GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT

Size: px
Start display at page:

Download "GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT"

Transcription

1 GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT Cha Zhang Joint work with Dinei Florêncio and Philip A. Chou Microsoft Research

2 Outline Gaussian Markov Random Field Graph construction Graph transform Graph down-sampling Graph prediction Graph-based regularization Conclusions

3 Gaussian Markov Random Field (GMRF) A random vector x = x 1,, x n T is called a GMRF with respect to the graph G = V = 1,, n, E with mean μ and a precision matrix Q > 0 (positive definite), if and only if its density has the form: p x = 2π n 2 Q 1 2 exp 1 2 x μ T Q x μ and Q ij 0 i, j E for all i j.

4 Gaussian Markov Random Field (GMRF) It is defined on a graph It is a multivariate Gaussian distribution Regarding the precision matrix Q Q = Σ 1, Σ is the covariance matrix Conditional interpretation E x i x i = μ i 1 Q ii j:j~i Q ij x j μ j Prec x i x i = Q ii Corr x i, x j x ij = Q ij Q ii Q jj, i j

5 A Bijective Mapping Zero-mean GMRF a subset of bi-directed graphs Random variable node Q ij 0 edge Assign graph weights: W ij = Q ij, for i j n W ii = j=1 Q ij Mapping between W and Q is bijective Subset because Q > 0 1 Q 11 + Q 12 + Q 13 Q = Q 11 Q 12 Q 13 Q 21 Q 22 Q 23 Q 31 Q 32 Q 33 Q 12 Q Q 23 pseudograph Q 12 + Q 22 + Q 23 Q 11 + Q 12 + Q 13

6 Intrinsic GMRF (IGMRF) A random vector x = x 1,, x n T is called an intrinsic GMRF of k th order if it has density: p x = 2π n k 2 ( Q ) 1 2 exp 1 2 x μ T Q x μ Where Q is of rank n k, and denotes the generalized determinant (product of the non-zero eigenvalues). IGMRF can be interpreted as limits of proper GMRFs, thus many of the properties of GMRF holds for IGMRF. H. Rue and L. Held. Gaussian Markov Random Fields: Theory and Applications. Chapman and Hall/CRC, 2005

7 A Special GMRF Zero mean, and all rows of Q sum to zero For all i, j Q ij = 0 When Q is of rank n 1: IGMRF of first order No self-loops in the graph Simple Graph Local behavior E x i x i = 1 Q ii j:j~i Q ij x j, with j:j~i Q ij Q ii = 1 IGMRF of first order closely related to firstorder random walk

8 So For many bi-directed graphs, we can give them a GMRF (IGMRF) interpretation It s a Gaussian, isn t it too simple? Real-world signals are hardly Gaussian What can we do with such a simple model?

9 So For many bi-directed graphs, we can give them a GMRF (IGMRF) interpretation It s a Gaussian, isn t it too simple? Real-world signals are hardly Gaussian What can we do with such a simple model? A lot! Many are already using it without realizing it

10 Graph Construction Data-driven Collect enough examples to estimate μ and Q Q is unlikely sparse densely connected graph Intuitive model-based Widely used in 1D/2D regular grid signals IGMRF, no self-loops: nice local behavior Q identical to the Laplacian matrix 1 2 n (a) (b) (c) (d)

11 Graph Construction Model-constrained data-driven approach Maximum a-posterior estimation Q = arg max p(q x 1,, x N ) Q = arg max Q p Q n=1 p(x n Q): likelihood, GMRF model p Q : prior knowledge Application dependent For example, Q is sparse, know graph structure, etc. N p(x n Q) X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst. Learning graphs from signal observations under smoothness prior. In submitted to: IEEE Transacctions on Signal Processing, 2014.

12 Graph Transform Karhunen-Loève transform (KLT) Σ = ΦΛΦ T Where Λ = diag λ 0,, λ n is the diagonal matrix of eigenvalues of Σ. Since: Q = Σ 1 = ΦΛ 1 Φ T The eigenvector matrix of Q is the same as the KLT, optimal for decorrelation. Since GMRF is defined on a graph, we call the eigenvector matrix of the precision matrix Q the Graph Transform.

13 Graph Transform and DCT When Q is the Laplacian of a regular grid graph 1D signal Graph transform = 1D DCT 2D signal on regular grid 2D DCT is one of the eigenvector matrices of Q Thus under such an image model, 1D DCT and 2D DCT are optimal for decorrelation First known proof of 2D DCT optimality! C. Zhang and D. Florêncio. Analyzing the optimality of predictive transform coding using graph-based models. IEEE Signal Processing Letters, 20(1), Jan

14 Graph Down-sampling Given random vector x = x 1,, x n T on graph G = V = 1,, n, E, keep x 1 = x 1,, x n k T, remove x 2 = x n k+1,, x n T, what is the graph for x 1?

