Characterization and inference of weighted graph topologies from observations of diffused signals

Size: px
Start display at page:

Download "Characterization and inference of weighted graph topologies from observations of diffused signals"

Transcription

1 Characterization and inference of weighted graph topologies from observations of diffused signals Bastien Pasdeloup*, Vincent Gripon*, Grégoire Mercier*, Dominique Pastor*, Michael G. Rabbat** * name.surname@telecom-bretagne.eu ** name.surname@mcgill.ca Preprint version of is work available on arxiv at Graph Signal Processing Workshop, Philadelphia May 26, 2016

2 Motivations GSP tools Filtering Clustering Data analysis... 1

3 Motivations GSP tools Filtering Clustering Data analysis... 1

4 Motivations Graph inference GSP tools Filtering Clustering Data analysis... 1

5 Outline Problem formulation A brief overview of related work Characterization of e space of admissible topologies Selecting a point in is space: two example approaches A few results Conclusions & Future work Bastien Pasdeloup May 26, 2016 Philadelphia

6 Outline Problem formulation A brief overview of related work Characterization of e space of admissible topologies Selecting a point in is space: two example approaches A few results Conclusions & Future work Bastien Pasdeloup May 26, 2016 Philadelphia

7 General idea of our work General idea: Signals observed on a graph have common properties. These properties should be explainable by e graph topology. Translation: Given a matrix X of signals, ere should exist independent signals Y such at X is issued from e evolution of Y on e graph. 2

8 General idea of our work General idea: Signals observed on a graph have common properties. These properties should be explainable by e graph topology. Translation: Given a matrix X of signals, ere should exist independent signals Y such at X is issued from e evolution of Y on e graph. Algorim 2

9 Context of our work General idea: Signals observed on a graph have common properties. These properties should be explainable by e graph topology. Translation: Given a matrix X of signals, ere should exist independent signals Y such at X is issued from e evolution of Y on e graph. Algorim Considering heat propagation, 2

10 Outline Problem formulation A brief overview of related work Characterization of e space of admissible topologies Selecting a point in is space: two example approaches A few results Conclusions & Future work Bastien Pasdeloup May 26, 2016 Philadelphia

11 Covariance resholding General idea: Covariance matrix is a good tool to model relations among nodes. Some of its entries are spurious, let us remove em using a reshold. Drawbacks: Need for a proper reshold. Does not eliminate all indirect covariances. 3

12 Graphical lasso based meods General idea: Sparse inverse of e covariance matrix removes e partial correlations. Drawbacks: Existence of negative entries in e result matrix. More a functional approach an a structural one. Sample covariance matrix Regularization parameter for sparsity Friedman, Hastie, Tibshirani, Sparse inverse covariance estimation wi e graphical lasso, Biostatistics, Dempster, Covariance Selection, Biometrics,

13 Smooness based meods General idea: The observed signals should be smoo on e graph. Drawbacks: Seems legit, alough e objective is different from ours. Work from Dong et. al will serve as a baseline for comparisons. Dong, Thanou, Frossard, Vandergheynst, Learning Laplacian matrix in smoo graph signal representations, arxiv, Kalofolias, How to learn a graph from smoo signals, AISTATS,

14 Diffusion based meods General idea: First version of our work, where. Drawbacks: Restrictive case: K is supposed to be constant and known. Study was only made for an infinite number of signals. Pasdeloup, Rabbat, Gripon, Pastor, Mercier, Graph reconstruction from e observation of diffused signals, Allerton,

15 Diffusion based meods General idea: First version of our work, where. Drawbacks: Restrictive case: K is supposed to be constant and known. Study was only made for an infinite number of signals. Pasdeloup, Rabbat, Gripon, Pastor, Mercier, Graph reconstruction from e observation of diffused signals, Allerton,

16 Diffusion based meods General idea: First version of our work, where. Drawbacks: Restrictive case: K is supposed to be constant and known. Study was only made for an infinite number of signals. Pasdeloup, Rabbat, Gripon, Pastor, Mercier, Graph reconstruction from e observation of diffused signals, Allerton,

17 Diffusion based meods General idea: First version of our work, where. Drawbacks: Restrictive case: K is supposed to be constant and known. Study was only made for an infinite number of signals. = Pasdeloup, Rabbat, Gripon, Pastor, Mercier, Graph reconstruction from e observation of diffused signals, Allerton,

18 Diffusion based meods General idea: First version of our work, where. Drawbacks: Restrictive case: K is supposed to be constant and known. Study was only made for an infinite number of signals. wi S diagonal matrix of signs (found by solving an optimization problem) Pasdeloup, Rabbat, Gripon, Pastor, Mercier, Graph reconstruction from e observation of diffused signals, Allerton,

