Bayesian Learning in Undirected Graphical Models

Size: px
Start display at page:

Download "Bayesian Learning in Undirected Graphical Models"

Transcription

1 Bayesian Learning in Undirected Graphical Models Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK Work with: Iain Murray and Hyun-Chul Kim Max Planck Institute, Tübingen Sept 2003

2 Undirected Graphical Models An Undirected Graphical Model (UGM; or Markov Network) is a graphical representation of the dependence relationships between a set of random variables. In an UGM, the joint probability over M variables x = [x 1,..., x M ], can be written in a factored form: p(x) = 1 Z J j=1 g j (x Cj ) Here the g j are non-negative potential functions over subsets of variables C j {1,..., M} and the notation: x S [x m : m S]. The normalization constant (a.k.a. partition function) is Z = x We represent this type of probabilistic model graphically. g j (x Cj ) Graph Definition: Let each variable be a node. Connect nodes i and k if there exists a set C j such that both i C j and k C j. These sets form the cliques of the graph (fully connected subgraphs). j

3 Undirected Graphical Models: An Example A B C D E p(a, B, C, D, E) = 1 Z g(a, C)g(B, C, D)g(C, D, E) Markov Property: Every node is conditionally independent from its nonneighbors given its neighbors. Conditional Independence: A B C p(a B, C) = p(a C) for p(b, C) > 0 also A B C p(a, B C) = p(a C)p(B C).

4 Applications of Undirected Graphical Models Markov Random Fields in Vision, Bioinformatics Conditional Random Fields, and Exponential Language Models, e.g.: { } p(s) = 1 Z p 0(s) exp λ i f i (s) i Products of Experts: p(x) = 1 Z Semi-Supervised Learning: p j (x θ j ) j Boltzmann Machines

5 Boltzmann Machines Undirected graph over a vector of binary variables s i {0, 1}. Variables can be hidden or visible (observed). p(s W ) = 1 Z exp W ij s i s j j<i where Z is the partition function (normalizer) Z = s exp{ j<i W ij s i s j } Usual learning algorithm: Maximum Likelihood using approximate EM.

6 Bayesian Learning Prior over parameters: p(w ) Posterior over parameters, given data set S = {s (1),... s (N) }, p(w S) = p(w )p(s W ) p(s) Model Comparison (for example for two different graph structures m, m ) using Bayes factors: p(m S) p(m S) = p(m) p(s m) p(m ) p(s m ) where the marginal likelihood is: p(s m) = p(s W, m)p(w m) dw

7 Why Bayesian Learning? Useful prior knowledge can be included (e.g. sparsity, domain knowledge) More robust to overfitting (because nothing needs to be fit) Error bars on all parameters, and predictions Model and feature selection

8 A Simple Idea Define the following joint distribution of weights W and matrix of binary variables S, organized into N rows (data vectors) and M columns (features, variables). Some variables on some data points may be hidden and some may be observed. p(s, W ) = 1 Z exp 1 2σ 2 M i,j=1 W 2 ij + N n=1 M W ij s ni s nj j<i Where Z = dw S exp{...} is a nasty partition function. Gibbs sampling in this model is very easy! Gibbs sample s ni given all other s and W : Bernouilli, easy as usual. Gibbs sample W given s: diagonal multivariate Gaussian, easy as well. What is wrong with this approach?

9 ...a Strange Prior on W p(s, W ) = 1 Z exp 1 2σ 2 M i,j=1 W 2 ij + N n=1 M W ij s ni s nj This defines a Boltzmann machine for the data given W, but defines a somewhat strange and hard to compute prior on the weights. What is the prior on W? p(w ) = S p(s, W ) N(0, σ 2 I) S j<i exp n,j<i W ij s ni s nj where the second factor is data-size dependent, so it s not a valid hierarchical Bayesian model of the kind W S. The second factor can be written as: exp S n,j<i This will not work! W ij s ni s nj = s exp W ij s i s j j<i N = Z(W ) N

10 Three Families of Approximations In order to do Bayesian inference in undirected models with nontrivial partition functions we can develop three classes of methods: Approximate Partition Function: Z(W ) = exp W ij s i s j s Approximate Ratio of Partition Functions. Z(W ) Z(W ) = p(s W ) exp (W ij W ij) s i s j s j<i j<i Approximate Gradients. ln Z(W ) W ij = s p(s W ) s i s j The above quantities can be approximated using modern tools developed in the machine learning/statistics/physics communities. Surprisingly, none of the following methods have been explored!

