Andrew B. Lawson 2019 BMTRY 763

Size: px
Start display at page:

Download "Andrew B. Lawson 2019 BMTRY 763"

Transcription

1 BMTRY 763

2 FMD Foot and mouth disease (FMD) is a viral disease of clovenfooted animals and being extremely contagious it spreads rapidly. It reduces animal production, and can sometimes be fatal in young stock. Counts of new cases of FMD were available for parishes within the county of Cumbria, Northern England for the period February 2001-August The data were available as half monthly counts and so there were 13 time periods available for analysis.

3 FMD incidence NW England (Cumbria) 2001 Infected premises (IPs) are to be modeled Within parishes we have counts of IPs and we also have a record of the total number of premises which changes over time. 138 parishes and 13 half-monthly time periods (February 2001-August 2001)

4 FMD first 6 time periods case/pop ratios (row-wise)

5 Data example: FMD in Cumbria Foot and Mouth outbreak in 2001 in Cumbria, UK 138 parishes in area Time period: single biweekly count of Ips Files: FMD_case_parish_data.txt FMD_INLA_Rcode.txt FMD_spatial_worked_examples_Rcode_ABDM.txt

6 FMD (FMDonePERIOD_data.txt) FMDframe<-list(n=138, count=c(1,0,1,0,2,3,1,0,1,0,3,2,0,3,1,6,1,10,2,1,8,4,4,1,1, 3,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0, 0,0,0,1,1,1,0,0,0,0,0,0,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0)) FMDmap<-readSplus("FMD_splusMAP.txt") plot(fmdmap)

7 Polygon Plot

8 FMD data Counts in parishes (y) Population of premises in parishes (n) Crude rate (y/n) crude rate map [0,0.17)(131) [0.17,0.33)(1) [0.33,0.5)(3) [0.5,0.67)(2) [0.67,0.83)(0) [0.83,1](1)

9 Possible descriptive Model A binomial model may be assumed A logit link also y logit( p ) α v bin( n, p ) i i i i N τ i = α + 1 v 0 (0, ) N(0, τ ) v i

10 INLA code ind<-seq(1:138) formula1<-count~1+f(ind,model="iid,param=c(2,1)) res1<inla(formula1,family="binomial",data=fmdframe,ntrial s=pop,control.compute=list(dic=true)) summary(res1)

11 Results: UH component UH<-res1$summary.random$ind[,2] fillmap(fmdmap,"posterior mean UHcomponent",UH,n.col=4)

12 UH component posterior mean UH component [-0.94,0.64)(108) [0.64,2.23)(9) [2.23,3.81)(13) [3.81,5.4](7)

13 Results: residuals fit<-res1$summary.fitted.values$mean resid<-count-fit fillmap(fmdmap,"estimated crude residuals",resid,n.col=4)

14 Residuals estimated crude residuals [-0.01,2.45)(118) [2.45,4.92)(7) [4.92,7.38)(1) [7.38,9.84](3)

15 Results: infection probability linpred<-res1$summary.linear.predictor$mean prob<-exp(linpred)/(1+exp(linpred)) fillmap(fmdmap,"posterior mean infection probability",prob,n.col=4)

16 posterior mean infection probability Infection probability [0,0.12)(129) [0.12,0.24)(4) [0.24,0.36)(2) [0.36,0.48](3)

17 Results: DIC LOCdic<- res1$dic$local.dic fillmap(fmdmap,"local DIC",LOCdic,n.col=5)

18 DIC local DIC [0.21,1.35)(107) [1.35,2.5)(1) [2.5,3.65)(13) [3.65,4.8)(10) [4.8,5.94](6)

19 Space Time Modeling

20 Space and time considerations Often we need to consider both spatial and temporal effects in disease data Could have a location and date of diagnosis OR could have counts of disease within small areas and fixed time periods The second of these is more common and more aggregated I will only consider this latter situation here

21 Ohio county level respiratory cancer 10 years A well known dataset (full dataset 21 years ) shown here SIRs displayed

22

23 Space-time (ST) Modeling Some notation Assume counts within fixed spatial and temporal periods: map evolutions Both space and time are subscripts in the analysis Consider separable models (with spatial and separate temporal terms) Also interaction effects

24 Notation outcome : y ; RRisk: ij θ ij expected count: e ij i = 1,..., m: small areas j = 1,..., J : time periods

25 Expected Counts Computation (simplest - overall average): e p. y / p = ij ij ij ij i j i j where p ij is the population of the ij th unit

26 Basic retrospective model Infinite population; small disease probability Poisson assumption y ~ Pois( e θ ) ij ij ij log( θ ) = α + S + T + ST S T i j ST ij 0 i j ij : spatial terms : temporal terms ij : interaction

27 Full data set: 21 years of Ohio lung cancer 10 years of SMRs standardized with the statewide rate: Frequently analyzed Row wise from 1979

28

29 Some Random Effect models model 1a: log( θ ) = α + v + u + βt model 1b: ij 0 i i j log( θ ) = α + v + u + γ model 2: ij 0 i i j log( θ ) = α + v + u + γ + γ model 3: ij 0 i i 1j 2 j log( θ ) = α + v + u + γ + ψ model 4: ij 0 i i 2 j ij log( θ ) = α + v + u + γ + γ + ψ ij 0 i i 1j 2 j ij model 5: variants of (3) with ψ ij

30 Simple separable models Spatial components (BYM) plus linear time trend model 1a: log( θ ) = α + v + u + βt t v j i ij 0 i i j : time of j th period τ 1 (0, v ) u N u τ n i N 1... ( δ, u / δ ) i i