15 Graph Down-sampling Given GMRF random vector x = x 1,, x n T on graph G = V = 1,, n, E, keep x 1 = x 1,, x n k T, remove x 2 = x n k+1,, x n T, what is the graph for x 1? μ = μ 1 μ 2, Σ = Σ 11 Σ 12 Σ 21 Σ 22 = Q 1 = Q 11 Q 12 Q 21 Q 22 1 Q 1 = Σ 1 11 = Q 11 Q 12 Q 1 22 Q 21 Identical to Kron Reduction, a well-know technique for graph down-sampling originally derived for electronic networks. F. Dörfler and F. Bullo. Kron reduction of graphs with applications to electrical networks. Circuits and Systems I: Regular Papers, IEEE Transactions on, 60(1): , 2013.

16 Graph Prediction Random vector x = x 1,, x n, x n+1,, x m T follows GMRF with precision matrix Q. x 1 = x 1,, x n T unknown x 2 = x n+1,, x m T known

17 Graph Prediction Random vector x = x 1,, x n, x n+1,, x m T follows GMRF with precision matrix Q. x 1 = x 1,, x n T unknown x 2 = x n+1,, x m T known Partition Q: Q = Q 11 Q 12 Q 21 Q 22 x 1 x 2 is also a GMRF with respect to its own subgraph with mean μ x1 x 2 and precision matrix Q x1 x 2 > 0: μ x1 x 2 = μ x1 Q 1 11 Q 12 x 2 μ x2 Q x1 x 2 = Q 11 H. Rue and L. Held. Gaussian Markov Random Fields: Theory and Applications. Chapman and Hall/CRC, 2005

18 Predictive Transform Coding In the above formulation: x 1 : pixels to be encoded x 2 : know pixels nearby New conditional mean: best prediction μ x1 x 2 = μ x1 Q 1 11 Q 12 x 2 μ x2 New best decorrelation transform after applying best prediction: Eigenvector matrix of Q x1 x 2 = Q 11

19 Motion Prediction Reference block and current block, both zero mean GMRF, with Q ref and Q c Form a 3D GMRF model Precision matrix: Q = Q c + I I I Q ref + I Regarding x 1 x 2 : μ x1 x 2 = (Q c +I) 1 x 2 Q x1 x 2 = Q c + I Reference block Current block

20 Motion Prediction When Q c is the Laplacian matrix Q c = δl New mean: μ x1 x 2 = (δl + I) 1 x 2 Low pass filter on x 2 (Partial) reason that half-pixel prediction is better! New precision matrix: Q x1 x 2 = δl + I Its eigenvector matrix is same as the eigenvector matrix of L First known proof that DCT is still optimal for residue compression in motion compensation!

21 Intra-Frame Predictive Coding Zero mean GMRF New mean: μ x1 x 2 = Q 1 11 Q 12 x 2 Optimal prediction given the GMRF model New precision matrix: Q x1 x 2 = Q 11 DCT no longer optimal! First general analysis of the optimal transform for intraframe predictive coding C. Yeo, Y. H. Tan, Z. Li, and S. Rahardja. Modedependent transforms for coding directional intra prediction residuals. IEEE Trans. on Circuits and Systems for Video Technology, 22(4): , 2012.

22 Graph-Based Regularization Estimate a signal x on graph, such that a cost function is minimized, subject to certain regularization x = arg min x f(x) + λs p x A popular smoothness term (p-dirichlet form): S p x 1 p i j:j~i W ij x i x j 2 p 2

23 A Prob. Viewpoint on Regularization Target function: x = arg min x = arg max x Mapping to MAP: f(x) + λs p x x f e λ S p x Likelihood: e f x λ Prior: e S p x When p = 2 Laplacian GMRF prior When p 2 Generalized GMRF prior

24 Conclusions GMRF provides a statistical viewpoint for GSP Provides valuable insights for Graph construction Graph transform Graph down-sampling Graph prediction Graph-based regularization Always be aware of the statistical implications!

