R-INLA. Sam Clifford Su-Yun Kang Jeff Hsieh. 30 August Bayesian Research and Analysis Group 1 / 14

Size: px
Start display at page:

Download "R-INLA. Sam Clifford Su-Yun Kang Jeff Hsieh. 30 August Bayesian Research and Analysis Group 1 / 14"

Transcription

1 1 / 14 R-INLA Sam Clifford Su-Yun Kang Jeff Hsieh Bayesian Research and Analysis Group 30 August 2012

2 What is R-INLA? R package for Bayesian computation Integrated Nested Laplace Approximation MCMC free Wrapper for GMRFlib Håvard Rue and Sara Martino. INLA Functions which allow to perform a full Bayesian analysis of structured additive models using Integrated Nested Laplace Approximaxion, 0.0 edition, December URL Håvard Rue and Turid Follestad. GMRFLib: Fast and exact simulation of Gaussian Markov random fields on graphs. Technical report, Norwegian University of Science and Technology, URL 2 / 14

3 Overview Replace all variables with their Laplace approximation Construct GMRF of posterior from prior likelihood GMRF prior conjugate to GMRF likelihood Solve with Newton method Håvard Rue, Sara Martino, and Nicolas Chopin. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society B, 71: , / 14

4 4 / 14 Laplace Approximation consider probability density p(x; θ) dx Replace with MVN (x; x, Q) where x maximises the log likelihood Q the Hessian of log likelihood at x Everything is now Gaussian

5 Gaussian Markov Random Field Multivariate normal density { } π (x) = Q (2π) n exp (x µ)t Q (x µ) 2 Conditional independence Q ij = 0 Many models and priors can be represented as GMRF linear model penalised random walk Besag and Besag, York and Mollie stochastic PDE over finite element basis AR(1) Håvard Rue and Leonhard Held. Gaussian Markov random fields: theory and applications. CRC Press, 2005 Stefan Lang and Andreas Brezger. Bayesian P-Splines. Journal of Computational and Graphical Statistics, 13(1): , 2004 Julian Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B, 36: , 1974 Julian Besag, Jeremy York, and Annie Mollié. Bayesian image restoration, with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics, 43:1 20, 1991 Finn Lindgren, Håvard Rue, and Johan Lindström. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society B, 73, / 14

6 6 / 14 Newton solver Posterior GMRF as surface to be maximised Newton-Raphson solver seeks global maximum GMRF mean is location of maximum value GMRF precision is Hessian at maximum value

7 7 / 14 Posterior inference GMRF mean is location of maximum value GMRF precision is Hessian at maximum value Integrate to obtain marginals of parameters Easy because everything is Gaussian

8 8 / 14 Posterior summaries 95% region of HPD Kullback-Leibler divergence DIC, log likelihood, etc.

9 Prior precisions GMRF is a conjugate prior for GMRF wide variety of likelihoods and priors example random walk of order 2 p (β λ) MVN (0, Q) p (λ) Γ (1, b). λ transformed to log λ log-gamma prior replaced with its Laplace approximation Row Column Dimensions: 24 x 24 Figure: C for random walk penalty of order 2 with 24 unique covariate values Stefan Lang and Andreas Brezger. Bayesian P-Splines. Journal of Computational and Graphical Statistics, 13(1): , / 14

10 10 / 14 Defining custom precision matrices generic0 most general, Q = τc ( ) generic1 Q = τ I β λmax C generic2 for two level hierarchical model expression build a custom prior

11 11 / 14 Example Daily trend one week of simulated data ( ( ) ) 2πti y i N sin, generic0 Row cyclic random walk penalty of order 2 sum to zero constraint small amount added to diagonal Column Dimensions: 24 x (y β, λ, τ) MVN (y; Xβ, τi) MVN (β λ; 0, λc) Γ (λ; 1, b) Γ (τ; 1, b)

12 y 12 / 14 Example Results PostDens [Precision for the Gaussian observations] f(t) t PostDens [Precision for t] Index Figure: σ = (0.285, 0.356) Figure: Fitted smooth