31 Simple trend models Spatial components+ random time effect model 1b: log( ) θ α γ = + v + u + ij 0 i i j

32 Random Walk Prior distribution Model 1 b: we assume a random effect for the time element and this has a random walk prior distribution: j 1 1 γ γ N ( γ, τ ) j More generally an AR1 prior could be used: 1 < j 1 γ γ N ( λγ, τ ); 0 λ 1 j

33 Simple space-time models Two random time effects: model 2: log( θ ) = α + v + u + γ + γ γ 1 j ij 0 i i 1j 2 j N 1 (0, τ ) γ j N( 2 j 1, ) γ γ τ γ 2

34 Interaction models Separable models can be enhanced by using additive interaction terms Model 3: log( ) θ α γ ψ = + v + u + + ij 0 i i 2 j ij

35 Interaction priors A variety of priors for the interaction can be assumed (both correlated and non-separable) Knorr-Held (2000) first suggested dependent priors (see Lawson (2013) ch12) Two simple separable examples of possible priors are: ψ ij N(0, τ ) uncorrelated (model 3) ψ ~ N( ψ, τ ) random walk (model 5) ij ψ i, j 1 ψ

36 Interaction models Model 4, as for (3) but with added uncorrelated tiem effect Model 5, as for (3) but with a correlated interaction prior in time model 4: log( θ ) = α + v + u + γ + γ + ψ ij 0 i i 1j 2 j ij model 5: variants of (3) with ψ ij

37 Model fitting Results (WinBUGS) Model DIC pd 1a b

38 Interpretation The temporal trend model does not provide a better fit than the random walk (1a, 1b) The extra RE in model 2 is not needed The inclusion of the interaction in model 3 is significant but model 4 is not good Model 5 with the random walk interaction seems best as it has lowest DIC and smaller pd than model 3

39 Model fitting on INLA Data setup: often space time data is in the form of a matrix: y(i,j), e(i,j) Rows are small areas (eg counties, parishes etc) Columns are time units (eg years, or months days etc) Ohio data: i=1,,88; j=1,,10 Matrix of 88 x 10 dimension For INLA use, it is convenient to reformat the data so that an individual small area represents a row, but the repeated measurements on the small area are repeated rows Long form format

40 R Code For matrices read in with 88 x 10 structures (in R) then the code for conversion is yl<-rep(0,880) el<-rep(0,880) T=10 for (i in 1:88){ for (j in 1:10){ k<-j+t*(i-1) yl[k]<-y[i,j] el[k]<-e[i,j]}}

41 Index setup Indices can now be set up to address different effects: year<-rep(1:10,len=880) region<-rep(1:88,each=10) region2<-region ind2<-rep(1:880)

42 OHIO_Stmapping_INLA_Rcode.txt All models are described in this file. Data is stored in OHIO_STmapping_INLA_RcodeFAL.txt Paste contents of file into R This will yield y, e, and indicator variables in the data.frame called data

43 Models fitted on INLA Spatial only (UH) Spatial only (UH+CH) UH +CH +time trend model 1a UH+CH +time iid UH+CH+time rw1 model 1b UH+CH+time (iid, rw1) model 2 UH +time rw1 +Stint UH+CH+time rw1 +Stint model 3

44 DIC comparison INLA model Model DIC pd WB model 1 Spatial only (UH) UH+CH UH+CH+time trend a 4 UH+CH+time iid UH+CH+time RW1 6 UH+CH+time (iid, rw1) 7 UH+time rw1+st int 8 UH+CH+time rw1+stint b

45 Results: INLA model 7 UH [-0.6,-0.36)(2) [-0.36,-0.12)(16) [-0.12,0.12)(46) [0.12,0.36](23)

46 Results: INLA model 7 time effect yearr time

47 Break

48 FMD modeling in space-time Load data: FMD_case_parish_data.txt INLA code in: FMD_INLA_ST_Rcode.txt

49 Model Development Data is counts within parishes in 13 time periods We also have current population of premises A binomial model may be appropriate y Bin( p, n ) ij ij ij logit( p ) = f ( y ) + f ( predictors) + f (R Es) ij 1 i, j A Poisson model could also be considered if we modulate the Poisson mean with population y ij Pois( μ ) ij log( μ ) = f ( n ) + f ( y ) + f ( predictors and REs) ij 1 ij 2 i, j 1 3

50 Simpler Poisson Model We will look at the Poisson model Also only use random effects Lagged dependencies can be accommodated using the copying facility in INLA. We will only have lagged REs

51 Models Purely spatial (UH+CH) pl offset Purely spatial (UH+CH) pl predictor UH+CH+ pl predictor+ time RW1 UH+CH+ pl offset+ time RW1 UH+CH+ pl predictor+ time RW1+STint

52 Model Description DIC pd Results 1a UH+CH+ pl offset DICs 1b UH+CH+ pl predictor UH+CH+ pl predictor + time RW UH+CH+ pl offset + time RW UH+CH+ pl predictor + time RW1+ STint

53 Model 4 This model has spatial and temporal effects with a pl predictor and ST interaction y ij Pois( μ ) ij μ = exp{ α + α n + v + u + γ + ψ } ij 0 1 ij i i j ij NB lagged effects in count and population not included BUT a lagged dependency random effect is

54 Results UH [-0.73,0.05)(76) [0.05,0.82)(47) [0.82,1.6)(13) [1.6,2.38](1)

55 Results CH [-1.45,-0.62)(31) [-0.62,0.2)(56) [0.2,1.03)(35) [1.03,1.85](16)

56 Results time<-seq(1:13) plot(time,yearr) lines(time,yearr) yearr time

57 Results ST interaction period 1 ST interaction period 1 [-1.07,-0.45)(15) [-0.45,0.17)(93) [0.17,0.8)(10) [0.8,1.42)(6) [1.42,2.05)(4) [2.05,2.67](9)