GAUSSIAN PROCESS TRANSFORMS

GAUSSIAN PROCESS TRANSFORMS GAUSSIAN PROCESS TRANSFORMS Philip A. Chou Ricardo L. de Queiroz Microsoft Research, Redmond, WA, USA pachou@microsoft.com) Computer Science Department, Universidade de Brasilia, Brasilia, Brazil queiroz@ieee.org)

More information

Graph Signal Processing A Probabilistic Framework

Graph Signal Processing A Probabilistic Framework 1 Graph Signal Processing A Probabilistic Framework Cha Zhang, Senior Member, IEEE, Dinei Florêncio, Senior Member, IEEE and Philip A. Chou Fellow, IEEE Abstract This theoretical paper aims to provide

More information

GRAPH FOURIER TRANSFORM WITH NEGATIVE EDGES FOR DEPTH IMAGE CODING. Weng-Tai Su, Gene Cheung #, Chia-Wen Lin

GRAPH FOURIER TRANSFORM WITH NEGATIVE EDGES FOR DEPTH IMAGE CODING. Weng-Tai Su, Gene Cheung #, Chia-Wen Lin GRAPH FOURIER TRANSFORM WITH NEGATIVE EDGES FOR DEPTH IMAGE CODING Weng-Tai Su, Gene Cheung #, Chia-Wen Lin National Tsing Hua University, # National Institute of Informatics ABSTRACT Recent advent in

More information

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Christopher Paciorek, Department of Statistics, University

More information

Waveform-Based Coding: Outline

Waveform-Based Coding: Outline Waveform-Based Coding: Transform and Predictive Coding Yao Wang Polytechnic University, Brooklyn, NY11201 http://eeweb.poly.edu/~yao Based on: Y. Wang, J. Ostermann, and Y.-Q. Zhang, Video Processing and

More information

SYDE 575: Introduction to Image Processing. Image Compression Part 2: Variable-rate compression

SYDE 575: Introduction to Image Processing. Image Compression Part 2: Variable-rate compression SYDE 575: Introduction to Image Processing Image Compression Part 2: Variable-rate compression Variable-rate Compression: Transform-based compression As mentioned earlier, we wish to transform image data

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

Multimedia Networking ECE 599

Multimedia Networking ECE 599 Multimedia Networking ECE 599 Prof. Thinh Nguyen School of Electrical Engineering and Computer Science Based on lectures from B. Lee, B. Girod, and A. Mukherjee 1 Outline Digital Signal Representation

More information

Transform coding - topics. Principle of block-wise transform coding

Transform coding - topics. Principle of block-wise transform coding Transform coding - topics Principle of block-wise transform coding Properties of orthonormal transforms Discrete cosine transform (DCT) Bit allocation for transform Threshold coding Typical coding artifacts

More information

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Jon Wakefield Departments of Statistics and Biostatistics University of Washington 1 / 37 Lecture Content Motivation

More information

6160 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 23, DECEMBER 1, Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst

6160 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 23, DECEMBER 1, Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst 6160 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 23, DECEMBER 1, 2016 Learning Laplacian Matrix in Smooth Graph Signal Representations Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre

More information

Principal Component Analysis CS498

Principal Component Analysis CS498 Principal Component Analysis CS498 Today s lecture Adaptive Feature Extraction Principal Component Analysis How, why, when, which A dual goal Find a good representation The features part Reduce redundancy

More information

Image Data Compression

Image Data Compression Image Data Compression Image data compression is important for - image archiving e.g. satellite data - image transmission e.g. web data - multimedia applications e.g. desk-top editing Image data compression

More information

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ).

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ). .8.6 µ =, σ = 1 µ = 1, σ = 1 / µ =, σ =.. 3 1 1 3 x Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ ). The Gaussian distribution Probably the most-important distribution in all of statistics

More information

Learning graphs from data:

Learning graphs from data: Learning graphs from data: A signal processing perspective Xiaowen Dong MIT Media Lab Graph Signal Processing Workshop Pittsburgh, PA, May 2017 Introduction What is the problem of graph learning? 2/34

More information

Basic Principles of Video Coding

Basic Principles of Video Coding Basic Principles of Video Coding Introduction Categories of Video Coding Schemes Information Theory Overview of Video Coding Techniques Predictive coding Transform coding Quantization Entropy coding Motion

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Yi Zhang and Jeff Schneider NIPS 2010 Presented by Esther Salazar Duke University March 25, 2011 E. Salazar (Reading group) March 25, 2011 1

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

GRAPH-BASED MODELS AND TRANSFORMS FOR SIGNAL/DATA PROCESSING WITH APPLICATIONS TO VIDEO CODING

GRAPH-BASED MODELS AND TRANSFORMS FOR SIGNAL/DATA PROCESSING WITH APPLICATIONS TO VIDEO CODING GRAPH-BASED MODELS AND TRANSFORMS FOR SIGNAL/DATA PROCESSING WITH APPLICATIONS TO VIDEO CODING A Dissertation Presented to the FACULTY OF THE USC GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In Partial

More information

Markov Random Fields

Markov Random Fields Markov Random Fields Umamahesh Srinivas ipal Group Meeting February 25, 2011 Outline 1 Basic graph-theoretic concepts 2 Markov chain 3 Markov random field (MRF) 4 Gauss-Markov random field (GMRF), and

More information

Spectral Clustering. Spectral Clustering? Two Moons Data. Spectral Clustering Algorithm: Bipartioning. Spectral methods

