Spectral Clustering. Guokun Lai 2016/10

Size: px
Start display at page:

Download "Spectral Clustering. Guokun Lai 2016/10"

Transcription

1 Spectral Clustering Guokun Lai 2016/10 1 / 37

2 Organization Graph Cut Fundamental Limitations of Spectral Clustering Ng 2002 paper (if we have time) 2 / 37

3 Notation We define a undirected weighted graph G(V, E), where V is the G s nodes set, and E is the G s edges set. The adjacency matrix is W ij = E(i, j), W ij 0. The degree Matrix D R n n is a diagonal matrix and D i,i = n j=1 W i,j. The Laplacian Matrix L R n n is L = D W. Indicator vector of a cluster: The indicator vector I c of a cluster C is, I c,i = { 1 vi C 0 otherwise (1) 3 / 37

4 Graph Cut The intuition of clustering is to separate points in different groups according to their similarities. If we try to separate the node set G into two disjoint sets A and B, we define Cut(A, B) = i A,j B w ij If we split the node set into K disjoint set, then Cut(A 1,, A k ) = K Cut(A, A) i=1 Where A is the complement set of A. 4 / 37

5 Defect of Graph Cut The simplest idea to cluster the node set V is to find a partition to minimize the Graph Cut function. But usually it will lead to solutions that the subset with few nodes. 5 / 37

6 Normalization Cut For overcoming the defect of the Graph Cut, the Shi proposed a new cost function to regularize the size of the subset. First, we define Vol(A) = i A,j V w(i, j), and we have Ncut(A, B) = cut(a, B) V (A) + cut(a, B) V (B) 6 / 37

7 Relation between NCut and Spectral Clustering Given a vertex subset A i V, we define the vector 1 f i = I Ai. Then we can write the optimization problem as, Vol(Ai ) min A i NCut = 1 2 s.t. f i = I Ai n i=0 f T i Lf i = 1 2 Tr(F T LF ) 1 Vol(Ai ) (2) F T DF = I 7 / 37

8 Optimization 1 Because the constraint f i = I Ai, the optimization Vol(Ai ) problem is a np-hard problem. So we can relax this constraint to the R n. Then the optimization problem is, min fi Tr(F T LF ) s.t. F T DF = I (3) Then we found the solution is the kth smallest eigenvector of D 1 L. Based on the F, we recover the A i by the k-mean algorithm. 8 / 37

9 Unnormalized Laplacian Matrix Similar to the above approach, we can prove that the eigenvectors of the unnormalized Laplacian matrix is the relaxed solution for RatioCut(A, B) = cut(a,b) A + cut(a,b) 1 B. We can set f i = I Ai Ai and get the relaxed optimization problem, min fi Tr(F T LF ) s.t. F T F = I (4) 9 / 37

10 Approximation The solution from the spectral method is approximately for the Normalized Cut objective function. And there is not bound for the gap between them. We can easily construct a case to make the solution to the relaxed problem very different from the origin problem. 10 / 37

11 Experiment Result of Shi paper 11 / 37

12 Organization Graph Cut Fundamental Limitations of Spectral Clustering Ng 2002 paper (if we have time) 12 / 37

13 Fundamental Limitations of Spectral Clustering As mentioned above, the spectral clustering approximately solve the Normalized Graph Cut objective function. But is that the Normalized Graph Cut a good criterion for the all situations? 13 / 37

14 Limitation of NCut The NCut function is more likely to capture the global structure. But sometimes, we may want to extract some local feature of the graph. The Graph Normalized Cut cannot separate the Gaussian distribution and the band. 14 / 37

15 Limitation of Spectral Clustering Next we analyze the spectral method based on the view of random walk process. We define the Markov transition matrix as M = D 1 W, it has eigenvalue λ i and eigenvector v i. And the random walk process in the graph converges to the unique equilibrium distribution π s. Then we can found the relationship between eigenvector and the diffusion distance between points, λ 2t j (v j (x) v j (y)) 2 = p(z, t x) p(z, t y) 2 L 2 (1/π s) j So we see that the spectral method want to capture the major pattern of the random walk on whole graph. 15 / 37

16 Limitation of Spectral Clustering But this method would fail in the situation, which the scale of clusters are very different. 16 / 37

17 Self-Tuning Spectral Clustering One way to solve above case is that we can accelerate the random walk process in the low density area. Assume we define the distance between node is, A i,j = exp( d(v i, v j ) 2 σ i σ j ) And σ i = d(v i, v k ), where v k is the k-th nearest neighbor of v i. 17 / 37

18 Result of Self-Tuning Spectral Clustering 18 / 37

19 Failure case 19 / 37

20 Another solution The paper proposed a solution is that we split the graph into two subsets recursively. And stop criterion is based on the relaxation time of the graph, which is τ V = 1/(1 λ 2 ). Then if the size of two subsets after splitting is comparable, we expect τ V >> τ 1 + τ 2 Otherwise, we expect max(τ 1, τ 2 ) >> min(τ 1, τ 2 ). If the partition satisfy either condition, we accept separation and continue to split the subset. If not, we stop. But it didn t address how to deal with K clustering problem. 20 / 37