11 I. Metropolis with Nested Sampling Simplest sampling approach: Metropolis Sampling Start with random weight matrix W Perturb it with a small-radius Gaussian proposal distribution W W Accept the change with probability min [1, a], where a = p (S W ) p (W ) p (S W ) p (W ) = ( ) N Z(W ) Z(W exp ) n,i<j ( W ij W ij ) s (n) i s (n) j p (W ) p (W ) The partition function ratio is nasty. But one can estimate it using an MCMC sampling inner loop: Z(W ) Z(W ) = s exp { j<i W ijs i s j } s exp { j<i W ij s is j } = too slow: inner loop can take exponential time exp (W ij W ij)s i s j j<i p(s W )

12 II. Naive Mean-Field Metropolis Same as above, but use naive mean-field to estimate the partition function. Jensen s inequality gives us: ln Z(W ) = ln s exp{ j<i W ij s i s j } s q(s) j<i W ij s i s j + H(q) = F (W, q) where q(s) = i ms i i (1 m i) (1 s i) and H is the entropy. Gradient-based variant: use expectations to compute approximate gradients

13 III. Tree Mean-Field Metropolis Same as above, but use tree-structured mean-field to estimate the partition function. Jensen s inequality gives us: ln Z(W ) = ln s exp{ j<i W ij s i s j } s q(s) j<i W ij s i s j + H(q) = F (W, q) where q(s) Q tree, the set of tree-structured distributions and H is the entropy. Gradient-based variant: use expectations to compute approximate gradients

14 IV. Loopy Metropolis Belief Propagation (BP) is an exact method for inference on trees. Run belief propagation (BP) on the (loopy) graph and use the Bethe free energy as an estimate of Z(W ). Loopy BP provides on non-trees: 1. approximate marginals b i p (s i W ) 2. approximate pairwise marginals b ij p (s i, s j W ) These marginals are fixed points of the Bethe Free energy F Bethe = U H Bethe log Z(W ) where U is the expected energy and the approximate entropy is: H Bethe = (ij) s i,s j b ij (s i, s j ) log b ij (s i, s j ) (1 ne(i)) b i (s i ) log b i (s i ). s i i Gradient-based variant: use expectations to compute approximate gradients

15 V. The Langevin MCMC Sampling Procedure So far, we ve been describing Metropolis procedures, but these suffer from random walk behaviour. Langevin makes use of gradient information and resembles noisy steepest descent. This is uncorrected Langevin: W ij = W ij + ɛ2 2 W ij log p(s, W ) + ɛ n ij where n N (0, 1). There are many ways of estimating gradients, but we use a method based on Contrastive Divergence (Hinton, 2000).

16 VI. Pseudo-Likelihood Based Approximations p(s W ) = 1 Z(W ) exp The pseudo-likelihood is defined as W ij s i s j j<i p(s W ) i p(s i s \i, W ) = i exp{s i j i W ijs j } 1 + exp{ j i W ijs j } We can consider pseudo-likelihood based approximations to Z(W ): Z(W ) exp W ij s i s j = 1 + exp W ij s j j<i i s &ne(s ) One can approximate Z(W ) by summing over larger neighborhoods of the MAP s, or by summing in the nighborhood of the data points s (n) which is closely related to Contrastive Divergence. This has not been tried yet one can design many other approaches. j i

17 Naive Mean Field vs Tree Mean Field Approximation more sparse (n=10, 0.3 large weights) mf tree mf tree more dense (n = 10, 0.6 large weights) approx F < log Z(W) log Z(W) true log Z(W) approx F < log Z(W) The tree based approximation found a maximum spanning tree and then used Wiegerinck s (UAI, 2000) variational approximation.

18 Bethe Free Energy Plots of Z Bethe vs Z true for some independently drawn Boltzmann machines Points in red show where belief propagation failed to converge. No hacks were applied to fix up the results; there are ways in the literature.