19 Outline Problem formulation A brief overview of related work Characterization of e space of admissible topologies Selecting a point in is space: two example approaches A few results Conclusions & Future work Bastien Pasdeloup May 26, 2016 Philadelphia

20 What can we do now? Problem: Previous meod cannot be applied anymore, now at are unknown. Algorim 7

21 What can we do now? Problem: Previous meod cannot be applied anymore, now at are unknown. Algorim Important part of e slide :) 7

22 Assumption on e matrix to recover Current situation: We have e eigenvectors Assumption:, let us find e eigenvalues. should be positive to correspond to a valid graph Laplacian. 8

23 Example for a 3x3 random matrix Constraints enforcing positivity Admissible set of eigenvalues Actual eigenvalues of e matrix used Remark: We have set (eigenvalue 0 of e Laplacian) 9

24 Outline Problem formulation A brief overview of related work Characterization of e space of admissible topologies Selecting a point in is space: two example approaches A few results Conclusions & Future work Bastien Pasdeloup May 26, 2016 Philadelphia

25 Which point to choose in is admissible space? Enforcing simplicity: Recovers a matrix wi a null diagonal. Maximises e exchanges between nodes (no conservation). Enforcing sparsity: Common desired property for a graph. Oers: Binary entries, distance to a reference graph, smooness 10

26 Recovering a simple graph 11

27 Recovering a simple graph Simplex meod 11

28 Recovering a sparse graph Find e point at reaches most constraints Equivalent to minimizing e norm 12

29 Recovering a sparse graph Find e point at reaches most constraints Equivalent to minimizing e norm Classical proxy: Minimize e norm 12

30 Outline Problem formulation A brief overview of related work Characterization of e space of admissible topologies Selecting a point in is space: two example approaches A few results Conclusions & Future work Bastien Pasdeloup May 26, 2016 Philadelphia

31 Experimental assessment of e meods Erdős-Rényi random model Random geometric model Algorim Erdős, Rényi, On random graphs I, Publ Ma. Debrecen,

32 Error measurements Mean Error Per Reconstructed Entry: Reconstruction Error of e Retreived Eigenvalues: Reconstruction Error of e Powered Retreived Eigenvalues: 14

33 Error measurements Mean Error Per Reconstructed Entry: Reconstruction Error of e Retreived Eigenvalues: Reconstruction Error of e Powered Retreived Eigenvalues: 14

34 Results when using e groundtru eigenvectors 15

35 Results when using e groundtru eigenvectors 15

36 Results when e number of signals is limited Impact on e polytope: Perfect retrieval of e eigenvectors is not possible. PCA provides a good estimator for em. Pearson, On lines and planes of closest fit to system of points in space, Philosophical Magazine,

37 Results when e number of signals is limited Impact on e polytope: Perfect retrieval of e eigenvectors is not possible. PCA provides a good estimator for em. M = 10 Pearson, On lines and planes of closest fit to system of points in space, Philosophical Magazine,

38 Results when e number of signals is limited Impact on e polytope: Perfect retrieval of e eigenvectors is not possible. PCA provides a good estimator for em. M = 100 Pearson, On lines and planes of closest fit to system of points in space, Philosophical Magazine,

39 Results when e number of signals is limited Impact on e polytope: Perfect retrieval of e eigenvectors is not possible. PCA provides a good estimator for em. M = 1000 Pearson, On lines and planes of closest fit to system of points in space, Philosophical Magazine,

40 Convergence towards e actual eigenvectors 17

41 Application to audio signals 44,100 Hz N = 50 18

42 Outline Problem formulation A brief overview of related work Characterization of e space of admissible topologies Selecting a point in is space: two example approaches A few results Conclusions & Future work Bastien Pasdeloup May 26, 2016 Philadelphia

43 Summary of e talk 19

44 Perspectives Extensions of is work: Smooness criterion for e selection of a point? Binarity citerion? Reduce e number of constraints (currently Ongoing and close future work: )! Graph reconstruction for enhanced separability of classes of signals. 20

45 Characterization and inference of weighted graph topologies from observations of diffused signals Bastien Pasdeloup*, Vincent Gripon*, Grégoire Mercier*, Dominique Pastor*, Michael G. Rabbat** * name.surname@telecom-bretagne.eu ** name.surname@mcgill.ca Graph Signal Processing Workshop, Philadelphia May 26, 2016

Characterization and inference of weighted graph topologies from observations of diffused signals

Characterization and inference of weighted graph topologies from observations of diffused signals 1 Characterization and inference of weighted graph topologies from observations of diffused signals Bastien Pasdeloup, Vincent Gripon, Grégoire Mercier, Dominique Pastor, and Michael G. Rabbat arxiv:1605.02569v1