21 Tong Zhang 2007 paper This paper gave a upper bound of expectation error in the semi-supervised learning task on graph. Because of the room of presentation, I will just introduce a interesting conclusion of this paper. 21 / 37

22 S-Normalized Laplacian Matrix We define the S-Normalized Laplacian Matrix as L S = S 1/2 LS 1/2 where S is a diagonal matrix. According to the analyze of the this paper, the best choice of S is S i,i = C j, where C j is the size of the cluster j. So this is an approach want to solve the different scale cluster problem cannot be dealt with by the spectral clustering. We can find this is similar to the self-tuning spectral clustering, it renormalized the adjacency matrix as Ŵij W = ij. Ci C j 22 / 37

23 S-Normalized Laplacian Matrix But we don t know C j, the author proposed a method to approximately computer it. We can define K 1 = αi + L S, α R. In the ideal case, which is that we have q disjoint connected components. Then we can prove that q 1 α 0, αk = C j v jvj T + O(α) i=1 where v j is the indicator vector of the cluster j. So if we have a small α, we can assume K i,i C j. Then we can set S i,i 1 K i,i. 23 / 37

24 Comparation 24 / 37

25 Organization Graph Cut Fundamental Limitations of Spectral Clustering Ng 2002 paper (if we have time) 25 / 37

26 Ng 2002 paper This paper analyzed the spectral clustering problem based on the matrix perturbation theory. It obtains a error bound of the spectral clustering algorithm with several assumptions. 26 / 37

27 Algorithm Define the weighted adjacency Matrix W, and construct the Laplacian Matrix L = D 1/2 WD 1/2. Find x 1,, x k, the K largest eigenvectors of L, and form the matrix X = [x 1 x k ] R n k Normalized the every row of X to have unit length, Y ij = X ij /( j X 2 ij )1/2 Treating each row of Y as a point in R k, cluster them into k clusters via K-means. 27 / 37

28 Ideal Case Assume the graph G contain K clusters, and it dose not contain cross-clusters edge. In this case, the Laplacian matrix contains exactly K eigenvector with eigenvalue / 37

29 Y Matrix of Ideal Case After running the algorithm on this graph, we can get Y matrix as Where R is any rotation matrix, and each row of Y will cluster into 3 groups naturally. 29 / 37

30 The general case In real world data, we have cross-clusters edges. So the author analyzes the cross-clusters edges influence on the Y matrix based on the matrix perturbation theory. 30 / 37

31 The general case Assumption 1 There exists δ > 0 so that, for all second largest eigenvalue of each cluster, i = 1,, k, λ i 2 1 δ. Assumption 2 There is some fixed ɛ 1 > 0, so that for every i 1, i 2 1,, k, i 1 i 2, we have that j S i1 where ˆd i is the degree of i in its cluster. Wjk 2 k S i2 ˆd j ˆdk ɛ 1, The intuition of this inequality is to limit the weight of cross-cluster edges, compared to weight of the intra-cluster edges. 31 / 37

32 The general case Assumption 3 There is some fixed ɛ 2 > 0, so that for every j S i, we have that k S W 2 i jk ɛ ˆd 2 ( Wkl 2 j k,l S i ) ˆd 1/2 k ˆdl The intuition of this inequality is also to limit the weight of cross-cluster edges, compared to weight of the intra-cluster edges. Assumption 4 There is some constant C > 0 so that for every i i = 1,, k, j = 1,, n i, we have ˆd j ( n i ˆd i k=1 k )/(Cni ). The intuition of this inequality is that no points in a cluster be too much less connected than other points in the same cluster. 32 / 37

33 The general case If the all of assumptions holds, set ɛ = k(k 1)ɛ + k ɛ 2 2 If σ > (2 + 2)ɛ. There exists k orthogonal vectors r 1,, r k so that 1 n k n i i=1 j=1 y j j r i 2 2 4C(4 + 2 k) 2 ɛ 2 (σ 2ɛ) 2 33 / 37

34 Liu s 2016 paper Motivation The original semi-supervised learning problem can be formalized as min l(f i, y i ) + f T Lf f i We can richer the label propagation patterns based on the spectrum transformation, which called ST-enhance semi-supervised learning min f l(f i, y i ) + f T σ(l)f i 34 / 37

35 Spectral Transform We can define L = i λ iφ i φ T i, and θ i = σ(λ i ) 1, where σ(x) should be a non-decrease function. We can substitute it into the objective function, min f C(f ; θ) = i τ whereas θ 1 θ 2,, θ m 0. l(f i, y i ) + γ m i=1 θ 1 i φ i, f 2 35 / 37