Spectral Clustering. Spectral Clustering? Two Moons Data. Spectral Clustering Algorithm: Bipartioning. Spectral methods Spectral Clustering Seungjin Choi Department of Computer Science POSTECH, Korea seungjin@postech.ac.kr 1 Spectral methods Spectral Clustering? Methods using eigenvectors of some matrices Involve eigen-decomposition

More information

Bayesian spatial hierarchical modeling for temperature extremes

Bayesian spatial hierarchical modeling for temperature extremes Bayesian spatial hierarchical modeling for temperature extremes Indriati Bisono Dr. Andrew Robinson Dr. Aloke Phatak Mathematics and Statistics Department The University of Melbourne Maths, Informatics

More information

The Karhunen-Loeve, Discrete Cosine, and Related Transforms Obtained via the Hadamard Transform

The Karhunen-Loeve, Discrete Cosine, and Related Transforms Obtained via the Hadamard Transform The Karhunen-Loeve, Discrete Cosine, and Related Transforms Obtained via the Hadamard Transform Item Type text; Proceedings Authors Jones, H. W.; Hein, D. N.; Knauer, S. C. Publisher International Foundation

More information

Lossless Image and Intra-frame Compression with Integer-to-Integer DST

Lossless Image and Intra-frame Compression with Integer-to-Integer DST 1 Lossless Image and Intra-frame Compression with Integer-to-Integer DST Fatih Kamisli, Member, IEEE arxiv:1708.07154v1 [cs.mm] 3 Aug 017 Abstract Video coding standards are primarily designed for efficient

More information

Computation fundamentals of discrete GMRF representations of continuous domain spatial models

Computation fundamentals of discrete GMRF representations of continuous domain spatial models Computation fundamentals of discrete GMRF representations of continuous domain spatial models Finn Lindgren September 23 2015 v0.2.2 Abstract The fundamental formulas and algorithms for Bayesian spatial

More information

Transform Coding. Transform Coding Principle

Transform Coding. Transform Coding Principle Transform Coding Principle of block-wise transform coding Properties of orthonormal transforms Discrete cosine transform (DCT) Bit allocation for transform coefficients Entropy coding of transform coefficients

More information

Graph Partitioning Using Random Walks

Graph Partitioning Using Random Walks Graph Partitioning Using Random Walks A Convex Optimization Perspective Lorenzo Orecchia Computer Science Why Spectral Algorithms for Graph Problems in practice? Simple to implement Can exploit very efficient

More information

Stochastic processes. MAS275 Probability Modelling. Introduction and Markov chains. Continuous time. Markov property

Stochastic processes. MAS275 Probability Modelling. Introduction and Markov chains. Continuous time. Markov property Chapter 1: and Markov chains Stochastic processes We study stochastic processes, which are families of random variables describing the evolution of a quantity with time. In some situations, we can treat

More information

Characterization and inference of weighted graph topologies from observations of diffused signals

Characterization and inference of weighted graph topologies from observations of diffused signals Characterization and inference of weighted graph topologies from observations of diffused signals Bastien Pasdeloup*, Vincent Gripon*, Grégoire Mercier*, Dominique Pastor*, Michael G. Rabbat** * name.surname@telecom-bretagne.eu

More information

Distributed Particle Filters: Stability Results and Graph-based Compression of Weighted Particle Clouds

Distributed Particle Filters: Stability Results and Graph-based Compression of Weighted Particle Clouds Distributed Particle Filters: Stability Results and Graph-based Compression of Weighted Particle Clouds Michael Rabbat Joint with: Syamantak Datta Gupta and Mark Coates (McGill), and Stephane Blouin (DRDC)

More information

Better Simulation Metamodeling: The Why, What and How of Stochastic Kriging

Better Simulation Metamodeling: The Why, What and How of Stochastic Kriging Better Simulation Metamodeling: The Why, What and How of Stochastic Kriging Jeremy Staum Collaborators: Bruce Ankenman, Barry Nelson Evren Baysal, Ming Liu, Wei Xie supported by the NSF under Grant No.

More information

The Laplacian PDF Distance: A Cost Function for Clustering in a Kernel Feature Space

The Laplacian PDF Distance: A Cost Function for Clustering in a Kernel Feature Space The Laplacian PDF Distance: A Cost Function for Clustering in a Kernel Feature Space Robert Jenssen, Deniz Erdogmus 2, Jose Principe 2, Torbjørn Eltoft Department of Physics, University of Tromsø, Norway

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 13: Learning in Gaussian Graphical Models, Non-Gaussian Inference, Monte Carlo Methods Some figures

More information

Laboratory 1 Discrete Cosine Transform and Karhunen-Loeve Transform

Laboratory 1 Discrete Cosine Transform and Karhunen-Loeve Transform Laboratory Discrete Cosine Transform and Karhunen-Loeve Transform Miaohui Wang, ID 55006952 Electronic Engineering, CUHK, Shatin, HK Oct. 26, 202 Objective, To investigate the usage of transform in visual

More information

Graphical Models. Outline. HMM in short. HMMs. What about continuous HMMs? p(o t q t ) ML 701. Anna Goldenberg ... t=1. !