19 Results on Coronary Heart Disease Data Classic data set of 6 binary variables detailing risk factors for coronary heart disease in 1841 men. Small enough exact Z(W ) can be computed. 1 Blue: exact; Red: Langevin with Contrastive Divergence; Purple: loopy Metropolis. mean field tree W AA W AB W AC W AD W AE W AF W BB W BC W BD W BE W BF W CC W CD W CE W CF W DD W DE W DF W EE W EF W FF samples; local Metropolis proposals 0.01 variance; Langevin step = 0.01.

20 Results on Synthetic Data Sets 100 node random network. 204 and 500 edge systems. Weights N (0, 1). 100 data points. Dashed Blue: Loopy Metropolis; Black: Langevin with Contrastive Divergence; Red: true f is fraction of samples within ±0.1 of true parameter value (higher is better): f f Parameters Parameters

21 Part II: Summary and Future Directions The problem of Bayesian learning in large tree-width undirected models (loglinear models) appears to have been completely overlooked (!?) Standard MCMC procedures are intractable due to the need to compute partition functions at each step. This problem offers a natural opportunity for combining modern deterministic approximations with MCMC. We have use known ideas to develop a variety of novel methods for approximate MCMC sampling for parameters of undirected models. Naive mean field and tree-based mean field Metropolis do not seem to work. Wander into areas of poor approximation (loose bound). The loopy Metropolis and contrastive Langevin both seem to work well. Potential applications to text modelling and computer vision. There is still a lot to do in this area!

22 End of Talk

23 Appendix

24 Contrastive Divergence 2 The gradient for maximum likelihood learning: becomes log p (s W ) W kl s k s l Data s k s l p(s W ) log p (s W ) W kl s k s l p0 (W ) s ks l p (W ) s k s l p0 (W ) s ks l p1 (W ) where p n (W ) is defined to be the distribution obtained at the n th step of Gibbs sampling starting from the data. 2 Hinton (2000)

25 Contrastive Divergence for Bayesian Learning A pretty accurate Taylor expansion makes the comparison easier: log a + log p (W ) } {δ p (W ) = N s k s l p0 (W ) log exp δs ks l, p (W ) { } Nδ s k s l p0 (W ) s ks l, p (W ) It is now tempting to try: log a + log p (W ) } { s p (W ) = Nδ k s l p0 (W ) s ks l, p1 (W ) We will call this contrastive sampling.

Bayesian Learning in Undirected Graphical Models

Bayesian Learning in Undirected Graphical Models Bayesian Learning in Undirected Graphical Models Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK http://www.gatsby.ucl.ac.uk/ and Center for Automated Learning and

More information

Bayesian Learning in Undirected Graphical Models: Approximate MCMC algorithms

Bayesian Learning in Undirected Graphical Models: Approximate MCMC algorithms Bayesian Learning in Undirected Graphical Models: Approximate MCMC algorithms Iain Murray and Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, London WC1N 3AR, UK http://www.gatsby.ucl.ac.uk/

More information

The Origin of Deep Learning. Lili Mou Jan, 2015

The Origin of Deep Learning. Lili Mou Jan, 2015 The Origin of Deep Learning Lili Mou Jan, 2015 Acknowledgment Most of the materials come from G. E. Hinton s online course. Outline Introduction Preliminary Boltzmann Machines and RBMs Deep Belief Nets

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Variational Inference II: Mean Field Method and Variational Principle Junming Yin Lecture 15, March 7, 2012 X 1 X 1 X 1 X 1 X 2 X 3 X 2 X 2 X 3

More information

Active and Semi-supervised Kernel Classification

Active and Semi-supervised Kernel Classification Active and Semi-supervised Kernel Classification Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London Work done in collaboration with Xiaojin Zhu (CMU), John Lafferty (CMU),

More information

Probabilistic and Bayesian Machine Learning

Probabilistic and Bayesian Machine Learning Probabilistic and Bayesian Machine Learning Day 4: Expectation and Belief Propagation Yee Whye Teh ywteh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London http://www.gatsby.ucl.ac.uk/

More information

Lecture 6: Graphical Models

Lecture 6: Graphical Models Lecture 6: Graphical Models Kai-Wei Chang CS @ Uniersity of Virginia kw@kwchang.net Some slides are adapted from Viek Skirmar s course on Structured Prediction 1 So far We discussed sequence labeling tasks:

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

13: Variational inference II

13: Variational inference II 10-708: Probabilistic Graphical Models, Spring 2015 13: Variational inference II Lecturer: Eric P. Xing Scribes: Ronghuo Zheng, Zhiting Hu, Yuntian Deng 1 Introduction We started to talk about variational

More information

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 3: Learning parameters and structure Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ Department of Engineering University of Cambridge,

More information

Lecture 9: PGM Learning

Lecture 9: PGM Learning 13 Oct 2014 Intro. to Stats. Machine Learning COMP SCI 4401/7401 Table of Contents I Learning parameters in MRFs 1 Learning parameters in MRFs Inference and Learning Given parameters (of potentials) and

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Bayesian Model Comparison Zoubin Ghahramani zoubin@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc in Intelligent Systems, Dept Computer Science University College

More information

Chapter 16. Structured Probabilistic Models for Deep Learning

Chapter 16. Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 1 Chapter 16 Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 2 Structured Probabilistic Models way of using graphs to describe

More information

Statistical Approaches to Learning and Discovery

Statistical Approaches to Learning and Discovery Statistical Approaches to Learning and Discovery Graphical Models Zoubin Ghahramani & Teddy Seidenfeld zoubin@cs.cmu.edu & teddy@stat.cmu.edu CALD / CS / Statistics / Philosophy Carnegie Mellon University

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

Bayesian Machine Learning - Lecture 7

Bayesian Machine Learning - Lecture 7 Bayesian Machine Learning - Lecture 7 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 4, 2015 Today s lecture 1

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

Lecture 13 : Variational Inference: Mean Field Approximation

Lecture 13 : Variational Inference: Mean Field Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2017 Lecture 13 : Variational Inference: Mean Field Approximation Lecturer: Willie Neiswanger Scribes: Xupeng Tong, Minxing Liu 1 Problem Setup 1.1

More information

13 : Variational Inference: Loopy Belief Propagation and Mean Field

13 : Variational Inference: Loopy Belief Propagation and Mean Field 10-708: Probabilistic Graphical Models 10-708, Spring 2012 13 : Variational Inference: Loopy Belief Propagation and Mean Field Lecturer: Eric P. Xing Scribes: Peter Schulam and William Wang 1 Introduction

More information

CSC2535: Computation in Neural Networks Lecture 7: Variational Bayesian Learning & Model Selection

CSC2535: Computation in Neural Networks Lecture 7: Variational Bayesian Learning & Model Selection CSC2535: Computation in Neural Networks Lecture 7: Variational Bayesian Learning & Model Selection (non-examinable material) Matthew J. Beal February 27, 2004 www.variational-bayes.org Bayesian Model Selection

More information

Lecture 16 Deep Neural Generative Models

Lecture 16 Deep Neural Generative Models Lecture 16 Deep Neural Generative Models CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 22, 2017 Approach so far: We have considered simple models and then constructed

More information

Variational Scoring of Graphical Model Structures

Variational Scoring of Graphical Model Structures Variational Scoring of Graphical Model Structures Matthew J. Beal Work with Zoubin Ghahramani & Carl Rasmussen, Toronto. 15th September 2003 Overview Bayesian model selection Approximations using Variational

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graph model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Probabilistic Graphical Models (I)

Probabilistic Graphical Models (I) Probabilistic Graphical Models (I) Hongxin Zhang zhx@cad.zju.edu.cn State Key Lab of CAD&CG, ZJU 2015-03-31 Probabilistic Graphical Models Modeling many real-world problems => a large number of random

More information

Deep unsupervised learning

Deep unsupervised learning Deep unsupervised learning Advanced data-mining Yongdai Kim Department of Statistics, Seoul National University, South Korea Unsupervised learning In machine learning, there are 3 kinds of learning paradigm.