36 Jointly optimization We can try to jointly optimization eigenvalues set θ and labels set f, so we have min θ (min f C(f ; θ)) + τ θ 1 we can prove that this function is convex via θ. The optimization process can be describe as, First, fixed θ, we can optimize the convex problem on f. After that, optimize the θ in its domain. 36 / 37

37 Proof of convexity We can rewrite the objective function used the dual form of the C(f ; θ), which is C (u; θ). min θ (max u C (u; θ)) + τ θ 1 i θ i < φ i, u > 2, and w( u) is where C (u; θ) = w( u) 1 4γ the conjugate function of the l. So the objection is the point-wise maximum of a set of convex function. Then it still convex on θ. 37 / 37

MATH 567: Mathematical Techniques in Data Science Clustering II

MATH 567: Mathematical Techniques in Data Science Clustering II This lecture is based on U. von Luxburg, A Tutorial on Spectral Clustering, Statistics and Computing, 17 (4), 2007. MATH 567: Mathematical Techniques in Data Science Clustering II Dominique Guillot Departments

More information

MATH 567: Mathematical Techniques in Data Science Clustering II

MATH 567: Mathematical Techniques in Data Science Clustering II Spectral clustering: overview MATH 567: Mathematical Techniques in Data Science Clustering II Dominique uillot Departments of Mathematical Sciences University of Delaware Overview of spectral clustering:

More information

Machine Learning for Data Science (CS4786) Lecture 11

Machine Learning for Data Science (CS4786) Lecture 11 Machine Learning for Data Science (CS4786) Lecture 11 Spectral clustering Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ ANNOUNCEMENT 1 Assignment P1 the Diagnostic assignment 1 will

More information

Spectral Clustering. Zitao Liu

Spectral Clustering. Zitao Liu Spectral Clustering Zitao Liu Agenda Brief Clustering Review Similarity Graph Graph Laplacian Spectral Clustering Algorithm Graph Cut Point of View Random Walk Point of View Perturbation Theory Point of

More information

Spectral Clustering on Handwritten Digits Database

Spectral Clustering on Handwritten Digits Database University of Maryland-College Park Advance Scientific Computing I,II Spectral Clustering on Handwritten Digits Database Author: Danielle Middlebrooks Dmiddle1@math.umd.edu Second year AMSC Student Advisor:

More information

Data Analysis and Manifold Learning Lecture 7: Spectral Clustering

Data Analysis and Manifold Learning Lecture 7: Spectral Clustering Data Analysis and Manifold Learning Lecture 7: Spectral Clustering Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture 7 What is spectral

More information

Introduction to Spectral Graph Theory and Graph Clustering

Introduction to Spectral Graph Theory and Graph Clustering Introduction to Spectral Graph Theory and Graph Clustering Chengming Jiang ECS 231 Spring 2016 University of California, Davis 1 / 40 Motivation Image partitioning in computer vision 2 / 40 Motivation

More information

MATH 829: Introduction to Data Mining and Analysis Clustering II

MATH 829: Introduction to Data Mining and Analysis Clustering II his lecture is based on U. von Luxburg, A Tutorial on Spectral Clustering, Statistics and Computing, 17 (4), 2007. MATH 829: Introduction to Data Mining and Analysis Clustering II Dominique Guillot Departments

More information

Graphs in Machine Learning

Graphs in Machine Learning Graphs in Machine Learning Michal Valko INRIA Lille - Nord Europe, France Partially based on material by: Ulrike von Luxburg, Gary Miller, Doyle & Schnell, Daniel Spielman January 27, 2015 MVA 2014/2015

More information

MLCC Clustering. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC Clustering. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 - Clustering Lorenzo Rosasco UNIGE-MIT-IIT About this class We will consider an unsupervised setting, and in particular the problem of clustering unlabeled data into coherent groups. MLCC 2018

More information

Spectral Clustering. Spectral Clustering? Two Moons Data. Spectral Clustering Algorithm: Bipartioning. Spectral methods

Spectral Clustering. Spectral Clustering? Two Moons Data. Spectral Clustering Algorithm: Bipartioning. Spectral methods Spectral Clustering Seungjin Choi Department of Computer Science POSTECH, Korea seungjin@postech.ac.kr 1 Spectral methods Spectral Clustering? Methods using eigenvectors of some matrices Involve eigen-decomposition

More information

Summary: A Random Walks View of Spectral Segmentation, by Marina Meila (University of Washington) and Jianbo Shi (Carnegie Mellon University)

Summary: A Random Walks View of Spectral Segmentation, by Marina Meila (University of Washington) and Jianbo Shi (Carnegie Mellon University) Summary: A Random Walks View of Spectral Segmentation, by Marina Meila (University of Washington) and Jianbo Shi (Carnegie Mellon University) The authors explain how the NCut algorithm for graph bisection

More information

Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering

Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering Shuyang Ling Courant Institute of Mathematical Sciences, NYU Aug 13, 2018 Joint

