Measurement Error Problems with Predictors Derived from Stationary Stochastic Processes and Application to Cocaine Dependence Treatment Data

On Measurement Error Problems with Predictors Derived from Stationary Stochastic Processes and Application to Cocaine Dependence Treatment Data On Measurement Error Problems with Predictors Derived from Stationary Stochastic Processes and Application to Cocaine Dependence Treatment Data Yehua Li Department of Statistics University of Georgia Yongtao

More information

CTDL-Positive Stable Frailty Model

CTDL-Positive Stable Frailty Model CTDL-Positive Stable Frailty Model M. Blagojevic 1, G. MacKenzie 2 1 Department of Mathematics, Keele University, Staffordshire ST5 5BG,UK and 2 Centre of Biostatistics, University of Limerick, Ireland

More information

Analysis of Time-to-Event Data: Chapter 6 - Regression diagnostics

Analysis of Time-to-Event Data: Chapter 6 - Regression diagnostics Analysis of Time-to-Event Data: Chapter 6 - Regression diagnostics Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/25 Residuals for the

More information

Multilevel Statistical Models: 3 rd edition, 2003 Contents

Multilevel Statistical Models: 3 rd edition, 2003 Contents Multilevel Statistical Models: 3 rd edition, 2003 Contents Preface Acknowledgements Notation Two and three level models. A general classification notation and diagram Glossary Chapter 1 An introduction

More information

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model Other Survival Models (1) Non-PH models We briefly discussed the non-proportional hazards (non-ph) model λ(t Z) = λ 0 (t) exp{β(t) Z}, where β(t) can be estimated by: piecewise constants (recall how);

More information

Inference for partially observed stochastic dynamic systems: A new algorithm, its theory and applications

Inference for partially observed stochastic dynamic systems: A new algorithm, its theory and applications Inference for partially observed stochastic dynamic systems: A new algorithm, its theory and applications Edward Ionides Department of Statistics, University of Michigan ionides@umich.edu Statistics Department

More information

Spatial Point Pattern Analysis

Spatial Point Pattern Analysis Spatial Point Pattern Analysis Jamie Monogan University of Georgia Spatial Data Analysis Jamie Monogan (UGA) Spatial Point Pattern Analysis Spatial Data Analysis 1 / 13 Objectives By the end of this meeting,

More information

Statistical Methods for Alzheimer s Disease Studies

Statistical Methods for Alzheimer s Disease Studies Statistical Methods for Alzheimer s Disease Studies Rebecca A. Betensky, Ph.D. Department of Biostatistics, Harvard T.H. Chan School of Public Health July 19, 2016 1/37 OUTLINE 1 Statistical collaborations

More information

Frailty Models and Copulas: Similarities and Differences

Frailty Models and Copulas: Similarities and Differences Frailty Models and Copulas: Similarities and Differences KLARA GOETHALS, PAUL JANSSEN & LUC DUCHATEAU Department of Physiology and Biometrics, Ghent University, Belgium; Center for Statistics, Hasselt

More information

Survival Analysis. Stat 526. April 13, 2018

Survival Analysis. Stat 526. April 13, 2018 Survival Analysis Stat 526 April 13, 2018 1 Functions of Survival Time Let T be the survival time for a subject Then P [T < 0] = 0 and T is a continuous random variable The Survival function is defined

More information

Lattice Data. Tonglin Zhang. Spatial Statistics for Point and Lattice Data (Part III)

Lattice Data. Tonglin Zhang. Spatial Statistics for Point and Lattice Data (Part III) Title: Spatial Statistics for Point Processes and Lattice Data (Part III) Lattice Data Tonglin Zhang Outline Description Research Problems Global Clustering and Local Clusters Permutation Test Spatial

More information

Bayesian Hierarchical Models

Bayesian Hierarchical Models Bayesian Hierarchical Models Gavin Shaddick, Millie Green, Matthew Thomas University of Bath 6 th - 9 th December 2016 1/ 34 APPLICATIONS OF BAYESIAN HIERARCHICAL MODELS 2/ 34 OUTLINE Spatial epidemiology

More information

Survival Analysis I (CHL5209H)