58 Results: St interaction period 2 ST interaction period 2 [-1.13,-0.44)(13) [-0.44,0.26)(89) [0.26,0.95)(13) [0.95,1.64)(11) [1.64,2.34)(6) [2.34,3.03](6)

59 Finally Other INLA features Measurement error in predictors ( mec, meb) Missingness in outcomes (copy facility) Geographically weighted regression e.g. f(ind,x1,model= besag,graph= ) Smoothed predictors e.g. f(x1,model= rw1 ) Modeling point processes via SPDE facilities (LGCP)

60 INLA OpenBUGS Finally INLA versus OpenBUGS Runs on R x Only through Brugs or R2WinBUGS Large datasets Mixtures x x Posterior functionals? x Special spatial Models Missingness X some: LGCP for point processes Only outcomes in general, but can handle drop-out models X GeoBUGS +CAR models Can handle a range of missingness

61 Cautionary references A study has found that the default prior distributions for precisions in INLA can lead to very inaccurate precision estimates for random effects Carroll, R., Lawson, A. B., Faes, C., Kirby, R. S. and Aregay, M. (2015) Comparing INLA and OpenBUGS for hierarchical Poisson modeling in disease mapping. Spatial and Spatio-temporal Epidemiology, 14-15, See also Taylor, B. and Diggle, P. (2014) INLA or MCMC? A tutorial and comparative evaluation for spatial prediction in log-gaussian Cox Processes. Journal of Statistical Computation and Simulation, 84, 10, Teng, M., Nathoo, F.S., Johnson, T.D. (2017). Bayesian Computation for Log Gaussian Cox Processes: A Comparative Analysis of Methods. Journal of Statistical Computation and Simulation DOI: / So be warned!

62 Conclusions Thanks for your attention! Contact address: INLA examples given in Appendix D of Lawson, A. B. (2013) Bayesian Disease Mapping: hierarchical modeling in spatial epidemiology. 2 nd Ed CRC Press, New York And also chapter 15 of Lawson (2018) 3 rd Ed Full 2 x 1 x 2 day courses on BDM (including WinBUGS, INLA, CARBayes and Nimble) given in MUSC (March) Contacts: MUSC courses June Watson watsonju@musc.edu

63 Andrew B Lawson 2019

How its computed. y outcome data λ parameters hyperparameters. where P denotes the Laplace approximation. k i k k. Andrew B Lawson 2013

How its computed. y outcome data λ parameters hyperparameters. where P denotes the Laplace approximation. k i k k. Andrew B Lawson 2013 Andrew Lawson MUSC INLA INLA s a relatvely new tool that can be used to approxmate posteror dstrbutons n Bayesan models INLA stands for ntegrated Nested Laplace Approxmaton The approxmaton has been known

More information

Announcing a Course Sequence: March 9 th - 10 th, March 11 th, and March 12 th - 13 th 2015 Historic Charleston, South Carolina

Announcing a Course Sequence: March 9 th - 10 th, March 11 th, and March 12 th - 13 th 2015 Historic Charleston, South Carolina Announcing a Course Sequence: Introduction to Bayesian Disease Mapping (IBDM) BDM with INLA (BDMI) Advanced Bayesian Disease Mapping (ABDM) March 9 th - 10 th, March 11 th, and March 12 th - 13 th 2015

More information

Bayesian Hierarchical Models

Bayesian Hierarchical Models Bayesian Hierarchical Models Gavin Shaddick, Millie Green, Matthew Thomas University of Bath 6 th - 9 th December 2016 1/ 34 APPLICATIONS OF BAYESIAN HIERARCHICAL MODELS 2/ 34 OUTLINE Spatial epidemiology

More information

Statistical Analysis of Spatio-temporal Point Process Data. Peter J Diggle

Statistical Analysis of Spatio-temporal Point Process Data. Peter J Diggle Statistical Analysis of Spatio-temporal Point Process Data Peter J Diggle Department of Medicine, Lancaster University and Department of Biostatistics, Johns Hopkins University School of Public Health

More information

Community Health Needs Assessment through Spatial Regression Modeling

Community Health Needs Assessment through Spatial Regression Modeling Community Health Needs Assessment through Spatial Regression Modeling Glen D. Johnson, PhD CUNY School of Public Health glen.johnson@lehman.cuny.edu Objectives: Assess community needs with respect to particular

More information

Bayesian Spatial Health Surveillance

Bayesian Spatial Health Surveillance Bayesian Spatial Health Surveillance Allan Clark and Andrew Lawson University of South Carolina 1 Two important problems Clustering of disease: PART 1 Development of Space-time models Modelling vs Testing

More information

A short introduction to INLA and R-INLA

A short introduction to INLA and R-INLA A short introduction to INLA and R-INLA Integrated Nested Laplace Approximation Thomas Opitz, BioSP, INRA Avignon Workshop: Theory and practice of INLA and SPDE November 7, 2018 2/21 Plan for this talk

More information

Local Likelihood Bayesian Cluster Modeling for small area health data. Andrew Lawson Arnold School of Public Health University of South Carolina

Local Likelihood Bayesian Cluster Modeling for small area health data. Andrew Lawson Arnold School of Public Health University of South Carolina Local Likelihood Bayesian Cluster Modeling for small area health data Andrew Lawson Arnold School of Public Health University of South Carolina Local Likelihood Bayesian Cluster Modelling for Small Area

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley 1 and Sudipto Banerjee 2 1 Department of Forestry & Department of Geography, Michigan