13 Other cool stuff can be run on remote supercomputer GMRFlib parallelisable obtain successive starting values to aid convergence animalinla survival models SPDE spatial (spatio-temporal) models MCMC sampler included for comparison Håvard Rue and Turid Follestad. GMRFLib: Fast and exact simulation of Gaussian Markov random fields on graphs. Technical report, Norwegian University of Science and Technology, URL Sara Martino Anna Marie Holand, Ingelin Steinsland and Henrik Jensen. Animal models and integrated nested Laplace approximations. Technical Report 4/2011, Norges Teknisk-Naturvitenskapelige Universitet, 2011 Sara Martino and Håvard Rue. Complex data modeling and computationally intensive statistical methods, chapter Case Studies in Bayesian Computation using INLA Finn Lindgren, Håvard Rue, and Johan Lindström. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society B, 73, 2011 Håvard Rue and Leonhard Held. Gaussian Markov random fields: theory and applications. CRC Press, / 14

14 14 / 14 Code library(inla) t <- rep(1:24,7) y <- rnorm(n=168,mean=sin(t * 2 * pi / 24),sd=0.33) make.crw2 <- function(n){ Q <- toeplitz( c(6,-4,1, rep(0,n-5), 1, -4)) return(as(q, "dgcmatrix")) } Q <- make.crw2(24) # image(q,col.regions=grey.colors(16)) result1 <- inla(y f(t, model="generic0",cmatrix=q,diagonal=1e-03,constr=t), data=as.data.frame(list(y = y, t=t)),verbose=t, control.predictor=list(compute=t)) windows() par(mfrow=c(2,1)) plot(y t, pch=1,ylab="f(t)",xlab="t") lines(result1$summary.random$t[,2]) lines(result1$summary.random$t[,4],lty=2) lines(result1$summary.random$t[,6],lty=2) plot(y, pch=1,ylab="y",xlab="index") lines(result1$summary.linear.predictor[,1]) lines(result1$summary.linear.predictor[,3],lty=2) lines(result1$summary.linear.predictor[,5],lty=2)

arxiv: v1 [stat.co] 16 May 2011

arxiv: v1 [stat.co] 16 May 2011 Fast approximate inference with INLA: the past, the present and the future arxiv:1105.2982v1 [stat.co] 16 May 2011 Daniel Simpson, Finn Lindgren and Håvard Rue Department of Mathematical Sciences Norwegian

More information

A short introduction to INLA and R-INLA

A short introduction to INLA and R-INLA A short introduction to INLA and R-INLA Integrated Nested Laplace Approximation Thomas Opitz, BioSP, INRA Avignon Workshop: Theory and practice of INLA and SPDE November 7, 2018 2/21 Plan for this talk

More information

Beyond MCMC in fitting complex Bayesian models: The INLA method

Beyond MCMC in fitting complex Bayesian models: The INLA method Beyond MCMC in fitting complex Bayesian models: The INLA method Valeska Andreozzi Centre of Statistics and Applications of Lisbon University (valeska.andreozzi at fc.ul.pt) European Congress of Epidemiology

More information

Data are collected along transect lines, with dense data along. Spatial modelling using GMRFs. 200m. Today? Spatial modelling using GMRFs

Data are collected along transect lines, with dense data along. Spatial modelling using GMRFs. 200m. Today? Spatial modelling using GMRFs Centre for Mathematical Sciences Lund University Engineering geology Lund University Results A non-stationary extension The model Estimation Gaussian Markov random fields Basics Approximating Mate rn covariances

More information

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Approximate Bayesian Inference for nonhomogeneous Poisson processes with application to survival analysis by Rupali Akerkar, Sara Martino and Håvard Rue PREPRINT

More information

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Investigating posterior contour probabilities using INLA: A case study on recurrence of bladder tumours by Rupali Akerkar PREPRINT STATISTICS NO. 4/2012 NORWEGIAN

More information

Fast algorithms that utilise the sparsity of Q exist (c-package ( Q 1. GMRFlib) Seattle February 3, 2009

Fast algorithms that utilise the sparsity of Q exist (c-package ( Q 1. GMRFlib) Seattle February 3, 2009 GMRF:s Results References Some Theory for and Applications of Gaussian Markov Random Fields Johan Lindström 1 David Bolin 1 Finn Lindgren 1 Håvard Rue 2 1 Centre for Mathematical Sciences Lund University

More information

Overlapping block proposals for latent Gaussian Markov random fields

Overlapping block proposals for latent Gaussian Markov random fields NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Overlapping block proposals for latent Gaussian Markov random fields by Ingelin Steinsland and Håvard Rue PREPRINT STATISTICS NO. 8/3 NORWEGIAN UNIVERSITY