More information

Learning graphs from data:

Learning graphs from data: Learning graphs from data: A signal processing perspective Xiaowen Dong MIT Media Lab Graph Signal Processing Workshop Pittsburgh, PA, May 2017 Introduction What is the problem of graph learning? 2/34

More information

Tropical Graph Signal Processing

Tropical Graph Signal Processing Tropical Graph Signal Processing Vincent Gripon To cite this version: Vincent Gripon. Tropical Graph Signal Processing. 2017. HAL Id: hal-01527695 https://hal.archives-ouvertes.fr/hal-01527695v2

More information

ROBUST NETWORK TOPOLOGY INFERENCE

ROBUST NETWORK TOPOLOGY INFERENCE ROBUST NETWORK TOPOLOGY INFERENCE Santiago Segarra, Antonio G. Marques, Gonzalo Mateos and Alejandro Ribeiro Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge,

More information

Network Topology Inference from Non-stationary Graph Signals

Network Topology Inference from Non-stationary Graph Signals Network Topology Inference from Non-stationary Graph Signals Rasoul Shafipour Dept. of Electrical and Computer Engineering University of Rochester rshafipo@ece.rochester.edu http://www.ece.rochester.edu/~rshafipo/

More information

arxiv: v1 [cs.lg] 24 Jan 2019

arxiv: v1 [cs.lg] 24 Jan 2019 GRAPH HEAT MIXTURE MODEL LEARNING Hermina Petric Maretic Mireille El Gheche Pascal Frossard Ecole Polytechnique Fédérale de Lausanne (EPFL), Signal Processing Laboratory (LTS4) arxiv:1901.08585v1 [cs.lg]

More information

COMMUNITY DETECTION FROM LOW-RANK EXCITATIONS OF A GRAPH FILTER

COMMUNITY DETECTION FROM LOW-RANK EXCITATIONS OF A GRAPH FILTER COMMUNITY DETECTION FROM LOW-RANK EXCITATIONS OF A GRAPH FILTER Hoi-To Wai, Santiago Segarra, Asuman E. Ozdaglar, Anna Scaglione, Ali Jadbabaie School of ECEE, Arizona State University, Tempe, AZ, USA.

More information

Learning Graphs from Data: A Signal Representation Perspective

Learning Graphs from Data: A Signal Representation Perspective 1 Learning Graphs from Data: A Signal Representation Perspective Xiaowen Dong*, Dorina Thanou*, Michael Rabbat, and Pascal Frossard arxiv:1806.00848v1 [cs.lg] 3 Jun 2018 The construction of a meaningful

More information

GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT

GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT Cha Zhang Joint work with Dinei Florêncio and Philip A. Chou Microsoft Research Outline Gaussian Markov Random Field Graph construction Graph transform

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Kernel PCA 2 Isomap 3 Locally Linear Embedding 4 Laplacian Eigenmap

More information

Sparse Approximation: from Image Restoration to High Dimensional Classification

Sparse Approximation: from Image Restoration to High Dimensional Classification Sparse Approximation: from Image Restoration to High Dimensional Classification Bin Dong Beijing International Center for Mathematical Research Beijing Institute of Big Data Research Peking University

More information

Graph Signal Processing in Distributed Network Processing

Graph Signal Processing in Distributed Network Processing Graph Signal Processing in Distributed Network Processing Antonio G. Marques King Juan Carlos University - Madrid (SPAIN) antonio.garcia.marques@urjc.es http://www.tsc.urjc.es/~amarques/ Thanks: S. Segarra,

More information

Genetic Networks. Korbinian Strimmer. Seminar: Statistical Analysis of RNA-Seq Data 19 June IMISE, Universität Leipzig

Genetic Networks. Korbinian Strimmer. Seminar: Statistical Analysis of RNA-Seq Data 19 June IMISE, Universität Leipzig Genetic Networks Korbinian Strimmer IMISE, Universität Leipzig Seminar: Statistical Analysis of RNA-Seq Data 19 June 2012 Korbinian Strimmer, RNA-Seq Networks, 19/6/2012 1 Paper G. I. Allen and Z. Liu.