Graphical Models. Outline. HMM in short. HMMs. What about continuous HMMs? p(o t q t ) ML 701. Anna Goldenberg ... t=1. ! Outline Graphical Models ML 701 nna Goldenberg! ynamic Models! Gaussian Linear Models! Kalman Filter! N! Undirected Models! Unification! Summary HMMs HMM in short! is a ayes Net hidden states! satisfies

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 2016 Robert Nowak Probabilistic Graphical Models 1 Introduction We have focused mainly on linear models for signals, in particular the subspace model x = Uθ, where U is a n k matrix and θ R k is a vector

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Spectral Graph Theory

Spectral Graph Theory Spectral Graph Theory Aaron Mishtal April 27, 2016 1 / 36 Outline Overview Linear Algebra Primer History Theory Applications Open Problems Homework Problems References 2 / 36 Outline Overview Linear Algebra

More information

CSE 291. Assignment Spectral clustering versus k-means. Out: Wed May 23 Due: Wed Jun 13

CSE 291. Assignment Spectral clustering versus k-means. Out: Wed May 23 Due: Wed Jun 13 CSE 291. Assignment 3 Out: Wed May 23 Due: Wed Jun 13 3.1 Spectral clustering versus k-means Download the rings data set for this problem from the course web site. The data is stored in MATLAB format as

More information

LOSSLESS INTRA CODING IN HEVC WITH INTEGER-TO-INTEGER DST. Fatih Kamisli. Middle East Technical University Ankara, Turkey

LOSSLESS INTRA CODING IN HEVC WITH INTEGER-TO-INTEGER DST. Fatih Kamisli. Middle East Technical University Ankara, Turkey LOSSLESS INTRA CODING IN HEVC WITH INTEGER-TO-INTEGER DST Fatih Kamisli Middle East Technical University Ankara, Turkey ABSTRACT It is desirable to support efficient lossless coding within video coding

More information

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout :. The Multivariate Gaussian & Decision Boundaries..15.1.5 1 8 6 6 8 1 Mark Gales mjfg@eng.cam.ac.uk Lent

More information

arxiv: v1 [cs.it] 26 Sep 2018

arxiv: v1 [cs.it] 26 Sep 2018 SAPLING THEORY FOR GRAPH SIGNALS ON PRODUCT GRAPHS Rohan A. Varma, Carnegie ellon University rohanv@andrew.cmu.edu Jelena Kovačević, NYU Tandon School of Engineering jelenak@nyu.edu arxiv:809.009v [cs.it]

More information

8.1 Concentration inequality for Gaussian random matrix (cont d)

8.1 Concentration inequality for Gaussian random matrix (cont d) MGMT 69: Topics in High-dimensional Data Analysis Falll 26 Lecture 8: Spectral clustering and Laplacian matrices Lecturer: Jiaming Xu Scribe: Hyun-Ju Oh and Taotao He, October 4, 26 Outline Concentration

More information

Gaussian Graphical Models and Graphical Lasso

Gaussian Graphical Models and Graphical Lasso ELE 538B: Sparsity, Structure and Inference Gaussian Graphical Models and Graphical Lasso Yuxin Chen Princeton University, Spring 2017 Multivariate Gaussians Consider a random vector x N (0, Σ) with pdf

More information

Learning Graphs from Data: A Signal Representation Perspective

Learning Graphs from Data: A Signal Representation Perspective 1 Learning Graphs from Data: A Signal Representation Perspective Xiaowen Dong*, Dorina Thanou*, Michael Rabbat, and Pascal Frossard arxiv:1806.00848v1 [cs.lg] 3 Jun 2018 The construction of a meaningful

More information

Learning from Sensor Data: Set II. Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University

Learning from Sensor Data: Set II. Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University Learning from Sensor Data: Set II Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University 1 6. Data Representation The approach for learning from data Probabilistic

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Gaussian graphical models and Ising models: modeling networks Eric Xing Lecture 0, February 7, 04 Reading: See class website Eric Xing @ CMU, 005-04

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 12: Gaussian Belief Propagation, State Space Models and Kalman Filters Guest Kalman Filter Lecture by

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 622 - Section 2 - Spring 27 Pre-final Review Jan-Willem van de Meent Feedback Feedback https://goo.gl/er7eo8 (also posted on Piazza) Also, please fill out your TRACE evaluations!