Survival Analysis I (CHL5209H) Survival Analysis Dalla Lana School of Public Health University of Toronto olli.saarela@utoronto.ca January 7, 2015 31-1 Literature Clayton D & Hills M (1993): Statistical Models in Epidemiology. Not really

More information

Lecture 22 Survival Analysis: An Introduction

Lecture 22 Survival Analysis: An Introduction University of Illinois Department of Economics Spring 2017 Econ 574 Roger Koenker Lecture 22 Survival Analysis: An Introduction There is considerable interest among economists in models of durations, which

More information

Tests of independence for censored bivariate failure time data

Tests of independence for censored bivariate failure time data Tests of independence for censored bivariate failure time data Abstract Bivariate failure time data is widely used in survival analysis, for example, in twins study. This article presents a class of χ

More information

Hierarchical Modeling for Multivariate Spatial Data

Hierarchical Modeling for Multivariate Spatial Data Hierarchical Modeling for Multivariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Downloaded from:

Downloaded from: Camacho, A; Kucharski, AJ; Funk, S; Breman, J; Piot, P; Edmunds, WJ (2014) Potential for large outbreaks of Ebola virus disease. Epidemics, 9. pp. 70-8. ISSN 1755-4365 DOI: https://doi.org/10.1016/j.epidem.2014.09.003

More information

Using statistical methods to analyse environmental extremes.

Using statistical methods to analyse environmental extremes. Using statistical methods to analyse environmental extremes. Emma Eastoe Department of Mathematics and Statistics Lancaster University December 16, 2008 Focus of talk Discuss statistical models used to

More information

Spatial Inference of Nitrate Concentrations in Groundwater

Spatial Inference of Nitrate Concentrations in Groundwater Spatial Inference of Nitrate Concentrations in Groundwater Dawn Woodard Operations Research & Information Engineering Cornell University joint work with Robert Wolpert, Duke Univ. Dept. of Statistical

More information

Statistical Inference for Stochastic Epidemic Models

Statistical Inference for Stochastic Epidemic Models Statistical Inference for Stochastic Epidemic Models George Streftaris 1 and Gavin J. Gibson 1 1 Department of Actuarial Mathematics & Statistics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS,

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL SUPPLEMENTARY MATERIAL 1. Risk assessment model Those inputs (i.e. parameters that are fed to the model which are general are presented in Table S1. The outputs (i.e. parameters obtained by model calculations

More information

Cox s proportional hazards/regression model - model assessment

Cox s proportional hazards/regression model - model assessment Cox s proportional hazards/regression model - model assessment Rasmus Waagepetersen September 27, 2017 Topics: Plots based on estimated cumulative hazards Cox-Snell residuals: overall check of fit Martingale

More information

Spatio-temporal epidemiology of Campylobacter jejuni enteritis, in an area of Northwest England,

Spatio-temporal epidemiology of Campylobacter jejuni enteritis, in an area of Northwest England, Epidemiol. Infect. (2), 38, 384 39. f Cambridge University Press 2 doi:.7/s952688488 Spatio-temporal epidemiology of Campylobacter jejuni enteritis, in an area of Northwest England, 2 22 E. GABRIEL,2 *,

More information

SPRING 2007 EXAM C SOLUTIONS

SPRING 2007 EXAM C SOLUTIONS SPRING 007 EXAM C SOLUTIONS Question #1 The data are already shifted (have had the policy limit and the deductible of 50 applied). The two 350 payments are censored. Thus the likelihood function is L =

More information

Multivariate Count Time Series Modeling of Surveillance Data

Multivariate Count Time Series Modeling of Surveillance Data Multivariate Count Time Series Modeling of Surveillance Data Leonhard Held 1 Michael Höhle 2 1 Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland 2 Department of Mathematics,

More information

POMP inference via iterated filtering

POMP inference via iterated filtering POMP inference via iterated filtering Edward Ionides University of Michigan, Department of Statistics Lecture 3 at Wharton Statistics Department Thursday 27th April, 2017 Slides are online at http://dept.stat.lsa.umich.edu/~ionides/talks/upenn

More information

Cox s proportional hazards model and Cox s partial likelihood

Cox s proportional hazards model and Cox s partial likelihood Cox s proportional hazards model and Cox s partial likelihood Rasmus Waagepetersen October 12, 2018 1 / 27 Non-parametric vs. parametric Suppose we want to estimate unknown function, e.g. survival function.