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Alan Gelfand 1 and Andrew O. Finley 2 1 Department of Statistical Science, Duke University, Durham, North

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota,

More information

Point process with spatio-temporal heterogeneity

Point process with spatio-temporal heterogeneity Point process with spatio-temporal heterogeneity Jony Arrais Pinto Jr Universidade Federal Fluminense Universidade Federal do Rio de Janeiro PASI June 24, 2014 * - Joint work with Dani Gamerman and Marina

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley Department of Forestry & Department of Geography, Michigan State University, Lansing

More information

Modelling spatio-temporal patterns of disease

Modelling spatio-temporal patterns of disease Modelling spatio-temporal patterns of disease Peter J Diggle CHICAS combining health information, computation and statistics References AEGISS Brix, A. and Diggle, P.J. (2001). Spatio-temporal prediction

More information

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California Texts in Statistical Science Bayesian Ideas and Data Analysis An Introduction for Scientists and Statisticians Ronald Christensen University of New Mexico Albuquerque, New Mexico Wesley Johnson University

More information

Bayesian Areal Wombling for Geographic Boundary Analysis

Bayesian Areal Wombling for Geographic Boundary Analysis Bayesian Areal Wombling for Geographic Boundary Analysis Haolan Lu, Haijun Ma, and Bradley P. Carlin haolanl@biostat.umn.edu, haijunma@biostat.umn.edu, and brad@biostat.umn.edu Division of Biostatistics

More information

Cluster investigations using Disease mapping methods International workshop on Risk Factors for Childhood Leukemia Berlin May

Cluster investigations using Disease mapping methods International workshop on Risk Factors for Childhood Leukemia Berlin May Cluster investigations using Disease mapping methods International workshop on Risk Factors for Childhood Leukemia Berlin May 5-7 2008 Peter Schlattmann Institut für Biometrie und Klinische Epidemiologie

More information

Hierarchical modelling of performance indicators, with application to MRSA & teenage conception rates

Hierarchical modelling of performance indicators, with application to MRSA & teenage conception rates Hierarchical modelling of performance indicators, with application to MRSA & teenage conception rates Hayley E Jones School of Social and Community Medicine, University of Bristol, UK Thanks to David Spiegelhalter,

More information

R-INLA. Sam Clifford Su-Yun Kang Jeff Hsieh. 30 August Bayesian Research and Analysis Group 1 / 14

R-INLA. Sam Clifford Su-Yun Kang Jeff Hsieh. 30 August Bayesian Research and Analysis Group 1 / 14 1 / 14 R-INLA Sam Clifford Su-Yun Kang Jeff Hsieh Bayesian Research and Analysis Group 30 August 2012 What is R-INLA? R package for Bayesian computation Integrated Nested Laplace Approximation MCMC free

More information

STA 216, GLM, Lecture 16. October 29, 2007

STA 216, GLM, Lecture 16. October 29, 2007 STA 216, GLM, Lecture 16 October 29, 2007 Efficient Posterior Computation in Factor Models Underlying Normal Models Generalized Latent Trait Models Formulation Genetic Epidemiology Illustration Structural

More information

Gaussian Process Regression Model in Spatial Logistic Regression

Gaussian Process Regression Model in Spatial Logistic Regression Journal of Physics: Conference Series PAPER OPEN ACCESS Gaussian Process Regression Model in Spatial Logistic Regression To cite this article: A Sofro and A Oktaviarina 018 J. Phys.: Conf. Ser. 947 01005

More information

Disease mapping with Gaussian processes

Disease mapping with Gaussian processes EUROHEIS2 Kuopio, Finland 17-18 August 2010 Aki Vehtari (former Helsinki University of Technology) Department of Biomedical Engineering and Computational Science (BECS) Acknowledgments Researchers - Jarno

More information

Generalized common spatial factor model

Generalized common spatial factor model Biostatistics (2003), 4, 4,pp. 569 582 Printed in Great Britain Generalized common spatial factor model FUJUN WANG Eli Lilly and Company, Indianapolis, IN 46285, USA MELANIE M. WALL Division of Biostatistics,

More information

Lecture 23. Spatio-temporal Models. Colin Rundel 04/17/2017

Lecture 23. Spatio-temporal Models. Colin Rundel 04/17/2017 Lecture 23 Spatio-temporal Models Colin Rundel 04/17/2017 1 Spatial Models with AR time dependence 2 Example - Weather station data Based on Andrew Finley and Sudipto Banerjee s notes from National Ecological

More information

WEB application for the analysis of spatio-temporal data

WEB application for the analysis of spatio-temporal data EXTERNAL SCIENTIFIC REPORT APPROVED: 17 October 2016 WEB application for the analysis of spatio-temporal data Abstract Machteld Varewyck (Open Analytics NV), Tobias Verbeke (Open Analytics NV) In specific

More information

Pumps, Maps and Pea Soup: Spatio-temporal methods in environmental epidemiology

Pumps, Maps and Pea Soup: Spatio-temporal methods in environmental epidemiology Pumps, Maps and Pea Soup: Spatio-temporal methods in environmental epidemiology Gavin Shaddick Department of Mathematical Sciences University of Bath 2012-13 van Eeden lecture Thanks Constance van Eeden

More information

Approaches for Multiple Disease Mapping: MCAR and SANOVA

Approaches for Multiple Disease Mapping: MCAR and SANOVA Approaches for Multiple Disease Mapping: MCAR and SANOVA Dipankar Bandyopadhyay Division of Biostatistics, University of Minnesota SPH April 22, 2015 1 Adapted from Sudipto Banerjee s notes SANOVA vs MCAR

More information

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data Hierarchical models for spatial data Based on the book by Banerjee, Carlin and Gelfand Hierarchical Modeling and Analysis for Spatial Data, 2004. We focus on Chapters 1, 2 and 5. Geo-referenced data arise

More information

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P.