More information

Lecture 12 : Graph Laplacians and Cheeger s Inequality

Lecture 12 : Graph Laplacians and Cheeger s Inequality CPS290: Algorithmic Foundations of Data Science March 7, 2017 Lecture 12 : Graph Laplacians and Cheeger s Inequality Lecturer: Kamesh Munagala Scribe: Kamesh Munagala Graph Laplacian Maybe the most beautiful

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms : Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA 2 Department of Computer

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec Stanford University Jure Leskovec, Stanford University http://cs224w.stanford.edu Task: Find coalitions in signed networks Incentives: European

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 12: Graph Clustering Cho-Jui Hsieh UC Davis May 29, 2018 Graph Clustering Given a graph G = (V, E, W ) V : nodes {v 1,, v n } E: edges

More information

Computer Vision Group Prof. Daniel Cremers. 14. Clustering

Computer Vision Group Prof. Daniel Cremers. 14. Clustering Group Prof. Daniel Cremers 14. Clustering Motivation Supervised learning is good for interaction with humans, but labels from a supervisor are hard to obtain Clustering is unsupervised learning, i.e. it

More information

CS 664 Segmentation (2) Daniel Huttenlocher

CS 664 Segmentation (2) Daniel Huttenlocher CS 664 Segmentation (2) Daniel Huttenlocher Recap Last time covered perceptual organization more broadly, focused in on pixel-wise segmentation Covered local graph-based methods such as MST and Felzenszwalb-Huttenlocher

More information

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Introduction and Data Representation Mikhail Belkin & Partha Niyogi Department of Electrical Engieering University of Minnesota Mar 21, 2017 1/22 Outline Introduction 1 Introduction 2 3 4 Connections to

More information

CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory

CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory Tim Roughgarden & Gregory Valiant May 2, 2016 Spectral graph theory is the powerful and beautiful theory that arises from

More information

Semi-Supervised Learning by Multi-Manifold Separation

Semi-Supervised Learning by Multi-Manifold Separation Semi-Supervised Learning by Multi-Manifold Separation Xiaojin (Jerry) Zhu Department of Computer Sciences University of Wisconsin Madison Joint work with Andrew Goldberg, Zhiting Xu, Aarti Singh, and Rob

More information

Classification Semi-supervised learning based on network. Speakers: Hanwen Wang, Xinxin Huang, and Zeyu Li CS Winter

Classification Semi-supervised learning based on network. Speakers: Hanwen Wang, Xinxin Huang, and Zeyu Li CS Winter Classification Semi-supervised learning based on network Speakers: Hanwen Wang, Xinxin Huang, and Zeyu Li CS 249-2 2017 Winter Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions Xiaojin

More information

An indicator for the number of clusters using a linear map to simplex structure

An indicator for the number of clusters using a linear map to simplex structure An indicator for the number of clusters using a linear map to simplex structure Marcus Weber, Wasinee Rungsarityotin, and Alexander Schliep Zuse Institute Berlin ZIB Takustraße 7, D-495 Berlin, Germany

More information

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline

More information

On the Effectiveness of Laplacian Normalization for Graph Semi-supervised Learning

On the Effectiveness of Laplacian Normalization for Graph Semi-supervised Learning Journal of Machine Learning Research 8 (2007) 489-57 Submitted 7/06; Revised 3/07; Published 7/07 On the Effectiveness of Laplacian Normalization for Graph Semi-supervised Learning Rie Johnson IBM T.J.

More information

Spectral clustering. Two ideal clusters, with two points each. Spectral clustering algorithms

Spectral clustering. Two ideal clusters, with two points each. Spectral clustering algorithms A simple example Two ideal clusters, with two points each Spectral clustering Lecture 2 Spectral clustering algorithms 4 2 3 A = Ideally permuted Ideal affinities 2 Indicator vectors Each cluster has an

More information

Lecture 13: Spectral Graph Theory

Lecture 13: Spectral Graph Theory CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 13: Spectral Graph Theory Lecturer: Shayan Oveis Gharan 11/14/18 Disclaimer: These notes have not been subjected to the usual scrutiny reserved

More information

Spectral Techniques for Clustering

Spectral Techniques for Clustering Nicola Rebagliati 1/54 Spectral Techniques for Clustering Nicola Rebagliati 29 April, 2010 Nicola Rebagliati 2/54 Thesis Outline 1 2 Data Representation for Clustering Setting Data Representation and Methods

More information

Manifold Regularization

Manifold Regularization 9.520: Statistical Learning Theory and Applications arch 3rd, 200 anifold Regularization Lecturer: Lorenzo Rosasco Scribe: Hooyoung Chung Introduction In this lecture we introduce a class of learning algorithms,

More information

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo A. E. Brouwer & W. H. Haemers 2008-02-28 Abstract We show that if µ j is the j-th largest Laplacian eigenvalue, and d