More information

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016 Spatial Statistics Spatial Examples More Spatial Statistics with Image Analysis Johan Lindström 1 1 Mathematical Statistics Centre for Mathematical Sciences Lund University Lund October 6, 2016 Johan Lindström

More information

Spatial modelling using INLA

Spatial modelling using INLA Spatial modelling using INLA August 30, 2012 Bayesian Research and Analysis Group Queensland University of Technology Log Gaussian Cox process Hierarchical Poisson process λ(s) = exp(z(s)) for Z(s) a Gaussian

More information

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Jon Wakefield Departments of Statistics and Biostatistics University of Washington 1 / 37 Lecture Content Motivation

More information

List of projects. FMS020F NAMS002 Statistical inference for partially observed stochastic processes, 2016

List of projects. FMS020F NAMS002 Statistical inference for partially observed stochastic processes, 2016 List of projects FMS020F NAMS002 Statistical inference for partially observed stochastic processes, 206 Work in groups of two (if this is absolutely not possible for some reason, please let the lecturers

More information

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET. Fitting dynamic models using integrated nested Laplace approximations INLA

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET. Fitting dynamic models using integrated nested Laplace approximations INLA NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fitting dynamic models using integrated nested Laplace approximations INLA by Ramiro Ruiz-Cárdenas, Elias T. Krainski and Håvard Rue PREPRINT STATISTICS NO.

More information

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET. Animal models and Integrated Nested Laplace Approximations PREPRINT STATISTICS NO.

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET. Animal models and Integrated Nested Laplace Approximations PREPRINT STATISTICS NO. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Animal models and Integrated Nested Laplace Approximations by Anna Marie Holand, Ingelin Steinsland, Sara Martino and Henrik Jensen PREPRINT STATISTICS NO.

More information

Integrated Non-Factorized Variational Inference

Integrated Non-Factorized Variational Inference Integrated Non-Factorized Variational Inference Shaobo Han, Xuejun Liao and Lawrence Carin Duke University February 27, 2014 S. Han et al. Integrated Non-Factorized Variational Inference February 27, 2014

More information

Centre for Biodiversity Dynamics, Department of Biology, NTNU, NO-7491 Trondheim, Norway,

Centre for Biodiversity Dynamics, Department of Biology, NTNU, NO-7491 Trondheim, Norway, Animal models and Integrated Nested Laplace Approximations Anna Marie Holand,1, Ingelin Steinsland, Sara Martino,, Henrik Jensen Centre for Biodiversity Dynamics, Department of Biology, NTNU, NO-7491 Trondheim,

More information

Bayesian spatial hierarchical modeling for temperature extremes

Bayesian spatial hierarchical modeling for temperature extremes Bayesian spatial hierarchical modeling for temperature extremes Indriati Bisono Dr. Andrew Robinson Dr. Aloke Phatak Mathematics and Statistics Department The University of Melbourne Maths, Informatics

More information

Scaling intrinsic Gaussian Markov random field priors in spatial modelling

Scaling intrinsic Gaussian Markov random field priors in spatial modelling Scaling intrinsic Gaussian Markov random field priors in spatial modelling Sigrunn Holbek Sørbye a,, Håvard Rue b a Department of Mathematics and Statistics, University of Tromsø, Norway. b Department

More information

Performance of INLA analysing bivariate meta-regression and age-period-cohort models

Performance of INLA analysing bivariate meta-regression and age-period-cohort models Performance of INLA analysing bivariate meta-regression and age-period-cohort models Andrea Riebler Biostatistics Unit, Institute of Social and Preventive Medicine University of Zurich INLA workshop, May

More information

Inference for latent variable models with many hyperparameters

Inference for latent variable models with many hyperparameters Int. Statistical Inst.: Proc. 5th World Statistical Congress, 011, Dublin (Session CPS070) p.1 Inference for latent variable models with many hyperparameters Yoon, Ji Won Statistics Department Lloyd Building,

More information

-A wild house sparrow population case study

-A wild house sparrow population case study Bayesian animal model using Integrated Nested Laplace Approximations -A wild house sparrow population case study Anna M. Holand Ingelin Steinsland Animal model workshop with application to ecology at Oulu

More information

Computation fundamentals of discrete GMRF representations of continuous domain spatial models