More information

Fractional Belief Propagation

Fractional Belief Propagation Fractional Belief Propagation im iegerinck and Tom Heskes S, niversity of ijmegen Geert Grooteplein 21, 6525 EZ, ijmegen, the etherlands wimw,tom @snn.kun.nl Abstract e consider loopy belief propagation

More information

Graphical models: parameter learning

Graphical models: parameter learning Graphical models: parameter learning Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London London WC1N 3AR, England http://www.gatsby.ucl.ac.uk/ zoubin/ zoubin@gatsby.ucl.ac.uk

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Learning Energy-Based Models of High-Dimensional Data

Learning Energy-Based Models of High-Dimensional Data Learning Energy-Based Models of High-Dimensional Data Geoffrey Hinton Max Welling Yee-Whye Teh Simon Osindero www.cs.toronto.edu/~hinton/energybasedmodelsweb.htm Discovering causal structure as a goal

More information

Machine Learning Lecture 14

Machine Learning Lecture 14 Many slides adapted from B. Schiele, S. Roth, Z. Gharahmani Machine Learning Lecture 14 Undirected Graphical Models & Inference 23.06.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Approximate Inference Part 1 of 2

Approximate Inference Part 1 of 2 Approximate Inference Part 1 of 2 Tom Minka Microsoft Research, Cambridge, UK Machine Learning Summer School 2009 http://mlg.eng.cam.ac.uk/mlss09/ Bayesian paradigm Consistent use of probability theory

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 9: Variational Inference Relaxations Volkan Cevher, Matthias Seeger Ecole Polytechnique Fédérale de Lausanne 24/10/2011 (EPFL) Graphical Models 24/10/2011 1 / 15

More information

Approximate Inference Part 1 of 2

Approximate Inference Part 1 of 2 Approximate Inference Part 1 of 2 Tom Minka Microsoft Research, Cambridge, UK Machine Learning Summer School 2009 http://mlg.eng.cam.ac.uk/mlss09/ 1 Bayesian paradigm Consistent use of probability theory

More information

Undirected Graphical Models: Markov Random Fields

Undirected Graphical Models: Markov Random Fields Undirected Graphical Models: Markov Random Fields 40-956 Advanced Topics in AI: Probabilistic Graphical Models Sharif University of Technology Soleymani Spring 2015 Markov Random Field Structure: undirected

More information

Variational Inference. Sargur Srihari

Variational Inference. Sargur Srihari Variational Inference Sargur srihari@cedar.buffalo.edu 1 Plan of discussion We first describe inference with PGMs and the intractability of exact inference Then give a taxonomy of inference algorithms

More information

Inference as Optimization

Inference as Optimization Inference as Optimization Sargur Srihari srihari@cedar.buffalo.edu 1 Topics in Inference as Optimization Overview Exact Inference revisited The Energy Functional Optimizing the Energy Functional 2 Exact

More information

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graphical model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 2016 Robert Nowak Probabilistic Graphical Models 1 Introduction We have focused mainly on linear models for signals, in particular the subspace model x = Uθ, where U is a n k matrix and θ R k is a vector

More information

Does Better Inference mean Better Learning?

Does Better Inference mean Better Learning? Does Better Inference mean Better Learning? Andrew E. Gelfand, Rina Dechter & Alexander Ihler Department of Computer Science University of California, Irvine {agelfand,dechter,ihler}@ics.uci.edu Abstract

More information

Bayesian networks: approximate inference

Bayesian networks: approximate inference Bayesian networks: approximate inference Machine Intelligence Thomas D. Nielsen September 2008 Approximative inference September 2008 1 / 25 Motivation Because of the (worst-case) intractability of exact

More information

UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS

UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS JONATHAN YEDIDIA, WILLIAM FREEMAN, YAIR WEISS 2001 MERL TECH REPORT Kristin Branson and Ian Fasel June 11, 2003 1. Inference Inference problems

More information

Introduction to Restricted Boltzmann Machines

Introduction to Restricted Boltzmann Machines Introduction to Restricted Boltzmann Machines Ilija Bogunovic and Edo Collins EPFL {ilija.bogunovic,edo.collins}@epfl.ch October 13, 2014 Introduction Ingredients: 1. Probabilistic graphical models (undirected,

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Iain Murray murray@cs.toronto.edu CSC255, Introduction to Machine Learning, Fall 28 Dept. Computer Science, University of Toronto The problem Learn scalar function of

More information

Lecture 8: Bayesian Networks

Lecture 8: Bayesian Networks Lecture 8: Bayesian Networks Bayesian Networks Inference in Bayesian Networks COMP-652 and ECSE 608, Lecture 8 - January 31, 2017 1 Bayes nets P(E) E=1 E=0 0.005 0.995 E B P(B) B=1 B=0 0.01 0.99 E=0 E=1