More information

Analysis of Spectral Kernel Design based Semi-supervised Learning

Analysis of Spectral Kernel Design based Semi-supervised Learning Analysis of Spectral Kernel Design based Semi-supervised Learning Tong Zhang IBM T. J. Watson Research Center Yorktown Heights, NY 10598 Rie Kubota Ando IBM T. J. Watson Research Center Yorktown Heights,

More information

Communities, Spectral Clustering, and Random Walks

Communities, Spectral Clustering, and Random Walks Communities, Spectral Clustering, and Random Walks David Bindel Department of Computer Science Cornell University 26 Sep 2011 20 21 19 16 22 28 17 18 29 26 27 30 23 1 25 5 8 24 2 4 14 3 9 13 15 11 10 12

More information

Lecture: Local Spectral Methods (1 of 4)

Lecture: Local Spectral Methods (1 of 4) Stat260/CS294: Spectral Graph Methods Lecture 18-03/31/2015 Lecture: Local Spectral Methods (1 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

Statistical Learning Notes III-Section 2.4.3

Statistical Learning Notes III-Section 2.4.3 Statistical Learning Notes III-Section 2.4.3 "Graphical" Spectral Features Stephen Vardeman Analytics Iowa LLC January 2019 Stephen Vardeman (Analytics Iowa LLC) Statistical Learning Notes III-Section

More information

Manifold Coarse Graining for Online Semi-supervised Learning

Manifold Coarse Graining for Online Semi-supervised Learning for Online Semi-supervised Learning Mehrdad Farajtabar, Amirreza Shaban, Hamid R. Rabiee, Mohammad H. Rohban Digital Media Lab, Department of Computer Engineering, Sharif University of Technology, Tehran,

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

CS 556: Computer Vision. Lecture 13

CS 556: Computer Vision. Lecture 13 CS 556: Computer Vision Lecture 1 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Outline Perceptual grouping Low-level segmentation Ncuts Perceptual Grouping What do you see? 4 What do you see? Rorschach

More information

17.1 Directed Graphs, Undirected Graphs, Incidence Matrices, Adjacency Matrices, Weighted Graphs

17.1 Directed Graphs, Undirected Graphs, Incidence Matrices, Adjacency Matrices, Weighted Graphs Chapter 17 Graphs and Graph Laplacians 17.1 Directed Graphs, Undirected Graphs, Incidence Matrices, Adjacency Matrices, Weighted Graphs Definition 17.1. A directed graph isa pairg =(V,E), where V = {v

More information

Clustering using Mixture Models

Clustering using Mixture Models Clustering using Mixture Models The full posterior of the Gaussian Mixture Model is p(x, Z, µ,, ) =p(x Z, µ, )p(z )p( )p(µ, ) data likelihood (Gaussian) correspondence prob. (Multinomial) mixture prior

More information

Spectral Clustering on Handwritten Digits Database Mid-Year Pr

Spectral Clustering on Handwritten Digits Database Mid-Year Pr Spectral Clustering on Handwritten Digits Database Mid-Year Presentation Danielle dmiddle1@math.umd.edu Advisor: Kasso Okoudjou kasso@umd.edu Department of Mathematics University of Maryland- College Park

More information

Finding normalized and modularity cuts by spectral clustering. Ljubjana 2010, October

Finding normalized and modularity cuts by spectral clustering. Ljubjana 2010, October Finding normalized and modularity cuts by spectral clustering Marianna Bolla Institute of Mathematics Budapest University of Technology and Economics marib@math.bme.hu Ljubjana 2010, October Outline Find

More information

8.1 Concentration inequality for Gaussian random matrix (cont d)

8.1 Concentration inequality for Gaussian random matrix (cont d) MGMT 69: Topics in High-dimensional Data Analysis Falll 26 Lecture 8: Spectral clustering and Laplacian matrices Lecturer: Jiaming Xu Scribe: Hyun-Ju Oh and Taotao He, October 4, 26 Outline Concentration

More information

Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University

Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Instructor: Farid Alizadeh Scribe: Anton Riabov 10/08/2001 1 Overview We continue studying the maximum eigenvalue SDP, and generalize

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

Graph Partitioning Using Random Walks

Graph Partitioning Using Random Walks Graph Partitioning Using Random Walks A Convex Optimization Perspective Lorenzo Orecchia Computer Science Why Spectral Algorithms for Graph Problems in practice? Simple to implement Can exploit very efficient

More information

Learning from Sensor Data: Set II. Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University

Learning from Sensor Data: Set II. Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University Learning from Sensor Data: Set II Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University 1 6. Data Representation The approach for learning from data Probabilistic

More information

Spectral Theory of Unsigned and Signed Graphs Applications to Graph Clustering. Some Slides

Spectral Theory of Unsigned and Signed Graphs Applications to Graph Clustering. Some Slides Spectral Theory of Unsigned and Signed Graphs Applications to Graph Clustering Some Slides Jean Gallier Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104,