More information

Sparse Subspace Clustering

Sparse Subspace Clustering Sparse Subspace Clustering Based on Sparse Subspace Clustering: Algorithm, Theory, and Applications by Elhamifar and Vidal (2013) Alex Gutierrez CSCI 8314 March 2, 2017 Outline 1 Motivation and Background

More information

Gaussian Graphical Models and Graphical Lasso

Gaussian Graphical Models and Graphical Lasso ELE 538B: Sparsity, Structure and Inference Gaussian Graphical Models and Graphical Lasso Yuxin Chen Princeton University, Spring 2017 Multivariate Gaussians Consider a random vector x N (0, Σ) with pdf

More information

Inverse Power Method for Non-linear Eigenproblems

Inverse Power Method for Non-linear Eigenproblems Inverse Power Method for Non-linear Eigenproblems Matthias Hein and Thomas Bühler Anubhav Dwivedi Department of Aerospace Engineering & Mechanics 7th March, 2017 1 / 30 OUTLINE Motivation Non-Linear Eigenproblems

More information

MATH 829: Introduction to Data Mining and Analysis Graphical Models III - Gaussian Graphical Models (cont.)

MATH 829: Introduction to Data Mining and Analysis Graphical Models III - Gaussian Graphical Models (cont.) 1/12 MATH 829: Introduction to Data Mining and Analysis Graphical Models III - Gaussian Graphical Models (cont.) Dominique Guillot Departments of Mathematical Sciences University of Delaware May 6, 2016

More information

BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage

BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage Lingrui Gan, Naveen N. Narisetty, Feng Liang Department of Statistics University of Illinois at Urbana-Champaign Problem Statement

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

GENERALIZED LAPLACIAN PRECISION MATRIX ESTIMATION FOR GRAPH SIGNAL PROCESSING. Eduardo Pavez and Antonio Ortega

GENERALIZED LAPLACIAN PRECISION MATRIX ESTIMATION FOR GRAPH SIGNAL PROCESSING. Eduardo Pavez and Antonio Ortega GENERALIZED LAPLACIAN PRECISION MATRIX ESTIMATION FOR GRAPH SIGNAL PROCESSING Eduardo Pavez and Antonio Ortega Department of Electrical Engineering, University of Southern California, Los Angeles, USA

More information

Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs

Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture

More information

arxiv: v1 [cs.it] 26 Sep 2018

arxiv: v1 [cs.it] 26 Sep 2018 SAPLING THEORY FOR GRAPH SIGNALS ON PRODUCT GRAPHS Rohan A. Varma, Carnegie ellon University rohanv@andrew.cmu.edu Jelena Kovačević, NYU Tandon School of Engineering jelenak@nyu.edu arxiv:809.009v [cs.it]

More information

Proximity-Based Anomaly Detection using Sparse Structure Learning

Proximity-Based Anomaly Detection using Sparse Structure Learning Proximity-Based Anomaly Detection using Sparse Structure Learning Tsuyoshi Idé (IBM Tokyo Research Lab) Aurelie C. Lozano, Naoki Abe, and Yan Liu (IBM T. J. Watson Research Center) 2009/04/ SDM 2009 /

More information

Uncertainty quantification and visualization for functional random variables

Uncertainty quantification and visualization for functional random variables Uncertainty quantification and visualization for functional random variables MascotNum Workshop 2014 S. Nanty 1,3 C. Helbert 2 A. Marrel 1 N. Pérot 1 C. Prieur 3 1 CEA, DEN/DER/SESI/LSMR, F-13108, Saint-Paul-lez-Durance,

More information

25 : Graphical induced structured input/output models

25 : Graphical induced structured input/output models 10-708: Probabilistic Graphical Models 10-708, Spring 2016 25 : Graphical induced structured input/output models Lecturer: Eric P. Xing Scribes: Raied Aljadaany, Shi Zong, Chenchen Zhu Disclaimer: A large

More information

8.1 Concentration inequality for Gaussian random matrix (cont d)

8.1 Concentration inequality for Gaussian random matrix (cont d) MGMT 69: Topics in High-dimensional Data Analysis Falll 26 Lecture 8: Spectral clustering and Laplacian matrices Lecturer: Jiaming Xu Scribe: Hyun-Ju Oh and Taotao He, October 4, 26 Outline Concentration

More information

Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation

Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation Author: Raif M. Rustamov Presenter: Dan Abretske Johns Hopkins 2007 Outline Motivation and Background Laplace-Beltrami Operator

More information

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Neural Computation, June 2003; 15 (6):1373-1396 Presentation for CSE291 sp07 M. Belkin 1 P. Niyogi 2 1 University of Chicago, Department

More information

6160 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 23, DECEMBER 1, Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst

6160 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 23, DECEMBER 1, Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst 6160 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 23, DECEMBER 1, 2016 Learning Laplacian Matrix in Smooth Graph Signal Representations Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre

More information

A Local Inverse Formula and a Factorization

A Local Inverse Formula and a Factorization A Local Inverse Formula and a Factorization arxiv:60.030v [math.na] 4 Oct 06 Gilbert Strang and Shev MacNamara With congratulations to Ian Sloan! Abstract When a matrix has a banded inverse there is a