More information

Manifold Regularization

Manifold Regularization 9.520: Statistical Learning Theory and Applications arch 3rd, 200 anifold Regularization Lecturer: Lorenzo Rosasco Scribe: Hooyoung Chung Introduction In this lecture we introduce a class of learning algorithms,

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

3 : Representation of Undirected GM

3 : Representation of Undirected GM 10-708: Probabilistic Graphical Models 10-708, Spring 2016 3 : Representation of Undirected GM Lecturer: Eric P. Xing Scribes: Longqi Cai, Man-Chia Chang 1 MRF vs BN There are two types of graphical models:

More information

Bayesian Learning in Undirected Graphical Models

Bayesian Learning in Undirected Graphical Models Bayesian Learning in Undirected Graphical Models Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK http://www.gatsby.ucl.ac.uk/ Work with: Iain Murray and Hyun-Chul

More information

12. Cholesky factorization

12. Cholesky factorization L. Vandenberghe ECE133A (Winter 2018) 12. Cholesky factorization positive definite matrices examples Cholesky factorization complex positive definite matrices kernel methods 12-1 Definitions a symmetric

More information

Compression methods: the 1 st generation

Compression methods: the 1 st generation Compression methods: the 1 st generation 1998-2017 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Still1g 2017 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 32 Basic

More information

Spectral Clustering. Guokun Lai 2016/10

Spectral Clustering. Guokun Lai 2016/10 Spectral Clustering Guokun Lai 2016/10 1 / 37 Organization Graph Cut Fundamental Limitations of Spectral Clustering Ng 2002 paper (if we have time) 2 / 37 Notation We define a undirected weighted graph

More information

7. Variable extraction and dimensionality reduction

7. Variable extraction and dimensionality reduction 7. Variable extraction and dimensionality reduction The goal of the variable selection in the preceding chapter was to find least useful variables so that it would be possible to reduce the dimensionality

More information

Advances in Manifold Learning Presented by: Naku Nak l Verm r a June 10, 2008

Advances in Manifold Learning Presented by: Naku Nak l Verm r a June 10, 2008 Advances in Manifold Learning Presented by: Nakul Verma June 10, 008 Outline Motivation Manifolds Manifold Learning Random projection of manifolds for dimension reduction Introduction to random projections

More information

Approximate Message Passing

Approximate Message Passing Approximate Message Passing Mohammad Emtiyaz Khan CS, UBC February 8, 2012 Abstract In this note, I summarize Sections 5.1 and 5.2 of Arian Maleki s PhD thesis. 1 Notation We denote scalars by small letters

More information

Video Coding with Motion Compensation for Groups of Pictures

Video Coding with Motion Compensation for Groups of Pictures International Conference on Image Processing 22 Video Coding with Motion Compensation for Groups of Pictures Markus Flierl Telecommunications Laboratory University of Erlangen-Nuremberg mflierl@stanford.edu

More information

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 7: Learning Fully Observed BNs Theo Rekatsinas 1 Exponential family: a basic building block For a numeric random variable X p(x ) =h(x)exp T T (x) A( ) = 1

More information

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH Hoang Trang 1, Tran Hoang Loc 1 1 Ho Chi Minh City University of Technology-VNU HCM, Ho Chi

More information

A New Space for Comparing Graphs

A New Space for Comparing Graphs A New Space for Comparing Graphs Anshumali Shrivastava and Ping Li Cornell University and Rutgers University August 18th 2014 Anshumali Shrivastava and Ping Li ASONAM 2014 August 18th 2014 1 / 38 Main

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

Power Grid Partitioning: Static and Dynamic Approaches

Power Grid Partitioning: Static and Dynamic Approaches Power Grid Partitioning: Static and Dynamic Approaches Miao Zhang, Zhixin Miao, Lingling Fan Department of Electrical Engineering University of South Florida Tampa FL 3320 miaozhang@mail.usf.edu zmiao,

More information

MLCC Clustering. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC Clustering. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 - Clustering Lorenzo Rosasco UNIGE-MIT-IIT About this class We will consider an unsupervised setting, and in particular the problem of clustering unlabeled data into coherent groups. MLCC 2018

More information

CS 556: Computer Vision. Lecture 13

CS 556: Computer Vision. Lecture 13 CS 556: Computer Vision Lecture 1 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Outline Perceptual grouping Low-level segmentation Ncuts Perceptual Grouping What do you see? 4 What do you see? Rorschach

More information

Machine Learning for Data Science (CS4786) Lecture 11

Machine Learning for Data Science (CS4786) Lecture 11 Machine Learning for Data Science (CS4786) Lecture 11 Spectral clustering Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ ANNOUNCEMENT 1 Assignment P1 the Diagnostic assignment 1 will