More information

Markov Chains and Spectral Clustering

Markov Chains and Spectral Clustering Markov Chains and Spectral Clustering Ning Liu 1,2 and William J. Stewart 1,3 1 Department of Computer Science North Carolina State University, Raleigh, NC 27695-8206, USA. 2 nliu@ncsu.edu, 3 billy@ncsu.edu

More information

A spectral clustering algorithm based on Gram operators

A spectral clustering algorithm based on Gram operators A spectral clustering algorithm based on Gram operators Ilaria Giulini De partement de Mathe matiques et Applications ENS, Paris Joint work with Olivier Catoni 1 july 2015 Clustering task of grouping

More information

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Neural Computation, June 2003; 15 (6):1373-1396 Presentation for CSE291 sp07 M. Belkin 1 P. Niyogi 2 1 University of Chicago, Department

More information

Chapter 4. Signed Graphs. Intuitively, in a weighted graph, an edge with a positive weight denotes similarity or proximity of its endpoints.

Chapter 4. Signed Graphs. Intuitively, in a weighted graph, an edge with a positive weight denotes similarity or proximity of its endpoints. Chapter 4 Signed Graphs 4.1 Signed Graphs and Signed Laplacians Intuitively, in a weighted graph, an edge with a positive weight denotes similarity or proximity of its endpoints. For many reasons, it is

More information

Lecture Introduction. 2 Brief Recap of Lecture 10. CS-621 Theory Gems October 24, 2012

Lecture Introduction. 2 Brief Recap of Lecture 10. CS-621 Theory Gems October 24, 2012 CS-62 Theory Gems October 24, 202 Lecture Lecturer: Aleksander Mądry Scribes: Carsten Moldenhauer and Robin Scheibler Introduction In Lecture 0, we introduced a fundamental object of spectral graph theory:

More information

Networks and Their Spectra

Networks and Their Spectra Networks and Their Spectra Victor Amelkin University of California, Santa Barbara Department of Computer Science victor@cs.ucsb.edu December 4, 2017 1 / 18 Introduction Networks (= graphs) are everywhere.

More information

Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 1/31

Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 1/31 Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking Dengyong Zhou zhou@tuebingen.mpg.de Dept. Schölkopf, Max Planck Institute for Biological Cybernetics, Germany Learning from

More information

A Statistical Look at Spectral Graph Analysis. Deep Mukhopadhyay

A Statistical Look at Spectral Graph Analysis. Deep Mukhopadhyay A Statistical Look at Spectral Graph Analysis Deep Mukhopadhyay Department of Statistics, Temple University Office: Speakman 335 deep@temple.edu http://sites.temple.edu/deepstat/ Graph Signal Processing

More information

Diffuse interface methods on graphs: Data clustering and Gamma-limits

Diffuse interface methods on graphs: Data clustering and Gamma-limits Diffuse interface methods on graphs: Data clustering and Gamma-limits Yves van Gennip joint work with Andrea Bertozzi, Jeff Brantingham, Blake Hunter Department of Mathematics, UCLA Research made possible

More information

Diffusion and random walks on graphs

Diffusion and random walks on graphs Diffusion and random walks on graphs Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Structural

More information

Learning Spectral Graph Segmentation

Learning Spectral Graph Segmentation Learning Spectral Graph Segmentation AISTATS 2005 Timothée Cour Jianbo Shi Nicolas Gogin Computer and Information Science Department University of Pennsylvania Computer Science Ecole Polytechnique Graph-based

More information

Graphs in Machine Learning

Graphs in Machine Learning Graphs in Machine Learning Michal Valko Inria Lille - Nord Europe, France TA: Pierre Perrault Partially based on material by: Ulrike von Luxburg, Gary Miller, Mikhail Belkin October 16th, 2017 MVA 2017/2018

More information

Data-dependent representations: Laplacian Eigenmaps

Data-dependent representations: Laplacian Eigenmaps Data-dependent representations: Laplacian Eigenmaps November 4, 2015 Data Organization and Manifold Learning There are many techniques for Data Organization and Manifold Learning, e.g., Principal Component

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING

THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING Luis Rademacher, Ohio State University, Computer Science and Engineering. Joint work with Mikhail Belkin and James Voss This talk A new approach to multi-way

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

The f-adjusted Graph Laplacian: a Diagonal Modification with a Geometric Interpretation

The f-adjusted Graph Laplacian: a Diagonal Modification with a Geometric Interpretation The f-adjusted Graph Laplacian: a Diagonal Modification with a Geometric Interpretation Sven Kurras Ulrike von Luxburg Department of Computer Science, University of Hamburg, Germany Gilles Blanchard Department

More information

Spectral Graph Theory and its Applications. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity

Spectral Graph Theory and its Applications. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Spectral Graph Theory and its Applications Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Outline Adjacency matrix and Laplacian Intuition, spectral graph drawing