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P. Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Melanie M. Wall, Bradley P. Carlin November 24, 2014 Outlines of the talk

More information

Multivariate spatial modeling

Multivariate spatial modeling Multivariate spatial modeling Point-referenced spatial data often come as multivariate measurements at each location Chapter 7: Multivariate Spatial Modeling p. 1/21 Multivariate spatial modeling Point-referenced

More information

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features Yangxin Huang Department of Epidemiology and Biostatistics, COPH, USF, Tampa, FL yhuang@health.usf.edu January

More information

Represent processes and observations that span multiple levels (aka multi level models) R 2

Represent processes and observations that span multiple levels (aka multi level models) R 2 Hierarchical models Hierarchical models Represent processes and observations that span multiple levels (aka multi level models) R 1 R 2 R 3 N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N i = true abundance on a

More information

Aggregated cancer incidence data: spatial models

Aggregated cancer incidence data: spatial models Aggregated cancer incidence data: spatial models 5 ième Forum du Cancéropôle Grand-est - November 2, 2011 Erik A. Sauleau Department of Biostatistics - Faculty of Medicine University of Strasbourg ea.sauleau@unistra.fr

More information

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Jon Wakefield Departments of Statistics and Biostatistics University of Washington 1 / 37 Lecture Content Motivation

More information

Space-time modelling of air pollution with array methods

Space-time modelling of air pollution with array methods Space-time modelling of air pollution with array methods Dae-Jin Lee Royal Statistical Society Conference Edinburgh 2009 D.-J. Lee (Uc3m) GLAM: Array methods in Statistics RSS 09 - Edinburgh # 1 Motivation

More information

Performance of INLA analysing bivariate meta-regression and age-period-cohort models

Performance of INLA analysing bivariate meta-regression and age-period-cohort models Performance of INLA analysing bivariate meta-regression and age-period-cohort models Andrea Riebler Biostatistics Unit, Institute of Social and Preventive Medicine University of Zurich INLA workshop, May

More information

To link to this article: PLEASE SCROLL DOWN FOR ARTICLE

To link to this article:   PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [University of West Florida] On: 25 November 2014, At: 10:11 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered

More information

Spatio-Temporal Threshold Models for Relating UV Exposures and Skin Cancer in the Central United States

Spatio-Temporal Threshold Models for Relating UV Exposures and Skin Cancer in the Central United States Spatio-Temporal Threshold Models for Relating UV Exposures and Skin Cancer in the Central United States Laura A. Hatfield and Bradley P. Carlin Division of Biostatistics School of Public Health University

More information

Analysis of Marked Point Patterns with Spatial and Non-spatial Covariate Information

Analysis of Marked Point Patterns with Spatial and Non-spatial Covariate Information Analysis of Marked Point Patterns with Spatial and Non-spatial Covariate Information p. 1/27 Analysis of Marked Point Patterns with Spatial and Non-spatial Covariate Information Shengde Liang, Bradley

More information

Multivariate Count Time Series Modeling of Surveillance Data

Multivariate Count Time Series Modeling of Surveillance Data Multivariate Count Time Series Modeling of Surveillance Data Leonhard Held 1 Michael Höhle 2 1 Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland 2 Department of Mathematics,

More information

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016 Log Gaussian Cox Processes Chi Group Meeting February 23, 2016 Outline Typical motivating application Introduction to LGCP model Brief overview of inference Applications in my work just getting started

More information

ARIC Manuscript Proposal # PC Reviewed: _9/_25_/06 Status: A Priority: _2 SC Reviewed: _9/_25_/06 Status: A Priority: _2

ARIC Manuscript Proposal # PC Reviewed: _9/_25_/06 Status: A Priority: _2 SC Reviewed: _9/_25_/06 Status: A Priority: _2 ARIC Manuscript Proposal # 1186 PC Reviewed: _9/_25_/06 Status: A Priority: _2 SC Reviewed: _9/_25_/06 Status: A Priority: _2 1.a. Full Title: Comparing Methods of Incorporating Spatial Correlation in

More information

Hierarchical Modeling for Spatio-temporal Data

Hierarchical Modeling for Spatio-temporal Data Hierarchical Modeling for Spatio-temporal Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of

More information

DIC: Deviance Information Criterion

DIC: Deviance Information Criterion (((( Welcome Page Latest News DIC: Deviance Information Criterion Contact us/bugs list WinBUGS New WinBUGS examples FAQs DIC GeoBUGS DIC (Deviance Information Criterion) is a Bayesian method for model

More information

Flexible Spatio-temporal smoothing with array methods

Flexible Spatio-temporal smoothing with array methods Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS046) p.849 Flexible Spatio-temporal smoothing with array methods Dae-Jin Lee CSIRO, Mathematics, Informatics and

More information

Robust MCMC Algorithms for Bayesian Inference in Stochastic Epidemic Models.