More information

INTERPOLATION OF GRAPH SIGNALS USING SHIFT-INVARIANT GRAPH FILTERS

INTERPOLATION OF GRAPH SIGNALS USING SHIFT-INVARIANT GRAPH FILTERS INTERPOLATION OF GRAPH SIGNALS USING SHIFT-INVARIANT GRAPH FILTERS Santiago Segarra, Antonio G. Marques, Geert Leus, Alejandro Ribeiro University of Pennsylvania, Dept. of Electrical and Systems Eng.,

More information

Random Sampling of Bandlimited Signals on Graphs

Random Sampling of Bandlimited Signals on Graphs Random Sampling of Bandlimited Signals on Graphs Pierre Vandergheynst École Polytechnique Fédérale de Lausanne (EPFL) School of Engineering & School of Computer and Communication Sciences Joint work with

More information

Uncertainty Principle and Sampling of Signals Defined on Graphs

Uncertainty Principle and Sampling of Signals Defined on Graphs Uncertainty Principle and Sampling of Signals Defined on Graphs Mikhail Tsitsvero, Sergio Barbarossa, and Paolo Di Lorenzo 2 Department of Information Eng., Electronics and Telecommunications, Sapienza

More information

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Yi Zhang and Jeff Schneider NIPS 2010 Presented by Esther Salazar Duke University March 25, 2011 E. Salazar (Reading group) March 25, 2011 1

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Learning Gaussian Graphical Models with Unknown Group Sparsity

Learning Gaussian Graphical Models with Unknown Group Sparsity Learning Gaussian Graphical Models with Unknown Group Sparsity Kevin Murphy Ben Marlin Depts. of Statistics & Computer Science Univ. British Columbia Canada Connections Graphical models Density estimation

More information

Lecture: Local Spectral Methods (1 of 4)

Lecture: Local Spectral Methods (1 of 4) Stat260/CS294: Spectral Graph Methods Lecture 18-03/31/2015 Lecture: Local Spectral Methods (1 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

Sparse Gaussian Markov Random Field Mixtures for Anomaly Detection

Sparse Gaussian Markov Random Field Mixtures for Anomaly Detection Sparse Gaussian Markov Random Field Mixtures for Anomaly Detection Tsuyoshi Idé ( Ide-san ), Ankush Khandelwal*, Jayant Kalagnanam IBM Research, T. J. Watson Research Center (*Currently with University

More information

OWL to the rescue of LASSO

OWL to the rescue of LASSO OWL to the rescue of LASSO IISc IBM day 2018 Joint Work R. Sankaran and Francis Bach AISTATS 17 Chiranjib Bhattacharyya Professor, Department of Computer Science and Automation Indian Institute of Science,

More information

Clustering-based State Aggregation of Dynamical Networks

Clustering-based State Aggregation of Dynamical Networks Clustering-based State Aggregation of Dynamical Networks Takayuki Ishizaki Ph.D. from Tokyo Institute of Technology (March 2012) Research Fellow of the Japan Society for the Promotion of Science More than

More information

High-dimensional covariance estimation based on Gaussian graphical models

High-dimensional covariance estimation based on Gaussian graphical models High-dimensional covariance estimation based on Gaussian graphical models Shuheng Zhou Department of Statistics, The University of Michigan, Ann Arbor IMA workshop on High Dimensional Phenomena Sept. 26,

More information

Graph Detection and Estimation Theory

Graph Detection and Estimation Theory Introduction Detection Estimation Graph Detection and Estimation Theory (and algorithms, and applications) Patrick J. Wolfe Statistics and Information Sciences Laboratory (SISL) School of Engineering and

More information

STATS 306B: Unsupervised Learning Spring Lecture 13 May 12

STATS 306B: Unsupervised Learning Spring Lecture 13 May 12 STATS 306B: Unsupervised Learning Spring 2014 Lecture 13 May 12 Lecturer: Lester Mackey Scribe: Jessy Hwang, Minzhe Wang 13.1 Canonical correlation analysis 13.1.1 Recap CCA is a linear dimensionality

More information

Understanding graphs through spectral densities

Understanding graphs through spectral densities Understanding graphs through spectral densities David Bindel Department of Computer Science Cornell University SCAN seminar, 29 Feb 216 SCAN 1 / 1 Can One Hear the Shape of a Drum? 2 u = λu on Ω, u = on

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Graph Partitioning Using Random Walks

Graph Partitioning Using Random Walks Graph Partitioning Using Random Walks A Convex Optimization Perspective Lorenzo Orecchia Computer Science Why Spectral Algorithms for Graph Problems in practice? Simple to implement Can exploit very efficient