More information

Graph Partitioning Algorithms and Laplacian Eigenvalues

Graph Partitioning Algorithms and Laplacian Eigenvalues Graph Partitioning Algorithms and Laplacian Eigenvalues Luca Trevisan Stanford Based on work with Tsz Chiu Kwok, Lap Chi Lau, James Lee, Yin Tat Lee, and Shayan Oveis Gharan spectral graph theory Use linear

More information

Spectral Theory of Unsigned and Signed Graphs Applications to Graph Clustering: a Survey

Spectral Theory of Unsigned and Signed Graphs Applications to Graph Clustering: a Survey Spectral Theory of Unsigned and Signed Graphs Applications to Graph Clustering: a Survey Jean Gallier Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA

More information

Dissertation Defense

Dissertation Defense Clustering Algorithms for Random and Pseudo-random Structures Dissertation Defense Pradipta Mitra 1 1 Department of Computer Science Yale University April 23, 2008 Mitra (Yale University) Dissertation

More information

ORIE 4741: Learning with Big Messy Data. Spectral Graph Theory

ORIE 4741: Learning with Big Messy Data. Spectral Graph Theory ORIE 4741: Learning with Big Messy Data Spectral Graph Theory Mika Sumida Operations Research and Information Engineering Cornell September 15, 2017 1 / 32 Outline Graph Theory Spectral Graph Theory Laplacian

More information

CS660: Mining Massive Datasets University at Albany SUNY

CS660: Mining Massive Datasets University at Albany SUNY CS660: Mining Massive Datasets University at Albany SUNY April 8, 06 Intro (Ch. ). Bonferoni s principle examples If your method of finding significant items returns significantly more items that you would

More information

Spectral Graph Theory Lecture 2. The Laplacian. Daniel A. Spielman September 4, x T M x. ψ i = arg min

Spectral Graph Theory Lecture 2. The Laplacian. Daniel A. Spielman September 4, x T M x. ψ i = arg min Spectral Graph Theory Lecture 2 The Laplacian Daniel A. Spielman September 4, 2015 Disclaimer These notes are not necessarily an accurate representation of what happened in class. The notes written before

More information

A New Spectral Technique Using Normalized Adjacency Matrices for Graph Matching 1

A New Spectral Technique Using Normalized Adjacency Matrices for Graph Matching 1 CHAPTER-3 A New Spectral Technique Using Normalized Adjacency Matrices for Graph Matching Graph matching problem has found many applications in areas as diverse as chemical structure analysis, pattern

More information

Lecture 14: Random Walks, Local Graph Clustering, Linear Programming

Lecture 14: Random Walks, Local Graph Clustering, Linear Programming CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 14: Random Walks, Local Graph Clustering, Linear Programming Lecturer: Shayan Oveis Gharan 3/01/17 Scribe: Laura Vonessen Disclaimer: These

More information

14 : Theory of Variational Inference: Inner and Outer Approximation

14 : Theory of Variational Inference: Inner and Outer Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 14 : Theory of Variational Inference: Inner and Outer Approximation Lecturer: Eric P. Xing Scribes: Yu-Hsin Kuo, Amos Ng 1 Introduction Last lecture

More information

Spectra of Adjacency and Laplacian Matrices

Spectra of Adjacency and Laplacian Matrices Spectra of Adjacency and Laplacian Matrices Definition: University of Alicante (Spain) Matrix Computing (subject 3168 Degree in Maths) 30 hours (theory)) + 15 hours (practical assignment) Contents 1. Spectra

More information

Bayesian Learning in Undirected Graphical Models

Bayesian Learning in Undirected Graphical Models Bayesian Learning in Undirected Graphical Models Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK http://www.gatsby.ucl.ac.uk/ Work with: Iain Murray and Hyun-Chul

More information

Data dependent operators for the spatial-spectral fusion problem

Data dependent operators for the spatial-spectral fusion problem Data dependent operators for the spatial-spectral fusion problem Wien, December 3, 2012 Joint work with: University of Maryland: J. J. Benedetto, J. A. Dobrosotskaya, T. Doster, K. W. Duke, M. Ehler, A.