Robust MCMC Algorithms for Bayesian Inference in Stochastic Epidemic Models. Robust MCMC Algorithms for Bayesian Inference in Stochastic Epidemic Models. An Application to the 2001 UK Foot-and-Mouth Outbreak Theodore Kypraios @ University of Nottingham Gareth O. Roberts @ Lancaster

More information

Faculty of Health Sciences. Regression models. Counts, Poisson regression, Lene Theil Skovgaard. Dept. of Biostatistics

Faculty of Health Sciences. Regression models. Counts, Poisson regression, Lene Theil Skovgaard. Dept. of Biostatistics Faculty of Health Sciences Regression models Counts, Poisson regression, 27-5-2013 Lene Theil Skovgaard Dept. of Biostatistics 1 / 36 Count outcome PKA & LTS, Sect. 7.2 Poisson regression The Binomial

More information

Lecture 8. Poisson models for counts

Lecture 8. Poisson models for counts Lecture 8. Poisson models for counts Jesper Rydén Department of Mathematics, Uppsala University jesper.ryden@math.uu.se Statistical Risk Analysis Spring 2014 Absolute risks The failure intensity λ(t) describes

More information

Bayesian Statistics Part III: Building Bayes Theorem Part IV: Prior Specification

Bayesian Statistics Part III: Building Bayes Theorem Part IV: Prior Specification Bayesian Statistics Part III: Building Bayes Theorem Part IV: Prior Specification Michael Anderson, PhD Hélène Carabin, DVM, PhD Department of Biostatistics and Epidemiology The University of Oklahoma

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Hierarchical Modelling for Univariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Measurement Error in Spatial Modeling of Environmental Exposures

Measurement Error in Spatial Modeling of Environmental Exposures Measurement Error in Spatial Modeling of Environmental Exposures Chris Paciorek, Alexandros Gryparis, and Brent Coull August 9, 2005 Department of Biostatistics Harvard School of Public Health www.biostat.harvard.edu/~paciorek

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Models for Count and Binary Data. Poisson and Logistic GWR Models. 24/07/2008 GWR Workshop 1

Models for Count and Binary Data. Poisson and Logistic GWR Models. 24/07/2008 GWR Workshop 1 Models for Count and Binary Data Poisson and Logistic GWR Models 24/07/2008 GWR Workshop 1 Outline I: Modelling counts Poisson regression II: Modelling binary events Logistic Regression III: Poisson Regression

More information

Estimating the long-term health impact of air pollution using spatial ecological studies. Duncan Lee

Estimating the long-term health impact of air pollution using spatial ecological studies. Duncan Lee Estimating the long-term health impact of air pollution using spatial ecological studies Duncan Lee EPSRC and RSS workshop 12th September 2014 Acknowledgements This is joint work with Alastair Rushworth

More information

INLA for Spatial Statistics

INLA for Spatial Statistics INLA for Spatial Statistics 5. Log-Gaussian Co Processes Daniel Simpson Department of Mathematical Sciences University of Bath Outline spatial point processes fitting log Gaussian Co processes eamples

More information

Summary STK 4150/9150

Summary STK 4150/9150 STK4150 - Intro 1 Summary STK 4150/9150 Odd Kolbjørnsen May 22 2017 Scope You are expected to know and be able to use basic concepts introduced in the book. You knowledge is expected to be larger than

More information

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Abhirup Datta 1 Sudipto Banerjee 1 Andrew O. Finley 2 Alan E. Gelfand 3 1 University of Minnesota, Minneapolis,

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Order-q stochastic processes. Bayesian nonparametric applications

Order-q stochastic processes. Bayesian nonparametric applications Order-q dependent stochastic processes in Bayesian nonparametric applications Department of Statistics, ITAM, Mexico BNP 2015, Raleigh, NC, USA 25 June, 2015 Contents Order-1 process Application in survival

More information

DIC, AIC, BIC, PPL, MSPE Residuals Predictive residuals

DIC, AIC, BIC, PPL, MSPE Residuals Predictive residuals DIC, AIC, BIC, PPL, MSPE Residuals Predictive residuals Overall Measures of GOF Deviance: this measures the overall likelihood of the model given a parameter vector D( θ) = 2 log L( θ) This can be averaged

More information

Spacetime models in R-INLA. Elias T. Krainski

Spacetime models in R-INLA. Elias T. Krainski Spacetime models in R-INLA Elias T. Krainski 2 Outline Separable space-time models Infant mortality in Paraná PM-10 concentration in Piemonte, Italy 3 Multivariate dynamic regression model y t : n observations

More information

Spatio-temporal modeling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique

Spatio-temporal modeling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique Spatio-temporal modeling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique Katie Colborn, PhD Department of Biostatistics and Informatics University of Colorado

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes Chapter 4 - Fundamentals of spatial processes Lecture notes Geir Storvik January 21, 2013 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites Mostly positive correlation Negative

More information

Cluster Analysis using SaTScan

Cluster Analysis using SaTScan Cluster Analysis using SaTScan Summary 1. Statistical methods for spatial epidemiology 2. Cluster Detection What is a cluster? Few issues 3. Spatial and spatio-temporal Scan Statistic Methods Probability

More information

Fully Bayesian Spatial Analysis of Homicide Rates.

Fully Bayesian Spatial Analysis of Homicide Rates. Fully Bayesian Spatial Analysis of Homicide Rates. Silvio A. da Silva, Luiz L.M. Melo and Ricardo S. Ehlers Universidade Federal do Paraná, Brazil Abstract Spatial models have been used in many fields

More information

LISA Short Course Series Generalized Linear Models (GLMs) & Categorical Data Analysis (CDA) in R. Liang (Sally) Shan Nov. 4, 2014

LISA Short Course Series Generalized Linear Models (GLMs) & Categorical Data Analysis (CDA) in R. Liang (Sally) Shan Nov. 4, 2014 LISA Short Course Series Generalized Linear Models (GLMs) & Categorical Data Analysis (CDA) in R Liang (Sally) Shan Nov. 4, 2014 L Laboratory for Interdisciplinary Statistical Analysis LISA helps VT researchers