Computation fundamentals of discrete GMRF representations of continuous domain spatial models Computation fundamentals of discrete GMRF representations of continuous domain spatial models Finn Lindgren September 23 2015 v0.2.2 Abstract The fundamental formulas and algorithms for Bayesian spatial

More information

The Bayesian approach to inverse problems

The Bayesian approach to inverse problems The Bayesian approach to inverse problems Youssef Marzouk Department of Aeronautics and Astronautics Center for Computational Engineering Massachusetts Institute of Technology ymarz@mit.edu, http://uqgroup.mit.edu

More information

Analysing geoadditive regression data: a mixed model approach

Analysing geoadditive regression data: a mixed model approach Analysing geoadditive regression data: a mixed model approach Institut für Statistik, Ludwig-Maximilians-Universität München Joint work with Ludwig Fahrmeir & Stefan Lang 25.11.2005 Spatio-temporal regression

More information

Spatial point processes in the modern world an

Spatial point processes in the modern world an Spatial point processes in the modern world an interdisciplinary dialogue Janine Illian University of St Andrews, UK and NTNU Trondheim, Norway Bristol, October 2015 context statistical software past to

More information

Variational Principal Components

Variational Principal Components Variational Principal Components Christopher M. Bishop Microsoft Research 7 J. J. Thomson Avenue, Cambridge, CB3 0FB, U.K. cmbishop@microsoft.com http://research.microsoft.com/ cmbishop In Proceedings

More information

Summary STK 4150/9150

Summary STK 4150/9150 STK4150 - Intro 1 Summary STK 4150/9150 Odd Kolbjørnsen May 22 2017 Scope You are expected to know and be able to use basic concepts introduced in the book. You knowledge is expected to be larger than

More information

A general mixed model approach for spatio-temporal regression data

A general mixed model approach for spatio-temporal regression data A general mixed model approach for spatio-temporal regression data Thomas Kneib, Ludwig Fahrmeir & Stefan Lang Department of Statistics, Ludwig-Maximilians-University Munich 1. Spatio-temporal regression

More information

Aggregated cancer incidence data: spatial models

Aggregated cancer incidence data: spatial models Aggregated cancer incidence data: spatial models 5 ième Forum du Cancéropôle Grand-est - November 2, 2011 Erik A. Sauleau Department of Biostatistics - Faculty of Medicine University of Strasbourg ea.sauleau@unistra.fr

More information

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Christopher Paciorek, Department of Statistics, University

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

arxiv: v1 [stat.co] 3 Mar 2017

arxiv: v1 [stat.co] 3 Mar 2017 Estimating Spatial Econometrics Models with Integrated Nested Laplace Approximation Virgilio Gómez-Rubio a,, Roger S. Bivand b, Håvard Rue c arxiv:1703.01273v1 [stat.co] 3 Mar 2017 a Department of Mathematics,

More information

Multivariate Gaussian Random Fields with SPDEs

Multivariate Gaussian Random Fields with SPDEs Multivariate Gaussian Random Fields with SPDEs Xiangping Hu Daniel Simpson, Finn Lindgren and Håvard Rue Department of Mathematics, University of Oslo PASI, 214 Outline The Matérn covariance function and

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

An EM algorithm for Gaussian Markov Random Fields

An EM algorithm for Gaussian Markov Random Fields An EM algorithm for Gaussian Markov Random Fields Will Penny, Wellcome Department of Imaging Neuroscience, University College, London WC1N 3BG. wpenny@fil.ion.ucl.ac.uk October 28, 2002 Abstract Lavine

More information

A tutorial in spatial and spatio-temporal models with R-INLA

A tutorial in spatial and spatio-temporal models with R-INLA A tutorial in spatial and spatio-temporal models with R-INLA Marta Blangiardo 1, Michela Cameletti 2, Gianluca Baio 3,4, Håvard Rue 5 1 MRC-HPA Centre for Environment and Health, Department of Epidemiology

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Modelling and Inference for Bayesian Bivariate Animal Models using Integrated Nested Laplace Approximations

Modelling and Inference for Bayesian Bivariate Animal Models using Integrated Nested Laplace Approximations Modelling and Inference for Bayesian Bivariate Animal Models using Integrated Nested Laplace Approximations Eirik Dybvik Bøhn Master of Science in Physics and Mathematics Submission date: June 2014 Supervisor:

More information

Improving posterior marginal approximations in latent Gaussian models

Improving posterior marginal approximations in latent Gaussian models Improving posterior marginal approximations in latent Gaussian models Botond Cseke Tom Heskes Radboud University Nijmegen, Institute for Computing and Information Sciences Nijmegen, The Netherlands {b.cseke,t.heskes}@science.ru.nl

More information

Lecture 13 Fundamentals of Bayesian Inference

Lecture 13 Fundamentals of Bayesian Inference Lecture 13 Fundamentals of Bayesian Inference Dennis Sun Stats 253 August 11, 2014 Outline of Lecture 1 Bayesian Models 2 Modeling Correlations Using Bayes 3 The Universal Algorithm 4 BUGS 5 Wrapping Up

More information

Modelling geoadditive survival data

Modelling geoadditive survival data Modelling geoadditive survival data Thomas Kneib & Ludwig Fahrmeir Department of Statistics, Ludwig-Maximilians-University Munich 1. Leukemia survival data 2. Structured hazard regression 3. Mixed model

More information

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University this presentation derived from that presented at the Pan-American Advanced

More information

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information

Factorization of Seperable and Patterned Covariance Matrices for Gibbs Sampling

Factorization of Seperable and Patterned Covariance Matrices for Gibbs Sampling Monte Carlo Methods Appl, Vol 6, No 3 (2000), pp 205 210 c VSP 2000 Factorization of Seperable and Patterned Covariance Matrices for Gibbs Sampling Daniel B Rowe H & SS, 228-77 California Institute of

More information

Fast approximations for the Expected Value of Partial Perfect Information using R-INLA

Fast approximations for the Expected Value of Partial Perfect Information using R-INLA Fast approximations for the Expected Value of Partial Perfect Information using R-INLA Anna Heath 1 1 Department of Statistical Science, University College London 22 May 2015 Outline 1 Health Economic

More information

The profit function system with output- and input- specific technical efficiency

The profit function system with output- and input- specific technical efficiency The profit function system with output- and input- specific technical efficiency Mike G. Tsionas December 19, 2016 Abstract In a recent paper Kumbhakar and Lai (2016) proposed an output-oriented non-radial

More information

Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations

Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations J. R. Statist. Soc. B (2009) 71, Part 2, pp. 319 392 Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations Håvard Rue and Sara Martino Norwegian University

More information

LASSO-Type Penalization in the Framework of Generalized Additive Models for Location, Scale and Shape

LASSO-Type Penalization in the Framework of Generalized Additive Models for Location, Scale and Shape LASSO-Type Penalization in the Framework of Generalized Additive Models for Location, Scale and Shape Nikolaus Umlauf https://eeecon.uibk.ac.at/~umlauf/ Overview Joint work with Andreas Groll, Julien Hambuckers

More information

Markov random fields. The Markov property

Markov random fields. The Markov property Markov random fields The Markov property Discrete time: (X k X k!1,x k!2,... = (X k X k!1 A time symmetric version: (X k! X!k = (X k X k!1,x k+1 A more general version: Let A be a set of indices >k, B

More information

Machine Learning Techniques for Computer Vision

Machine Learning Techniques for Computer Vision Machine Learning Techniques for Computer Vision Part 2: Unsupervised Learning Microsoft Research Cambridge x 3 1 0.5 0.2 0 0.5 0.3 0 0.5 1 ECCV 2004, Prague x 2 x 1 Overview of Part 2 Mixture models EM

More information

Faculty of Sciences School for Information Technology Master of Statistics

Faculty of Sciences School for Information Technology Master of Statistics Faculty of Sciences School for Information Technology Master of Statistics Masterthesis Prior specification of spatio-temporal models. Marie Aimee Uwineza Thesis presented in fulfillment of the requirements

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 12: Gaussian Belief Propagation, State Space Models and Kalman Filters Guest Kalman Filter Lecture by

More information

Gaussian Process Regression Model in Spatial Logistic Regression

Gaussian Process Regression Model in Spatial Logistic Regression Journal of Physics: Conference Series PAPER OPEN ACCESS Gaussian Process Regression Model in Spatial Logistic Regression To cite this article: A Sofro and A Oktaviarina 018 J. Phys.: Conf. Ser. 947 01005

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 10 Alternatives to Monte Carlo Computation Since about 1990, Markov chain Monte Carlo has been the dominant

More information

Information geometry for bivariate distribution control

Information geometry for bivariate distribution control Information geometry for bivariate distribution control C.T.J.Dodson + Hong Wang Mathematics + Control Systems Centre, University of Manchester Institute of Science and Technology Optimal control of stochastic

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Gaussian Markov Random Fields: Theory and Applications

Gaussian Markov Random Fields: Theory and Applications Gaussian Markov Random Fields: Theory and Applications Håvard Rue 1 1 Department of Mathematical Sciences NTNU, Norway September 26, 2008 Part I Definition and basic properties Outline I Introduction Why?