More information

Learning with Singular Vectors

Learning with Singular Vectors Learning with Singular Vectors CIS 520 Lecture 30 October 2015 Barry Slaff Based on: CIS 520 Wiki Materials Slides by Jia Li (PSU) Works cited throughout Overview Linear regression: Given X, Y find w:

More information

Extended Bayesian Information Criteria for Gaussian Graphical Models

Extended Bayesian Information Criteria for Gaussian Graphical Models Extended Bayesian Information Criteria for Gaussian Graphical Models Rina Foygel University of Chicago rina@uchicago.edu Mathias Drton University of Chicago drton@uchicago.edu Abstract Gaussian graphical

More information

Permutation-invariant regularization of large covariance matrices. Liza Levina

Permutation-invariant regularization of large covariance matrices. Liza Levina Liza Levina Permutation-invariant covariance regularization 1/42 Permutation-invariant regularization of large covariance matrices Liza Levina Department of Statistics University of Michigan Joint work

More information

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina.

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina. Using Quadratic Approximation Inderjit S. Dhillon Dept of Computer Science UT Austin SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina Sept 12, 2012 Joint work with C. Hsieh, M. Sustik and

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

GRAPH ERROR EFFECT IN GRAPH SIGNAL PROCESSING. Jari Miettinen, Sergiy A. Vorobyov, and Esa Ollila

GRAPH ERROR EFFECT IN GRAPH SIGNAL PROCESSING. Jari Miettinen, Sergiy A. Vorobyov, and Esa Ollila GRAPH ERROR EFFECT IN GRAPH SIGNAL PROCESSING Jari Miettinen, Sergiy A. Vorobyov, and Esa Ollila Department of Signal Processing and Acoustics, Aalto University, P.O. Box 15400, FIN-00076 Aalto ABSTRACT

More information

Learning From Data: Modelling as an Optimisation Problem

Learning From Data: Modelling as an Optimisation Problem Learning From Data: Modelling as an Optimisation Problem Iman Shames April 2017 1 / 31 You should be able to... Identify and formulate a regression problem; Appreciate the utility of regularisation; Identify

More information

A Practical Approach to Inferring Large Graphical Models from Sparse Microarray Data

A Practical Approach to Inferring Large Graphical Models from Sparse Microarray Data A Practical Approach to Inferring Large Graphical Models from Sparse Microarray Data Juliane Schäfer Department of Statistics, University of Munich Workshop: Practical Analysis of Gene Expression Data

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

Collaborative topic models: motivations cont

Collaborative topic models: motivations cont Collaborative topic models: motivations cont Two topics: machine learning social network analysis Two people: " boy Two articles: article A! girl article B Preferences: The boy likes A and B --- no problem.

More information

ESL Chap3. Some extensions of lasso

ESL Chap3. Some extensions of lasso ESL Chap3 Some extensions of lasso 1 Outline Consistency of lasso for model selection Adaptive lasso Elastic net Group lasso 2 Consistency of lasso for model selection A number of authors have studied

More information

Reconstruction of graph signals: percolation from a single seeding node

Reconstruction of graph signals: percolation from a single seeding node Reconstruction of graph signals: percolation from a single seeding node Santiago Segarra, Antonio G. Marques, Geert Leus, and Alejandro Ribeiro Abstract Schemes to reconstruct signals defined in the nodes

More information

Linear Regression with Strongly Correlated Designs Using Ordered Weigthed l 1

Linear Regression with Strongly Correlated Designs Using Ordered Weigthed l 1 Linear Regression with Strongly Correlated Designs Using Ordered Weigthed l 1 ( OWL ) Regularization Mário A. T. Figueiredo Instituto de Telecomunicações and Instituto Superior Técnico, Universidade de

More information

Mimetic Methods and why they are better

Mimetic Methods and why they are better Mimetic Methods and why they are better Blair Perot Theoretical and Computational Fluid Dynamics Laboratory February 25, 2015 Numerical Methods: Are more than Mathematics Math: Accuracy Stability Convergence

More information

An Introduction to Graphical Lasso

An Introduction to Graphical Lasso An Introduction to Graphical Lasso Bo Chang Graphical Models Reading Group May 15, 2015 Bo Chang (UBC) Graphical Lasso May 15, 2015 1 / 16 Undirected Graphical Models An undirected graph, each vertex represents

More information

A Divide-and-Conquer Procedure for Sparse Inverse Covariance Estimation

A Divide-and-Conquer Procedure for Sparse Inverse Covariance Estimation A Divide-and-Conquer Procedure for Sparse Inverse Covariance Estimation Cho-Jui Hsieh Dept. of Computer Science University of Texas, Austin cjhsieh@cs.utexas.edu Inderjit S. Dhillon Dept. of Computer Science