More information

Bayesian non-parametric model to longitudinally predict churn

Bayesian non-parametric model to longitudinally predict churn Bayesian non-parametric model to longitudinally predict churn Bruno Scarpa Università di Padova Conference of European Statistics Stakeholders Methodologists, Producers and Users of European Statistics

More information

Lecture 5: Poisson and logistic regression

Lecture 5: Poisson and logistic regression Dankmar Böhning Southampton Statistical Sciences Research Institute University of Southampton, UK S 3 RI, 3-5 March 2014 introduction to Poisson regression application to the BELCAP study introduction

More information

Challenges in modelling air pollution and understanding its impact on human health

Challenges in modelling air pollution and understanding its impact on human health Challenges in modelling air pollution and understanding its impact on human health Alastair Rushworth Joint Statistical Meeting, Seattle Wednesday August 12 th, 2015 Acknowledgements Work in this talk

More information

2015 SISG Bayesian Statistics for Genetics R Notes: Generalized Linear Modeling

2015 SISG Bayesian Statistics for Genetics R Notes: Generalized Linear Modeling 2015 SISG Bayesian Statistics for Genetics R Notes: Generalized Linear Modeling Jon Wakefield Departments of Statistics and Biostatistics, University of Washington 2015-07-24 Case control example We analyze

More information

Alain F. Zuur Highland Statistics Ltd. Newburgh, UK.

Alain F. Zuur Highland Statistics Ltd. Newburgh, UK. Annex C: Analysis of 7 wind farm data sets 1.1 Introduction Alain F. Zuur Highland Statistics Ltd. Newburgh, UK. www.highstat.com Required knowledge for this text is data exploration, multiple linear regression,

More information

Spatial modelling using INLA

Spatial modelling using INLA Spatial modelling using INLA August 30, 2012 Bayesian Research and Analysis Group Queensland University of Technology Log Gaussian Cox process Hierarchical Poisson process λ(s) = exp(z(s)) for Z(s) a Gaussian

More information

Disease mapping with Gaussian processes

Disease mapping with Gaussian processes Liverpool, UK, 4 5 November 3 Aki Vehtari Department of Biomedical Engineering and Computational Science (BECS) Outline Example: Alcohol related deaths in Finland Spatial priors and benefits of GP prior

More information

-A wild house sparrow population case study

-A wild house sparrow population case study Bayesian animal model using Integrated Nested Laplace Approximations -A wild house sparrow population case study Anna M. Holand Ingelin Steinsland Animal model workshop with application to ecology at Oulu

More information

Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency

Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency Chris Paciorek March 11, 2005 Department of Biostatistics Harvard School of

More information

Bayesian Dynamic Modeling for Space-time Data in R

Bayesian Dynamic Modeling for Space-time Data in R Bayesian Dynamic Modeling for Space-time Data in R Andrew O. Finley and Sudipto Banerjee September 5, 2014 We make use of several libraries in the following example session, including: ˆ library(fields)

More information

Concepts and Applications of Kriging. Eric Krause

Concepts and Applications of Kriging. Eric Krause Concepts and Applications of Kriging Eric Krause Sessions of note Tuesday ArcGIS Geostatistical Analyst - An Introduction 8:30-9:45 Room 14 A Concepts and Applications of Kriging 10:15-11:30 Room 15 A

More information

Chapter 4 - Spatial processes R packages and software Lecture notes

Chapter 4 - Spatial processes R packages and software Lecture notes TK4150 - Intro 1 Chapter 4 - Spatial processes R packages and software Lecture notes Odd Kolbjørnsen and Geir Storvik February 13, 2017 STK4150 - Intro 2 Last time General set up for Kriging type problems

More information

Comparison of Bayesian Spatio-Temporal Models for Chronic Diseases

Comparison of Bayesian Spatio-Temporal Models for Chronic Diseases Journal of Data Science 8(2010), 189-211 Comparison of Bayesian Spatio-Temporal Models for Chronic Diseases Hoon Kim 1 and HeeJeong Lim 2 1 California State Polytechnic University and 2 California State

More information

Example using R: Heart Valves Study

Example using R: Heart Valves Study Example using R: Heart Valves Study Goal: Show that the thrombogenicity rate (TR) is less than two times the objective performance criterion R and WinBUGS Examples p. 1/27 Example using R: Heart Valves

More information

Part 8: GLMs and Hierarchical LMs and GLMs

Part 8: GLMs and Hierarchical LMs and GLMs Part 8: GLMs and Hierarchical LMs and GLMs 1 Example: Song sparrow reproductive success Arcese et al., (1992) provide data on a sample from a population of 52 female song sparrows studied over the course

More information

Longitudinal Data Analysis Using Stata Paul D. Allison, Ph.D. Upcoming Seminar: May 18-19, 2017, Chicago, Illinois

Longitudinal Data Analysis Using Stata Paul D. Allison, Ph.D. Upcoming Seminar: May 18-19, 2017, Chicago, Illinois Longitudinal Data Analysis Using Stata Paul D. Allison, Ph.D. Upcoming Seminar: May 18-19, 217, Chicago, Illinois Outline 1. Opportunities and challenges of panel data. a. Data requirements b. Control

More information

STAT Lecture 11: Bayesian Regression

STAT Lecture 11: Bayesian Regression STAT 491 - Lecture 11: Bayesian Regression Generalized Linear Models Generalized linear models (GLMs) are a class of techniques that include linear regression, logistic regression, and Poisson regression.