More information

12 : Variational Inference I

12 : Variational Inference I 10-708: Probabilistic Graphical Models, Spring 2015 12 : Variational Inference I Lecturer: Eric P. Xing Scribes: Fattaneh Jabbari, Eric Lei, Evan Shapiro 1 Introduction Probabilistic inference is one of

More information

Bias-Variance Trade-Off in Hierarchical Probabilistic Models Using Higher-Order Feature Interactions

Bias-Variance Trade-Off in Hierarchical Probabilistic Models Using Higher-Order Feature Interactions - Trade-Off in Hierarchical Probabilistic Models Using Higher-Order Feature Interactions Simon Luo The University of Sydney Data61, CSIRO simon.luo@data61.csiro.au Mahito Sugiyama National Institute of

More information

Markov Networks.

Markov Networks. Markov Networks www.biostat.wisc.edu/~dpage/cs760/ Goals for the lecture you should understand the following concepts Markov network syntax Markov network semantics Potential functions Partition function

More information

Probabilistic Graphical Models. Guest Lecture by Narges Razavian Machine Learning Class April

Probabilistic Graphical Models. Guest Lecture by Narges Razavian Machine Learning Class April Probabilistic Graphical Models Guest Lecture by Narges Razavian Machine Learning Class April 14 2017 Today What is probabilistic graphical model and why it is useful? Bayesian Networks Basic Inference

More information

Learning in Markov Random Fields An Empirical Study

Learning in Markov Random Fields An Empirical Study Learning in Markov Random Fields An Empirical Study Sridevi Parise, Max Welling University of California, Irvine sparise,welling@ics.uci.edu Abstract Learning the parameters of an undirected graphical

More information

Bayesian Model Scoring in Markov Random Fields

Bayesian Model Scoring in Markov Random Fields Bayesian Model Scoring in Markov Random Fields Sridevi Parise Bren School of Information and Computer Science UC Irvine Irvine, CA 92697-325 sparise@ics.uci.edu Max Welling Bren School of Information and

More information

Bayesian Random Fields: The Bethe-Laplace Approximation

Bayesian Random Fields: The Bethe-Laplace Approximation Bayesian Random Fields: The Bethe-Laplace Approximation Max Welling Dept. of Computer Science UC Irvine Irvine CA 92697-3425 welling@ics.uci.edu Sridevi Parise Dept. of Computer Science UC Irvine Irvine

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

14 : Theory of Variational Inference: Inner and Outer Approximation

14 : Theory of Variational Inference: Inner and Outer Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 14 : Theory of Variational Inference: Inner and Outer Approximation Lecturer: Eric P. Xing Scribes: Yu-Hsin Kuo, Amos Ng 1 Introduction Last lecture

More information

bound on the likelihood through the use of a simpler variational approximating distribution. A lower bound is particularly useful since maximization o

bound on the likelihood through the use of a simpler variational approximating distribution. A lower bound is particularly useful since maximization o Category: Algorithms and Architectures. Address correspondence to rst author. Preferred Presentation: oral. Variational Belief Networks for Approximate Inference Wim Wiegerinck David Barber Stichting Neurale

More information

Alternative Parameterizations of Markov Networks. Sargur Srihari

Alternative Parameterizations of Markov Networks. Sargur Srihari Alternative Parameterizations of Markov Networks Sargur srihari@cedar.buffalo.edu 1 Topics Three types of parameterization 1. Gibbs Parameterization 2. Factor Graphs 3. Log-linear Models with Energy functions

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 4 Occam s Razor, Model Construction, and Directed Graphical Models https://people.orie.cornell.edu/andrew/orie6741 Cornell University September

More information

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, 2017 Spis treści Website Acknowledgments Notation xiii xv xix 1 Introduction 1 1.1 Who Should Read This Book?