More information

Conjugate Analysis for the Linear Model

Conjugate Analysis for the Linear Model Conjugate Analysis for the Linear Model If we have good prior knowledge that can help us specify priors for β and σ 2, we can use conjugate priors. Following the procedure in Christensen, Johnson, Branscum,

More information

Bayesian covariate models in extreme value analysis

Bayesian covariate models in extreme value analysis Bayesian covariate models in extreme value analysis David Randell, Philip Jonathan, Kathryn Turnbull, Mathew Jones EVA 2015 Ann Arbor Copyright 2015 Shell Global Solutions (UK) EVA 2015 Ann Arbor June

More information

Spatio-temporal modelling of daily air temperature in Catalonia

Spatio-temporal modelling of daily air temperature in Catalonia Spatio-temporal modelling of daily air temperature in Catalonia M. Saez 1,, M.A. Barceló 1,, A. Tobias 3, D. Varga 1,4 and R. Ocaña-Riola 5 1 Research Group on Statistics, Applied Economics and Health

More information

Sequential Bayesian Inference for Dynamic State Space. Model Parameters

Sequential Bayesian Inference for Dynamic State Space. Model Parameters Sequential Bayesian Inference for Dynamic State Space Model Parameters Arnab Bhattacharya and Simon Wilson 1. INTRODUCTION Dynamic state-space models [24], consisting of a latent Markov process X 0,X 1,...

More information

13: Variational inference II

13: Variational inference II 10-708: Probabilistic Graphical Models, Spring 2015 13: Variational inference II Lecturer: Eric P. Xing Scribes: Ronghuo Zheng, Zhiting Hu, Yuntian Deng 1 Introduction We started to talk about variational

More information

Spatial Statistics with Image Analysis. Lecture L08. Computer exercise 3. Lecture 8. Johan Lindström. November 25, 2016

Spatial Statistics with Image Analysis. Lecture L08. Computer exercise 3. Lecture 8. Johan Lindström. November 25, 2016 C3 Repetition Creating Q Spectral Non-grid Spatial Statistics with Image Analysis Lecture 8 Johan Lindström November 25, 216 Johan Lindström - johanl@maths.lth.se FMSN2/MASM25L8 1/39 Lecture L8 C3 Repetition

More information

arxiv: v4 [stat.me] 14 Sep 2015

arxiv: v4 [stat.me] 14 Sep 2015 Does non-stationary spatial data always require non-stationary random fields? Geir-Arne Fuglstad 1, Daniel Simpson 1, Finn Lindgren 2, and Håvard Rue 1 1 Department of Mathematical Sciences, NTNU, Norway

More information

Andrew B. Lawson 2019 BMTRY 763

Andrew B. Lawson 2019 BMTRY 763 BMTRY 763 FMD Foot and mouth disease (FMD) is a viral disease of clovenfooted animals and being extremely contagious it spreads rapidly. It reduces animal production, and can sometimes be fatal in young

More information

ST 740: Linear Models and Multivariate Normal Inference

ST 740: Linear Models and Multivariate Normal Inference ST 740: Linear Models and Multivariate Normal Inference Alyson Wilson Department of Statistics North Carolina State University November 4, 2013 A. Wilson (NCSU STAT) Linear Models November 4, 2013 1 /

More information

Automated Likelihood Based Inference for Stochastic Volatility Models using AD Model Builder. Oxford, November 24th 2008 Hans J.