More information

Local Likelihood Bayesian Cluster Modeling for small area health data. Andrew Lawson Arnold School of Public Health University of South Carolina

Local Likelihood Bayesian Cluster Modeling for small area health data. Andrew Lawson Arnold School of Public Health University of South Carolina Local Likelihood Bayesian Cluster Modeling for small area health data Andrew Lawson Arnold School of Public Health University of South Carolina Local Likelihood Bayesian Cluster Modelling for Small Area

More information

CALCULATION METHOD FOR NONLINEAR DYNAMIC LEAST-ABSOLUTE DEVIATIONS ESTIMATOR

CALCULATION METHOD FOR NONLINEAR DYNAMIC LEAST-ABSOLUTE DEVIATIONS ESTIMATOR J. Japan Statist. Soc. Vol. 3 No. 200 39 5 CALCULAION MEHOD FOR NONLINEAR DYNAMIC LEAS-ABSOLUE DEVIAIONS ESIMAOR Kohtaro Hitomi * and Masato Kagihara ** In a nonlinear dynamic model, the consistency and

More information

The Joys of Geocoding (from a Spatial Statistician s Perspective)

The Joys of Geocoding (from a Spatial Statistician s Perspective) The Joys of Geocoding (from a Spatial Statistician s Perspective) Dale L. Zimmerman University of Iowa October 21, 2010 2 Geocoding context Applications of spatial statistics to public health and social

More information

Model comparison and selection

Model comparison and selection BS2 Statistical Inference, Lectures 9 and 10, Hilary Term 2008 March 2, 2008 Hypothesis testing Consider two alternative models M 1 = {f (x; θ), θ Θ 1 } and M 2 = {f (x; θ), θ Θ 2 } for a sample (X = x)

More information

Bayesian Spatial Health Surveillance

Bayesian Spatial Health Surveillance Bayesian Spatial Health Surveillance Allan Clark and Andrew Lawson University of South Carolina 1 Two important problems Clustering of disease: PART 1 Development of Space-time models Modelling vs Testing

More information

Likelihood Inference for Lattice Spatial Processes

Likelihood Inference for Lattice Spatial Processes Likelihood Inference for Lattice Spatial Processes Donghoh Kim November 30, 2004 Donghoh Kim 1/24 Go to 1234567891011121314151617 FULL Lattice Processes Model : The Ising Model (1925), The Potts Model

More information

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown.

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown. Weighting We have seen that if E(Y) = Xβ and V (Y) = σ 2 G, where G is known, the model can be rewritten as a linear model. This is known as generalized least squares or, if G is diagonal, with trace(g)

More information

Introduction to repairable systems STK4400 Spring 2011

Introduction to repairable systems STK4400 Spring 2011 Introduction to repairable systems STK4400 Spring 2011 Bo Lindqvist http://www.math.ntnu.no/ bo/ bo@math.ntnu.no Bo Lindqvist Introduction to repairable systems Definition of repairable system Ascher and

More information

Malaria transmission: Modeling & Inference

Malaria transmission: Modeling & Inference University of Michigan, Ann Arbor June 8, 2009 Overview Malaria data and model Inference via Iterated Filtering Results (Joint work with Karina Laneri, Ed Ionides and Mercedes Pascual of the University

More information

Community Health Needs Assessment through Spatial Regression Modeling

Community Health Needs Assessment through Spatial Regression Modeling Community Health Needs Assessment through Spatial Regression Modeling Glen D. Johnson, PhD CUNY School of Public Health glen.johnson@lehman.cuny.edu Objectives: Assess community needs with respect to particular

More information

A Regression Model For Recurrent Events With Distribution Free Correlation Structure

A Regression Model For Recurrent Events With Distribution Free Correlation Structure A Regression Model For Recurrent Events With Distribution Free Correlation Structure J. Pénichoux(1), A. Latouche(2), T. Moreau(1) (1) INSERM U780 (2) Université de Versailles, EA2506 ISCB - 2009 - Prague

More information

Lecture 12. Multivariate Survival Data Statistics Survival Analysis. Presented March 8, 2016