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis November 24, 2015 From data to operators Given is data set X consisting of N vectors x n R D. Without loss of generality, assume x n = 0 (subtract mean). Let P be D N matrix

More information

Mixed Membership Stochastic Blockmodels

Mixed Membership Stochastic Blockmodels Mixed Membership Stochastic Blockmodels Journal of Machine Learning Research, 2008 by E.M. Airoldi, D.M. Blei, S.E. Fienberg, E.P. Xing as interpreted by Ted Westling STAT 572 Intro Talk April 22, 2014

More information

On convergence of Approximate Message Passing

On convergence of Approximate Message Passing On convergence of Approximate Message Passing Francesco Caltagirone (1), Florent Krzakala (2) and Lenka Zdeborova (1) (1) Institut de Physique Théorique, CEA Saclay (2) LPS, Ecole Normale Supérieure, Paris

More information

Sparse representation classification and positive L1 minimization

Sparse representation classification and positive L1 minimization Sparse representation classification and positive L1 minimization Cencheng Shen Joint Work with Li Chen, Carey E. Priebe Applied Mathematics and Statistics Johns Hopkins University, August 5, 2014 Cencheng

More information

Graph Signal Processing

Graph Signal Processing Graph Signal Processing Rahul Singh Data Science Reading Group Iowa State University March, 07 Outline Graph Signal Processing Background Graph Signal Processing Frameworks Laplacian Based Discrete Signal

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

ORIE 6334 Spectral Graph Theory October 13, Lecture 15

ORIE 6334 Spectral Graph Theory October 13, Lecture 15 ORIE 6334 Spectral Graph heory October 3, 206 Lecture 5 Lecturer: David P. Williamson Scribe: Shijin Rajakrishnan Iterative Methods We have seen in the previous lectures that given an electrical network,

More information

Info-Greedy Sequential Adaptive Compressed Sensing

Info-Greedy Sequential Adaptive Compressed Sensing Info-Greedy Sequential Adaptive Compressed Sensing Yao Xie Joint work with Gabor Braun and Sebastian Pokutta Georgia Institute of Technology Presented at Allerton Conference 2014 Information sensing for

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Gaussian graphical models and Ising models: modeling networks Eric Xing Lecture 0, February 7, 04 Reading: See class website Eric Xing @ CMU, 005-04

More information

The lasso: some novel algorithms and applications

The lasso: some novel algorithms and applications 1 The lasso: some novel algorithms and applications Newton Institute, June 25, 2008 Robert Tibshirani Stanford University Collaborations with Trevor Hastie, Jerome Friedman, Holger Hoefling, Gen Nowak,

More information

Provable Alternating Minimization Methods for Non-convex Optimization

Provable Alternating Minimization Methods for Non-convex Optimization Provable Alternating Minimization Methods for Non-convex Optimization Prateek Jain Microsoft Research, India Joint work with Praneeth Netrapalli, Sujay Sanghavi, Alekh Agarwal, Animashree Anandkumar, Rashish

More information

Manifold Coarse Graining for Online Semi-supervised Learning

Manifold Coarse Graining for Online Semi-supervised Learning for Online Semi-supervised Learning Mehrdad Farajtabar, Amirreza Shaban, Hamid R. Rabiee, Mohammad H. Rohban Digital Media Lab, Department of Computer Engineering, Sharif University of Technology, Tehran,

More information

Spectral Processing. Misha Kazhdan

Spectral Processing. Misha Kazhdan Spectral Processing Misha Kazhdan [Taubin, 1995] A Signal Processing Approach to Fair Surface Design [Desbrun, et al., 1999] Implicit Fairing of Arbitrary Meshes [Vallet and Levy, 2008] Spectral Geometry

More information

Multivariate Normal Models

Multivariate Normal Models Case Study 3: fmri Prediction Graphical LASSO Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox February 26 th, 2013 Emily Fox 2013 1 Multivariate Normal Models

More information

Information Recovery from Pairwise Measurements

Information Recovery from Pairwise Measurements Information Recovery from Pairwise Measurements A Shannon-Theoretic Approach Yuxin Chen, Changho Suh, Andrea Goldsmith Stanford University KAIST Page 1 Recovering data from correlation measurements A large

More information

Non-linear Dimensionality Reduction

Non-linear Dimensionality Reduction Non-linear Dimensionality Reduction CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Laplacian Eigenmaps Locally Linear Embedding (LLE)