More information

Non-parametric Bayesian Modeling and Fusion of Spatio-temporal Information Sources

Non-parametric Bayesian Modeling and Fusion of Spatio-temporal Information Sources th International Conference on Information Fusion Chicago, Illinois, USA, July -8, Non-parametric Bayesian Modeling and Fusion of Spatio-temporal Information Sources Priyadip Ray Department of Electrical

More information

Statistics 910, #15 1. Kalman Filter

Statistics 910, #15 1. Kalman Filter Statistics 910, #15 1 Overview 1. Summary of Kalman filter 2. Derivations 3. ARMA likelihoods 4. Recursions for the variance Kalman Filter Summary of Kalman filter Simplifications To make the derivations

More information

Modelling geoadditive survival data

Modelling geoadditive survival data Modelling geoadditive survival data Thomas Kneib & Ludwig Fahrmeir Department of Statistics, Ludwig-Maximilians-University Munich 1. Leukemia survival data 2. Structured hazard regression 3. Mixed model

More information

arxiv: v1 [stat.me] 13 May 2017

arxiv: v1 [stat.me] 13 May 2017 A note on intrinsic Conditional Autoregressive models for disconnected graphs Anna Freni-Sterrantino Massimo Ventrucci arxiv:1705.04854v1 [stat.me] 13 May 2017 Håvard Rue Abstract In this note we discuss

More information

Part 7: Hierarchical Modeling

Part 7: Hierarchical Modeling Part 7: Hierarchical Modeling!1 Nested data It is common for data to be nested: i.e., observations on subjects are organized by a hierarchy Such data are often called hierarchical or multilevel For example,

More information

Spatio-Temporal Modelling of Credit Default Data

Spatio-Temporal Modelling of Credit Default Data 1/20 Spatio-Temporal Modelling of Credit Default Data Sathyanarayan Anand Advisor: Prof. Robert Stine The Wharton School, University of Pennsylvania April 29, 2011 2/20 Outline 1 Background 2 Conditional

More information

Dirichlet process Bayesian clustering with the R package PReMiuM

Dirichlet process Bayesian clustering with the R package PReMiuM Dirichlet process Bayesian clustering with the R package PReMiuM Dr Silvia Liverani Brunel University London July 2015 Silvia Liverani (Brunel University London) Profile Regression 1 / 18 Outline Motivation

More information

Bayesian Nonparametric Spatio-Temporal Models for Disease Incidence Data

Bayesian Nonparametric Spatio-Temporal Models for Disease Incidence Data Bayesian Nonparametric Spatio-Temporal Models for Disease Incidence Data Athanasios Kottas 1, Jason A. Duan 2, Alan E. Gelfand 3 University of California, Santa Cruz 1 Yale School of Management 2 Duke

More information

Bayesian hierarchical space time model applied to highresolution hindcast data of significant wave height

Bayesian hierarchical space time model applied to highresolution hindcast data of significant wave height Bayesian hierarchical space time model applied to highresolution hindcast data of Presented at Wave workshop 2013, Banff, Canada Erik Vanem Introduction The Bayesian hierarchical space-time models were

More information

Hierarchical Modeling for Multivariate Spatial Data

Hierarchical Modeling for Multivariate Spatial Data Hierarchical Modeling for Multivariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

scrna-seq Differential expression analysis methods Olga Dethlefsen NBIS, National Bioinformatics Infrastructure Sweden October 2017

scrna-seq Differential expression analysis methods Olga Dethlefsen NBIS, National Bioinformatics Infrastructure Sweden October 2017 scrna-seq Differential expression analysis methods Olga Dethlefsen NBIS, National Bioinformatics Infrastructure Sweden October 2017 Olga (NBIS) scrna-seq de October 2017 1 / 34 Outline Introduction: what

More information

Gaussian copula regression using R

Gaussian copula regression using R University of Warwick August 17, 2011 Gaussian copula regression using R Guido Masarotto University of Padua Cristiano Varin Ca Foscari University, Venice 1/ 21 Framework Gaussian copula marginal regression

More information

A tutorial in spatial and spatio-temporal models with R-INLA

A tutorial in spatial and spatio-temporal models with R-INLA A tutorial in spatial and spatio-temporal models with R-INLA Marta Blangiardo 1, Michela Cameletti 2, Gianluca Baio 3,4, Håvard Rue 5 1 MRC-HPA Centre for Environment and Health, Department of Epidemiology

More information

Lecture 14 Bayesian Models for Spatio-Temporal Data

Lecture 14 Bayesian Models for Spatio-Temporal Data Lecture 14 Bayesian Models for Spatio-Temporal Data Dennis Sun Stats 253 August 13, 2014 Outline of Lecture 1 Recap of Bayesian Models 2 Empirical Bayes 3 Case 1: Long-Lead Forecasting of Sea Surface Temperatures

More information

COS513 LECTURE 8 STATISTICAL CONCEPTS

COS513 LECTURE 8 STATISTICAL CONCEPTS COS513 LECTURE 8 STATISTICAL CONCEPTS NIKOLAI SLAVOV AND ANKUR PARIKH 1. MAKING MEANINGFUL STATEMENTS FROM JOINT PROBABILITY DISTRIBUTIONS. A graphical model (GM) represents a family of probability distributions

More information

I don t have much to say here: data are often sampled this way but we more typically model them in continuous space, or on a graph

I don t have much to say here: data are often sampled this way but we more typically model them in continuous space, or on a graph Spatial analysis Huge topic! Key references Diggle (point patterns); Cressie (everything); Diggle and Ribeiro (geostatistics); Dormann et al (GLMMs for species presence/abundance); Haining; (Pinheiro and

More information

Multivariate Survival Analysis

Multivariate Survival Analysis Multivariate Survival Analysis Previously we have assumed that either (X i, δ i ) or (X i, δ i, Z i ), i = 1,..., n, are i.i.d.. This may not always be the case. Multivariate survival data can arise in

More information