Lecture 12. Multivariate Survival Data Statistics Survival Analysis. Presented March 8, 2016 Statistics 255 - Survival Analysis Presented March 8, 2016 Dan Gillen Department of Statistics University of California, Irvine 12.1 Examples Clustered or correlated survival times Disease onset in family

More information

Proceedings of the 2017 Winter Simulation Conference W. K. V. Chan, A. D Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

Proceedings of the 2017 Winter Simulation Conference W. K. V. Chan, A. D Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds. Proceedings of the 2017 Winter Simulation Conference W. K. V. Chan, A. D Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds. SIMULATION-BASED PREDICTIVE ANALYTICS FOR DYNAMIC QUEUEING SYSTEMS

More information

Cluster investigations using Disease mapping methods International workshop on Risk Factors for Childhood Leukemia Berlin May

Cluster investigations using Disease mapping methods International workshop on Risk Factors for Childhood Leukemia Berlin May Cluster investigations using Disease mapping methods International workshop on Risk Factors for Childhood Leukemia Berlin May 5-7 2008 Peter Schlattmann Institut für Biometrie und Klinische Epidemiologie

More information

Identification of hotspots of rat abundance and their effect on human risk of leptospirosis in a Brazilian slum community

Identification of hotspots of rat abundance and their effect on human risk of leptospirosis in a Brazilian slum community Identification of hotspots of rat abundance and their effect on human risk of leptospirosis in a Brazilian slum community Poppy Miller 1 Kate Hacker 2 Peter Diggle 1 Mike Begon 3 James Childs 2 Albert

More information

A short introduction to INLA and R-INLA

A short introduction to INLA and R-INLA A short introduction to INLA and R-INLA Integrated Nested Laplace Approximation Thomas Opitz, BioSP, INRA Avignon Workshop: Theory and practice of INLA and SPDE November 7, 2018 2/21 Plan for this talk

More information

Faculty of Health Sciences. Regression models. Counts, Poisson regression, Lene Theil Skovgaard. Dept. of Biostatistics

Faculty of Health Sciences. Regression models. Counts, Poisson regression, Lene Theil Skovgaard. Dept. of Biostatistics Faculty of Health Sciences Regression models Counts, Poisson regression, 27-5-2013 Lene Theil Skovgaard Dept. of Biostatistics 1 / 36 Count outcome PKA & LTS, Sect. 7.2 Poisson regression The Binomial

More information

Measurement Error in Spatial Modeling of Environmental Exposures

Measurement Error in Spatial Modeling of Environmental Exposures Measurement Error in Spatial Modeling of Environmental Exposures Chris Paciorek, Alexandros Gryparis, and Brent Coull August 9, 2005 Department of Biostatistics Harvard School of Public Health www.biostat.harvard.edu/~paciorek

More information

LARGE NUMBERS OF EXPLANATORY VARIABLES. H.S. Battey. WHAO-PSI, St Louis, 9 September 2018

LARGE NUMBERS OF EXPLANATORY VARIABLES. H.S. Battey. WHAO-PSI, St Louis, 9 September 2018 LARGE NUMBERS OF EXPLANATORY VARIABLES HS Battey Department of Mathematics, Imperial College London WHAO-PSI, St Louis, 9 September 2018 Regression, broadly defined Response variable Y i, eg, blood pressure,

More information

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016 Log Gaussian Cox Processes Chi Group Meeting February 23, 2016 Outline Typical motivating application Introduction to LGCP model Brief overview of inference Applications in my work just getting started

More information

Bayesian Geostatistical Design

Bayesian Geostatistical Design Johns Hopkins University, Dept. of Biostatistics Working Papers 6-5-24 Bayesian Geostatistical Design Peter J. Diggle Medical Statistics Unit, Lancaster University, UK & Department of Biostatistics, Johns

More information

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference 1 The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Board of Governors or the Federal Reserve System. Bayesian Estimation of DSGE

More information

Modeling conditional distributions with mixture models: Applications in finance and financial decision-making

Modeling conditional distributions with mixture models: Applications in finance and financial decision-making Modeling conditional distributions with mixture models: Applications in finance and financial decision-making John Geweke University of Iowa, USA Journal of Applied Econometrics Invited Lecture Università