More information

Junction Tree, BP and Variational Methods

Junction Tree, BP and Variational Methods Junction Tree, BP and Variational Methods Adrian Weller MLSALT4 Lecture Feb 21, 2018 With thanks to David Sontag (MIT) and Tony Jebara (Columbia) for use of many slides and illustrations For more information,

More information

p L yi z n m x N n xi

p L yi z n m x N n xi y i z n x n N x i Overview Directed and undirected graphs Conditional independence Exact inference Latent variables and EM Variational inference Books statistical perspective Graphical Models, S. Lauritzen

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 9 Undirected Models CS/CNS/EE 155 Andreas Krause Announcements Homework 2 due next Wednesday (Nov 4) in class Start early!!! Project milestones due Monday (Nov 9)

More information

Inference in Bayesian Networks

Inference in Bayesian Networks Andrea Passerini passerini@disi.unitn.it Machine Learning Inference in graphical models Description Assume we have evidence e on the state of a subset of variables E in the model (i.e. Bayesian Network)

More information

Lecture 15. Probabilistic Models on Graph

Lecture 15. Probabilistic Models on Graph Lecture 15. Probabilistic Models on Graph Prof. Alan Yuille Spring 2014 1 Introduction We discuss how to define probabilistic models that use richly structured probability distributions and describe how

More information

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 CS 2750: Machine Learning Bayesian Networks Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 Plan for today and next week Today and next time: Bayesian networks (Bishop Sec. 8.1) Conditional

More information

Learning Gaussian Process Models from Uncertain Data

Learning Gaussian Process Models from Uncertain Data Learning Gaussian Process Models from Uncertain Data Patrick Dallaire, Camille Besse, and Brahim Chaib-draa DAMAS Laboratory, Computer Science & Software Engineering Department, Laval University, Canada

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4 ECE52 Tutorial Topic Review ECE52 Winter 206 Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides ECE52 Tutorial ECE52 Winter 206 Credits to Alireza / 4 Outline K-means, PCA 2 Bayesian

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

13 : Variational Inference: Loopy Belief Propagation

13 : Variational Inference: Loopy Belief Propagation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 13 : Variational Inference: Loopy Belief Propagation Lecturer: Eric P. Xing Scribes: Rajarshi Das, Zhengzhong Liu, Dishan Gupta 1 Introduction

More information

Bayesian Hidden Markov Models and Extensions

Bayesian Hidden Markov Models and Extensions Bayesian Hidden Markov Models and Extensions Zoubin Ghahramani Department of Engineering University of Cambridge joint work with Matt Beal, Jurgen van Gael, Yunus Saatci, Tom Stepleton, Yee Whye Teh Modeling

More information

14 : Theory of Variational Inference: Inner and Outer Approximation

14 : Theory of Variational Inference: Inner and Outer Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2017 14 : Theory of Variational Inference: Inner and Outer Approximation Lecturer: Eric P. Xing Scribes: Maria Ryskina, Yen-Chia Hsu 1 Introduction

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

CS Lecture 8 & 9. Lagrange Multipliers & Varitional Bounds

CS Lecture 8 & 9. Lagrange Multipliers & Varitional Bounds CS 6347 Lecture 8 & 9 Lagrange Multipliers & Varitional Bounds General Optimization subject to: min ff 0() R nn ff ii 0, h ii = 0, ii = 1,, mm ii = 1,, pp 2 General Optimization subject to: min ff 0()

More information

Structure Learning in Markov Random Fields

Structure Learning in Markov Random Fields THIS IS A DRAFT VERSION. FINAL VERSION TO BE PUBLISHED AT NIPS 06 Structure Learning in Markov Random Fields Sridevi Parise Bren School of Information and Computer Science UC Irvine Irvine, CA 92697-325

More information

CSC 412 (Lecture 4): Undirected Graphical Models

CSC 412 (Lecture 4): Undirected Graphical Models CSC 412 (Lecture 4): Undirected Graphical Models Raquel Urtasun University of Toronto Feb 2, 2016 R Urtasun (UofT) CSC 412 Feb 2, 2016 1 / 37 Today Undirected Graphical Models: Semantics of the graph:

More information

Approximate inference, Sampling & Variational inference Fall Cours 9 November 25

Approximate inference, Sampling & Variational inference Fall Cours 9 November 25 Approimate inference, Sampling & Variational inference Fall 2015 Cours 9 November 25 Enseignant: Guillaume Obozinski Scribe: Basile Clément, Nathan de Lara 9.1 Approimate inference with MCMC 9.1.1 Gibbs

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Variational Inference IV: Variational Principle II Junming Yin Lecture 17, March 21, 2012 X 1 X 1 X 1 X 1 X 2 X 3 X 2 X 2 X 3 X 3 Reading: X 4