More information

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics Spectral Graph Theory and You: and Centrality Metrics Jonathan Gootenberg March 11, 2013 1 / 19 Outline of Topics 1 Motivation Basics of Spectral Graph Theory Understanding the characteristic polynomial

More information

SPECTRAL ANOMALY DETECTION USING GRAPH-BASED FILTERING FOR WIRELESS SENSOR NETWORKS. Hilmi E. Egilmez and Antonio Ortega

SPECTRAL ANOMALY DETECTION USING GRAPH-BASED FILTERING FOR WIRELESS SENSOR NETWORKS. Hilmi E. Egilmez and Antonio Ortega SPECTRAL ANOMALY DETECTION USING GRAPH-BASED FILTERING FOR WIRELESS SENSOR NETWORKS Hilmi E. Egilmez and Antonio Ortega Signal and Image Processing Institute, University of Southern California hegilmez@usc.edu,

More information

CSC411 Fall 2018 Homework 5

CSC411 Fall 2018 Homework 5 Homework 5 Deadline: Wednesday, Nov. 4, at :59pm. Submission: You need to submit two files:. Your solutions to Questions and 2 as a PDF file, hw5_writeup.pdf, through MarkUs. (If you submit answers to

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Linear Algebra in Computer Vision. Lecture2: Basic Linear Algebra & Probability. Vector. Vector Operations

Linear Algebra in Computer Vision. Lecture2: Basic Linear Algebra & Probability. Vector. Vector Operations Linear Algebra in Computer Vision CSED441:Introduction to Computer Vision (2017F Lecture2: Basic Linear Algebra & Probability Bohyung Han CSE, POSTECH bhhan@postech.ac.kr Mathematics in vector space Linear

More information

Introduction to Probabilistic Graphical Models

Introduction to Probabilistic Graphical Models Introduction to Probabilistic Graphical Models Sargur Srihari srihari@cedar.buffalo.edu 1 Topics 1. What are probabilistic graphical models (PGMs) 2. Use of PGMs Engineering and AI 3. Directionality in

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

Image Analysis & Retrieval. CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W Lec 15. Graph Laplacian Embedding

Image Analysis & Retrieval. CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W Lec 15. Graph Laplacian Embedding Image Analysis & Retrieval CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W 4-5:15pm@Bloch 0012 Lec 15 Graph Laplacian Embedding Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu,

More information

Spectral Generative Models for Graphs

Spectral Generative Models for Graphs Spectral Generative Models for Graphs David White and Richard C. Wilson Department of Computer Science University of York Heslington, York, UK wilson@cs.york.ac.uk Abstract Generative models are well known

More information

Finding normalized and modularity cuts by spectral clustering. Ljubjana 2010, October

Finding normalized and modularity cuts by spectral clustering. Ljubjana 2010, October Finding normalized and modularity cuts by spectral clustering Marianna Bolla Institute of Mathematics Budapest University of Technology and Economics marib@math.bme.hu Ljubjana 2010, October Outline Find

More information

Inverse Imaging Problems using Graph-Signal Smoothness Priors

Inverse Imaging Problems using Graph-Signal Smoothness Priors Gene Cheung National Institute of Informatics nd September, 6 Inverse Imaging Problems using Graph-Signal Smoothness Priors. PKU Visit 9//6 Acknowledgement Collaborators: B. Motz, Y. Mao, Y. Ji (NII, Japan)

More information

On the inverse matrix of the Laplacian and all ones matrix

On the inverse matrix of the Laplacian and all ones matrix On the inverse matrix of the Laplacian and all ones matrix Sho Suda (Joint work with Michio Seto and Tetsuji Taniguchi) International Christian University JSPS Research Fellow PD November 21, 2012 Sho

More information

A PROBABILISTIC INTERPRETATION OF SAMPLING THEORY OF GRAPH SIGNALS. Akshay Gadde and Antonio Ortega

A PROBABILISTIC INTERPRETATION OF SAMPLING THEORY OF GRAPH SIGNALS. Akshay Gadde and Antonio Ortega A PROBABILISTIC INTERPRETATION OF SAMPLING THEORY OF GRAPH SIGNALS Akshay Gadde and Antonio Ortega Department of Electrical Engineering University of Southern California, Los Angeles Email: agadde@usc.edu,

More information

Data Mining and Matrices

Data Mining and Matrices Data Mining and Matrices 08 Boolean Matrix Factorization Rainer Gemulla, Pauli Miettinen June 13, 2013 Outline 1 Warm-Up 2 What is BMF 3 BMF vs. other three-letter abbreviations 4 Binary matrices, tiles,

More information

LEARNING DYNAMIC SYSTEMS: MARKOV MODELS

LEARNING DYNAMIC SYSTEMS: MARKOV MODELS LEARNING DYNAMIC SYSTEMS: MARKOV MODELS Markov Process and Markov Chains Hidden Markov Models Kalman Filters Types of dynamic systems Problem of future state prediction Predictability Observability Easily

More information

Algorithmisches Lernen/Machine Learning

Algorithmisches Lernen/Machine Learning Algorithmisches Lernen/Machine Learning Part 1: Stefan Wermter Introduction Connectionist Learning (e.g. Neural Networks) Decision-Trees, Genetic Algorithms Part 2: Norman Hendrich Support-Vector Machines

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

The weighted spectral distribution; A graph metric with applications. Dr. Damien Fay. SRG group, Computer Lab, University of Cambridge.