Automated Likelihood Based Inference for Stochastic Volatility Models using AD Model Builder. Oxford, November 24th 2008 Hans J. Automated Likelihood Based Inference for Stochastic Volatility Models using AD Model Builder Oxford, November 24th 2008 Hans J. Skaug (with Jun Yu and David Fournier) Outline AD Model Builder ADMB Foundation

More information

Variational inference

Variational inference Simon Leglaive Télécom ParisTech, CNRS LTCI, Université Paris Saclay November 18, 2016, Télécom ParisTech, Paris, France. Outline Introduction Probabilistic model Problem Log-likelihood decomposition EM

More information

Beyond Mean Regression

Beyond Mean Regression Beyond Mean Regression Thomas Kneib Lehrstuhl für Statistik Georg-August-Universität Göttingen 8.3.2013 Innsbruck Introduction Introduction One of the top ten reasons to become statistician (according

More information

arxiv: v1 [stat.ap] 18 Apr 2011

arxiv: v1 [stat.ap] 18 Apr 2011 The Annals of Applied Statistics 2011, Vol. 5, No. 1, 523 550 DOI: 10.1214/10-AOAS383 c Institute of Mathematical Statistics, 2011 arxiv:1104.3436v1 [stat.ap] 18 Apr 2011 SPATIAL MODELS GENERATED BY NESTED

More information

Spacetime models in R-INLA. Elias T. Krainski

Spacetime models in R-INLA. Elias T. Krainski Spacetime models in R-INLA Elias T. Krainski 2 Outline Separable space-time models Infant mortality in Paraná PM-10 concentration in Piemonte, Italy 3 Multivariate dynamic regression model y t : n observations

More information

Theory of Stochastic Processes 8. Markov chain Monte Carlo

Theory of Stochastic Processes 8. Markov chain Monte Carlo Theory of Stochastic Processes 8. Markov chain Monte Carlo Tomonari Sei sei@mist.i.u-tokyo.ac.jp Department of Mathematical Informatics, University of Tokyo June 8, 2017 http://www.stat.t.u-tokyo.ac.jp/~sei/lec.html

More information

Big Data in Environmental Research

Big Data in Environmental Research Big Data in Environmental Research Gavin Shaddick University of Bath 7 th July 2016 1/ 121 OUTLINE 10:00-11:00 Introduction to Spatio-Temporal Modelling 14:30-15:30 Bayesian Inference 17:00-18:00 Examples

More information

Large-scale Ordinal Collaborative Filtering

Large-scale Ordinal Collaborative Filtering Large-scale Ordinal Collaborative Filtering Ulrich Paquet, Blaise Thomson, and Ole Winther Microsoft Research Cambridge, University of Cambridge, Technical University of Denmark ulripa@microsoft.com,brmt2@cam.ac.uk,owi@imm.dtu.dk

More information

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Abhirup Datta 1 Sudipto Banerjee 1 Andrew O. Finley 2 Alan E. Gelfand 3 1 University of Minnesota, Minneapolis,

More information

Regularization in Cox Frailty Models

Regularization in Cox Frailty Models Regularization in Cox Frailty Models Andreas Groll 1, Trevor Hastie 2, Gerhard Tutz 3 1 Ludwig-Maximilians-Universität Munich, Department of Mathematics, Theresienstraße 39, 80333 Munich, Germany 2 University

More information

On Gaussian Process Models for High-Dimensional Geostatistical Datasets

On Gaussian Process Models for High-Dimensional Geostatistical Datasets On Gaussian Process Models for High-Dimensional Geostatistical Datasets Sudipto Banerjee Joint work with Abhirup Datta, Andrew O. Finley and Alan E. Gelfand University of California, Los Angeles, USA May

More information

Bayes: All uncertainty is described using probability.

Bayes: All uncertainty is described using probability. Bayes: All uncertainty is described using probability. Let w be the data and θ be any unknown quantities. Likelihood. The probability model π(w θ) has θ fixed and w varying. The likelihood L(θ; w) is π(w

More information

arxiv: v1 [stat.me] 13 May 2017

arxiv: v1 [stat.me] 13 May 2017 A note on intrinsic Conditional Autoregressive models for disconnected graphs Anna Freni-Sterrantino Massimo Ventrucci arxiv:1705.04854v1 [stat.me] 13 May 2017 Håvard Rue Abstract In this note we discuss

More information

Bayesian Graphical Models for Structural Vector AutoregressiveMarch Processes 21, / 1

Bayesian Graphical Models for Structural Vector AutoregressiveMarch Processes 21, / 1 Bayesian Graphical Models for Structural Vector Autoregressive Processes Daniel Ahelegbey, Monica Billio, and Roberto Cassin (2014) March 21, 2015 Bayesian Graphical Models for Structural Vector AutoregressiveMarch