More information

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 18, 2015 1 / 45 Resources and Attribution Image credits,

More information

Variational Methods in Bayesian Deconvolution

Variational Methods in Bayesian Deconvolution PHYSTAT, SLAC, Stanford, California, September 8-, Variational Methods in Bayesian Deconvolution K. Zarb Adami Cavendish Laboratory, University of Cambridge, UK This paper gives an introduction to the

More information

Gaussian Process Vine Copulas for Multivariate Dependence

Gaussian Process Vine Copulas for Multivariate Dependence Gaussian Process Vine Copulas for Multivariate Dependence José Miguel Hernández-Lobato 1,2 joint work with David López-Paz 2,3 and Zoubin Ghahramani 1 1 Department of Engineering, Cambridge University,

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

6.867 Machine learning, lecture 23 (Jaakkola)

6.867 Machine learning, lecture 23 (Jaakkola) Lecture topics: Markov Random Fields Probabilistic inference Markov Random Fields We will briefly go over undirected graphical models or Markov Random Fields (MRFs) as they will be needed in the context

More information

Alternative Parameterizations of Markov Networks. Sargur Srihari

Alternative Parameterizations of Markov Networks. Sargur Srihari Alternative Parameterizations of Markov Networks Sargur srihari@cedar.buffalo.edu 1 Topics Three types of parameterization 1. Gibbs Parameterization 2. Factor Graphs 3. Log-linear Models Features (Ising,

More information

3 : Representation of Undirected GM

3 : Representation of Undirected GM 10-708: Probabilistic Graphical Models 10-708, Spring 2016 3 : Representation of Undirected GM Lecturer: Eric P. Xing Scribes: Longqi Cai, Man-Chia Chang 1 MRF vs BN There are two types of graphical models:

More information

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah Introduction to Graphical Models Srikumar Ramalingam School of Computing University of Utah Reference Christopher M. Bishop, Pattern Recognition and Machine Learning, Jonathan S. Yedidia, William T. Freeman,

More information

Probabilistic Graphical Models. Theory of Variational Inference: Inner and Outer Approximation. Lecture 15, March 4, 2013

Probabilistic Graphical Models. Theory of Variational Inference: Inner and Outer Approximation. Lecture 15, March 4, 2013 School of Computer Science Probabilistic Graphical Models Theory of Variational Inference: Inner and Outer Approximation Junming Yin Lecture 15, March 4, 2013 Reading: W & J Book Chapters 1 Roadmap Two

More information

Bayesian Approaches Data Mining Selected Technique

Bayesian Approaches Data Mining Selected Technique Bayesian Approaches Data Mining Selected Technique Henry Xiao xiao@cs.queensu.ca School of Computing Queen s University Henry Xiao CISC 873 Data Mining p. 1/17 Probabilistic Bases Review the fundamentals

More information

Restricted Boltzmann Machines for Collaborative Filtering

Restricted Boltzmann Machines for Collaborative Filtering Restricted Boltzmann Machines for Collaborative Filtering Authors: Ruslan Salakhutdinov Andriy Mnih Geoffrey Hinton Benjamin Schwehn Presentation by: Ioan Stanculescu 1 Overview The Netflix prize problem

More information

T Machine Learning: Basic Principles

T Machine Learning: Basic Principles Machine Learning: Basic Principles Bayesian Networks Laboratory of Computer and Information Science (CIS) Department of Computer Science and Engineering Helsinki University of Technology (TKK) Autumn 2007

More information

Diagram Structure Recognition by Bayesian Conditional Random Fields

Diagram Structure Recognition by Bayesian Conditional Random Fields Diagram Structure Recognition by Bayesian Conditional Random Fields Yuan Qi MIT CSAIL 32 Vassar Street Cambridge, MA, 0239, USA alanqi@csail.mit.edu Martin Szummer Microsoft Research 7 J J Thomson Avenue

More information

Sampling Algorithms for Probabilistic Graphical models

Sampling Algorithms for Probabilistic Graphical models Sampling Algorithms for Probabilistic Graphical models Vibhav Gogate University of Washington References: Chapter 12 of Probabilistic Graphical models: Principles and Techniques by Daphne Koller and Nir

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information