The weighted spectral distribution; A graph metric with applications. Dr. Damien Fay. SRG group, Computer Lab, University of Cambridge. The weighted spectral distribution; A graph metric with applications. Dr. Damien Fay. SRG group, Computer Lab, University of Cambridge. A graph metric: motivation. Graph theory statistical modelling Data

More information

Message-Passing Algorithms for GMRFs and Non-Linear Optimization

Message-Passing Algorithms for GMRFs and Non-Linear Optimization Message-Passing Algorithms for GMRFs and Non-Linear Optimization Jason Johnson Joint Work with Dmitry Malioutov, Venkat Chandrasekaran and Alan Willsky Stochastic Systems Group, MIT NIPS Workshop: Approximate

More information

Graphs, Vectors, and Matrices Daniel A. Spielman Yale University. AMS Josiah Willard Gibbs Lecture January 6, 2016

Graphs, Vectors, and Matrices Daniel A. Spielman Yale University. AMS Josiah Willard Gibbs Lecture January 6, 2016 Graphs, Vectors, and Matrices Daniel A. Spielman Yale University AMS Josiah Willard Gibbs Lecture January 6, 2016 From Applied to Pure Mathematics Algebraic and Spectral Graph Theory Sparsification: approximating

More information

Probabilistic Graphical Models (I)

Probabilistic Graphical Models (I) Probabilistic Graphical Models (I) Hongxin Zhang zhx@cad.zju.edu.cn State Key Lab of CAD&CG, ZJU 2015-03-31 Probabilistic Graphical Models Modeling many real-world problems => a large number of random

More information

https://goo.gl/kfxweg KYOTO UNIVERSITY Statistical Machine Learning Theory Sparsity Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT OF INTELLIGENCE SCIENCE AND TECHNOLOGY 1 KYOTO UNIVERSITY Topics:

More information

A New Spectral Technique Using Normalized Adjacency Matrices for Graph Matching 1

A New Spectral Technique Using Normalized Adjacency Matrices for Graph Matching 1 CHAPTER-3 A New Spectral Technique Using Normalized Adjacency Matrices for Graph Matching Graph matching problem has found many applications in areas as diverse as chemical structure analysis, pattern

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 26, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 55 High dimensional

More information

Markov random fields. The Markov property

Markov random fields. The Markov property Markov random fields The Markov property Discrete time: (X k X k!1,x k!2,... = (X k X k!1 A time symmetric version: (X k! X!k = (X k X k!1,x k+1 A more general version: Let A be a set of indices >k, B

More information

Leonardo R. Bachega*, Srikanth Hariharan, Charles A. Bouman, Fellow, IEEE, and Ness Shroff, Fellow, IEEE

Leonardo R. Bachega*, Srikanth Hariharan, Charles A. Bouman, Fellow, IEEE, and Ness Shroff, Fellow, IEEE Distributed Signal Decorrelation and Detection in Multi View Camera Networks Using the Vector Sparse Matrix Transform Leonardo R. Bachega, Srikanth Hariharan, Charles A. Bouman, Fellow, IEEE, and Ness

More information

Dimension Reduction. David M. Blei. April 23, 2012

Dimension Reduction. David M. Blei. April 23, 2012 Dimension Reduction David M. Blei April 23, 2012 1 Basic idea Goal: Compute a reduced representation of data from p -dimensional to q-dimensional, where q < p. x 1,...,x p z 1,...,z q (1) We want to do

More information

GRAPH ERROR EFFECT IN GRAPH SIGNAL PROCESSING. Jari Miettinen, Sergiy A. Vorobyov, and Esa Ollila

GRAPH ERROR EFFECT IN GRAPH SIGNAL PROCESSING. Jari Miettinen, Sergiy A. Vorobyov, and Esa Ollila GRAPH ERROR EFFECT IN GRAPH SIGNAL PROCESSING Jari Miettinen, Sergiy A. Vorobyov, and Esa Ollila Department of Signal Processing and Acoustics, Aalto University, P.O. Box 15400, FIN-00076 Aalto ABSTRACT

More information