More information

Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm Strength of the Gibbs sampler Metropolis-Hastings Algorithm Easy algorithm to think about. Exploits the factorization properties of the joint probability distribution. No difficult choices to be made to

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes Chapter 4 - Fundamentals of spatial processes Lecture notes Geir Storvik January 21, 2013 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites Mostly positive correlation Negative

More information

How to solve the stochastic partial differential equation that gives a Matérn random field using the finite element method

How to solve the stochastic partial differential equation that gives a Matérn random field using the finite element method arxiv:1803.03765v1 [stat.co] 10 Mar 2018 How to solve the stochastic partial differential equation that gives a Matérn random field using the finite element method Haakon Bakka bakka@r-inla.org March 13,

More information

Spatially Adaptive Smoothing Splines

Spatially Adaptive Smoothing Splines Spatially Adaptive Smoothing Splines Paul Speckman University of Missouri-Columbia speckman@statmissouriedu September 11, 23 Banff 9/7/3 Ordinary Simple Spline Smoothing Observe y i = f(t i ) + ε i, =

More information

GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT

GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT Cha Zhang Joint work with Dinei Florêncio and Philip A. Chou Microsoft Research Outline Gaussian Markov Random Field Graph construction Graph transform

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2 Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, 2010 Jeffreys priors Lecturer: Michael I. Jordan Scribe: Timothy Hunter 1 Priors for the multivariate Gaussian Consider a multivariate

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2016 Julien Berestycki (University of Oxford) SB2a MT 2016 1 / 32 Lecture 14 : Variational Bayes

More information

The Gaussian distribution

The Gaussian distribution The Gaussian distribution Probability density function: A continuous probability density function, px), satisfies the following properties:. The probability that x is between two points a and b b P a

More information

Modeling Real Estate Data using Quantile Regression

Modeling Real Estate Data using Quantile Regression Modeling Real Estate Data using Semiparametric Quantile Regression Department of Statistics University of Innsbruck September 9th, 2011 Overview 1 Application: 2 3 4 Hedonic regression data for house prices

More information

Gaussian Processes 1. Schedule

Gaussian Processes 1. Schedule 1 Schedule 17 Jan: Gaussian processes (Jo Eidsvik) 24 Jan: Hands-on project on Gaussian processes (Team effort, work in groups) 31 Jan: Latent Gaussian models and INLA (Jo Eidsvik) 7 Feb: Hands-on project

More information

1 Bayesian Linear Regression (BLR)

1 Bayesian Linear Regression (BLR) Statistical Techniques in Robotics (STR, S15) Lecture#10 (Wednesday, February 11) Lecturer: Byron Boots Gaussian Properties, Bayesian Linear Regression 1 Bayesian Linear Regression (BLR) In linear regression,

More information

Latent Gaussian Processes and Stochastic Partial Differential Equations

Latent Gaussian Processes and Stochastic Partial Differential Equations Latent Gaussian Processes and Stochastic Partial Differential Equations Johan Lindström 1 1 Centre for Mathematical Sciences Lund University Lund 2016-02-04 Johan Lindström - johanl@maths.lth.se Gaussian

More information

Disease mapping with Gaussian processes

Disease mapping with Gaussian processes EUROHEIS2 Kuopio, Finland 17-18 August 2010 Aki Vehtari (former Helsinki University of Technology) Department of Biomedical Engineering and Computational Science (BECS) Acknowledgments Researchers - Jarno

More information

The connection of dropout and Bayesian statistics

The connection of dropout and Bayesian statistics The connection of dropout and Bayesian statistics Interpretation of dropout as approximate Bayesian modelling of NN http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf Dropout Geoffrey Hinton Google, University

More information

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET. Fitting a log Gaussian Cox process with temporally varying effects a case study

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET. Fitting a log Gaussian Cox process with temporally varying effects a case study NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fitting a log Gaussian Cox process with temporally varying effects a case study by Janine B. Illian, Sigrunn H. Sørbye, Håvard Rue & Ditte K. Hendrichsen

More information

Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification

Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification N. Zabaras 1 S. Atkinson 1 Center for Informatics and Computational Science Department of Aerospace and Mechanical Engineering University

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Yi Zhang and Jeff Schneider NIPS 2010 Presented by Esther Salazar Duke University March 25, 2011 E. Salazar (Reading group) March 25, 2011 1

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information