More information

e 4β e 4β + e β ˆβ =0.765

e 4β e 4β + e β ˆβ =0.765 SIMPLE EXAMPLE COX-REGRESSION i Y i x i δ i 1 5 12 0 2 10 10 1 3 40 3 0 4 80 5 0 5 120 3 1 6 400 4 1 7 600 1 0 Model: z(t x) =z 0 (t) exp{βx} Partial likelihood: L(β) = e 10β e 10β + e 3β + e 5β + e 3β

More information

Threshold estimation in marginal modelling of spatially-dependent non-stationary extremes

Threshold estimation in marginal modelling of spatially-dependent non-stationary extremes Threshold estimation in marginal modelling of spatially-dependent non-stationary extremes Philip Jonathan Shell Technology Centre Thornton, Chester philip.jonathan@shell.com Paul Northrop University College

More information

Bayesian Inference. Chapter 4: Regression and Hierarchical Models

Bayesian Inference. Chapter 4: Regression and Hierarchical Models Bayesian Inference Chapter 4: Regression and Hierarchical Models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Advanced Statistics and Data Mining Summer School

More information

MAS3301 / MAS8311 Biostatistics Part II: Survival

MAS3301 / MAS8311 Biostatistics Part II: Survival MAS3301 / MAS8311 Biostatistics Part II: Survival M. Farrow School of Mathematics and Statistics Newcastle University Semester 2, 2009-10 1 13 The Cox proportional hazards model 13.1 Introduction In the

More information

Infinitely Imbalanced Logistic Regression

Infinitely Imbalanced Logistic Regression p. 1/1 Infinitely Imbalanced Logistic Regression Art B. Owen Journal of Machine Learning Research, April 2007 Presenter: Ivo D. Shterev p. 2/1 Outline Motivation Introduction Numerical Examples Notation

More information

Peaks-Over-Threshold Modelling of Environmental Data

Peaks-Over-Threshold Modelling of Environmental Data U.U.D.M. Project Report 2014:33 Peaks-Over-Threshold Modelling of Environmental Data Esther Bommier Examensarbete i matematik, 30 hp Handledare och examinator: Jesper Rydén September 2014 Department of

More information

A comparison of inverse transform and composition methods of data simulation from the Lindley distribution

A comparison of inverse transform and composition methods of data simulation from the Lindley distribution Communications for Statistical Applications and Methods 2016, Vol. 23, No. 6, 517 529 http://dx.doi.org/10.5351/csam.2016.23.6.517 Print ISSN 2287-7843 / Online ISSN 2383-4757 A comparison of inverse transform

More information

Spatial Misalignment

Spatial Misalignment Spatial Misalignment Jamie Monogan University of Georgia Spring 2013 Jamie Monogan (UGA) Spatial Misalignment Spring 2013 1 / 28 Objectives By the end of today s meeting, participants should be able to:

More information

Estimating functions for inhomogeneous spatial point processes with incomplete covariate data

Estimating functions for inhomogeneous spatial point processes with incomplete covariate data Estimating functions for inhomogeneous spatial point processes with incomplete covariate data Rasmus aagepetersen Department of Mathematics Aalborg University Denmark August 15, 2007 1 / 23 Data (Barro

More information

Petr Volf. Model for Difference of Two Series of Poisson-like Count Data

Petr Volf. Model for Difference of Two Series of Poisson-like Count Data Petr Volf Institute of Information Theory and Automation Academy of Sciences of the Czech Republic Pod vodárenskou věží 4, 182 8 Praha 8 e-mail: volf@utia.cas.cz Model for Difference of Two Series of Poisson-like

More information

Control Variates for Markov Chain Monte Carlo

Control Variates for Markov Chain Monte Carlo Control Variates for Markov Chain Monte Carlo Dellaportas, P., Kontoyiannis, I., and Tsourti, Z. Dept of Statistics, AUEB Dept of Informatics, AUEB 1st Greek Stochastics Meeting Monte Carlo: Probability

More information

Summary STK 4150/9150

Summary STK 4150/9150 STK4150 - Intro 1 Summary STK 4150/9150 Odd Kolbjørnsen May 22 2017 Scope You are expected to know and be able to use basic concepts introduced in the book. You knowledge is expected to be larger than

More information