More information

Power Grid Partitioning: Static and Dynamic Approaches

Power Grid Partitioning: Static and Dynamic Approaches Power Grid Partitioning: Static and Dynamic Approaches Miao Zhang, Zhixin Miao, Lingling Fan Department of Electrical Engineering University of South Florida Tampa FL 3320 miaozhang@mail.usf.edu zmiao,

More information

Machine Learning - MT Clustering

Machine Learning - MT Clustering Machine Learning - MT 2016 15. Clustering Varun Kanade University of Oxford November 28, 2016 Announcements No new practical this week All practicals must be signed off in sessions this week Firm Deadline:

More information

Algebraic Representation of Networks

Algebraic Representation of Networks Algebraic Representation of Networks 0 1 2 1 1 0 0 1 2 0 0 1 1 1 1 1 Hiroki Sayama sayama@binghamton.edu Describing networks with matrices (1) Adjacency matrix A matrix with rows and columns labeled by

More information

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto Unsupervised Learning Techniques 9.520 Class 07, 1 March 2006 Andrea Caponnetto About this class Goal To introduce some methods for unsupervised learning: Gaussian Mixtures, K-Means, ISOMAP, HLLE, Laplacian

More information

Locally-biased analytics

Locally-biased analytics Locally-biased analytics You have BIG data and want to analyze a small part of it: Solution 1: Cut out small part and use traditional methods Challenge: cutting out may be difficult a priori Solution 2:

More information

Chapter 11. Matrix Algorithms and Graph Partitioning. M. E. J. Newman. June 10, M. E. J. Newman Chapter 11 June 10, / 43

Chapter 11. Matrix Algorithms and Graph Partitioning. M. E. J. Newman. June 10, M. E. J. Newman Chapter 11 June 10, / 43 Chapter 11 Matrix Algorithms and Graph Partitioning M. E. J. Newman June 10, 2016 M. E. J. Newman Chapter 11 June 10, 2016 1 / 43 Table of Contents 1 Eigenvalue and Eigenvector Eigenvector Centrality The

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Kernel PCA 2 Isomap 3 Locally Linear Embedding 4 Laplacian Eigenmap

More information

Asymmetric Cheeger cut and application to multi-class unsupervised clustering

Asymmetric Cheeger cut and application to multi-class unsupervised clustering Asymmetric Cheeger cut and application to multi-class unsupervised clustering Xavier Bresson Thomas Laurent April 8, 0 Abstract Cheeger cut has recently been shown to provide excellent classification results

More information

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018 Lab 8: Measuring Graph Centrality - PageRank Monday, November 5 CompSci 531, Fall 2018 Outline Measuring Graph Centrality: Motivation Random Walks, Markov Chains, and Stationarity Distributions Google

More information

Communities, Spectral Clustering, and Random Walks

Communities, Spectral Clustering, and Random Walks Communities, Spectral Clustering, and Random Walks David Bindel Department of Computer Science Cornell University 3 Jul 202 Spectral clustering recipe Ingredients:. A subspace basis with useful information

More information

Containment restrictions

Containment restrictions Containment restrictions Tibor Szabó Extremal Combinatorics, FU Berlin, WiSe 207 8 In this chapter we switch from studying constraints on the set operation intersection, to constraints on the set relation

More information

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH Hoang Trang 1, Tran Hoang Loc 1 1 Ho Chi Minh City University of Technology-VNU HCM, Ho Chi

More information

Topics in Approximation Algorithms Solution for Homework 3

Topics in Approximation Algorithms Solution for Homework 3 Topics in Approximation Algorithms Solution for Homework 3 Problem 1 We show that any solution {U t } can be modified to satisfy U τ L τ as follows. Suppose U τ L τ, so there is a vertex v U τ but v L

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Semi-Supervised Learning

Semi-Supervised Learning Semi-Supervised Learning getting more for less in natural language processing and beyond Xiaojin (Jerry) Zhu School of Computer Science Carnegie Mellon University 1 Semi-supervised Learning many human

More information

Lecture 7: Spectral Graph Theory II

Lecture 7: Spectral Graph Theory II A Theorist s Toolkit (CMU 18-859T, Fall 2013) Lecture 7: Spectral Graph Theory II September 30, 2013 Lecturer: Ryan O Donnell Scribe: Christian Tjandraatmadja 1 Review We spend a page to review the previous

More information

Eugene Wigner [4]: in the natural sciences, Communications in Pure and Applied Mathematics, XIII, (1960), 1 14.

Eugene Wigner [4]: in the natural sciences, Communications in Pure and Applied Mathematics, XIII, (1960), 1 14. Introduction Eugene Wigner [4]: The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve.

More information

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices)

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Chapter 14 SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Today we continue the topic of low-dimensional approximation to datasets and matrices. Last time we saw the singular

More information

Lecture 12: Introduction to Spectral Graph Theory, Cheeger s inequality

Lecture 12: Introduction to Spectral Graph Theory, Cheeger s inequality CSE 521: Design and Analysis of Algorithms I Spring 2016 Lecture 12: Introduction to Spectral Graph Theory, Cheeger s inequality Lecturer: Shayan Oveis Gharan May 4th Scribe: Gabriel Cadamuro Disclaimer:

More information

Some notes on SVD, dimensionality reduction, and clustering. Guangliang Chen

Some notes on SVD, dimensionality reduction, and clustering. Guangliang Chen Some notes on SVD, dimensionality reduction, and clustering Guangliang Chen Contents 1. Introduction 4 2. Review of necessary linear algebra 4 3. Matrix SVD and its applications 8 Practice problems set

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information