More information

Sparse Gaussian conditional random fields

Sparse Gaussian conditional random fields Sparse Gaussian conditional random fields Matt Wytock, J. ico Kolter School of Computer Science Carnegie Mellon University Pittsburgh, PA 53 {mwytock, zkolter}@cs.cmu.edu Abstract We propose sparse Gaussian

More information

Machine Learning - MT & 14. PCA and MDS

Machine Learning - MT & 14. PCA and MDS Machine Learning - MT 2016 13 & 14. PCA and MDS Varun Kanade University of Oxford November 21 & 23, 2016 Announcements Sheet 4 due this Friday by noon Practical 3 this week (continue next week if necessary)

More information

ADMM and Fast Gradient Methods for Distributed Optimization

ADMM and Fast Gradient Methods for Distributed Optimization ADMM and Fast Gradient Methods for Distributed Optimization João Xavier Instituto Sistemas e Robótica (ISR), Instituto Superior Técnico (IST) European Control Conference, ECC 13 July 16, 013 Joint work

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Gaussian graphical models and Ising models: modeling networks Eric Xing Lecture 0, February 5, 06 Reading: See class website Eric Xing @ CMU, 005-06

More information

Multivariate Normal Models

Multivariate Normal Models Case Study 3: fmri Prediction Coping with Large Covariances: Latent Factor Models, Graphical Models, Graphical LASSO Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Multivariate Gaussians Mark Schmidt University of British Columbia Winter 2019 Last Time: Multivariate Gaussian http://personal.kenyon.edu/hartlaub/mellonproject/bivariate2.html

More information

Resampling Methods CAPT David Ruth, USN

Resampling Methods CAPT David Ruth, USN Resampling Methods CAPT David Ruth, USN Mathematics Department, United States Naval Academy Science of Test Workshop 05 April 2017 Outline Overview of resampling methods Bootstrapping Cross-validation

More information

A Random Dot Product Model for Weighted Networks arxiv: v1 [stat.ap] 8 Nov 2016

A Random Dot Product Model for Weighted Networks arxiv: v1 [stat.ap] 8 Nov 2016 A Random Dot Product Model for Weighted Networks arxiv:1611.02530v1 [stat.ap] 8 Nov 2016 Daryl R. DeFord 1 Daniel N. Rockmore 1,2,3 1 Department of Mathematics, Dartmouth College, Hanover, NH, USA 03755

More information

Spectral Graph Theory

Spectral Graph Theory Spectral Graph Theory Aaron Mishtal April 27, 2016 1 / 36 Outline Overview Linear Algebra Primer History Theory Applications Open Problems Homework Problems References 2 / 36 Outline Overview Linear Algebra

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

Using SVD to Recommend Movies

Using SVD to Recommend Movies Michael Percy University of California, Santa Cruz Last update: December 12, 2009 Last update: December 12, 2009 1 / Outline 1 Introduction 2 Singular Value Decomposition 3 Experiments 4 Conclusion Last

More information

Signal Analysis. Principal Component Analysis

Signal Analysis. Principal Component Analysis Multi dimensional Signal Analysis Lecture 2E Principal Component Analysis Subspace representation Note! Given avector space V of dimension N a scalar product defined by G 0 a subspace U of dimension M

More information

Sketching for Large-Scale Learning of Mixture Models

Sketching for Large-Scale Learning of Mixture Models Sketching for Large-Scale Learning of Mixture Models Nicolas Keriven Université Rennes 1, Inria Rennes Bretagne-atlantique Adv. Rémi Gribonval Outline Introduction Practical Approach Results Theoretical

More information

Removing systematic noise from lightcurves

Removing systematic noise from lightcurves Removing systematic noise from lightcurves A discussion of past approaches and potential future directions Giri Gopalan 1 Dr. Peter Plavchan 2 1 Department of Statistics Harvard University 2 Caltech NASA

More information

Constraint Reasoning and Kernel Clustering for Pattern Decomposition With Scaling

Constraint Reasoning and Kernel Clustering for Pattern Decomposition With Scaling Constraint Reasoning and Kernel Clustering for Pattern Decomposition With Scaling Ronan LeBras Theodoros Damoulas Ashish Sabharwal Carla P. Gomes John M. Gregoire Bruce van Dover Computer Science Computer

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning

Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning David Steurer Cornell Approximation Algorithms and Hardness, Banff, August 2014 for many problems (e.g., all UG-hard ones): better guarantees

More information

PRINCIPAL COMPONENT ANALYSIS

PRINCIPAL COMPONENT ANALYSIS PRINCIPAL COMPONENT ANALYSIS 1 INTRODUCTION One of the main problems inherent in statistics with more than two variables is the issue of visualising or interpreting data. Fortunately, quite often the problem

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

A Modified Method Using the Bethe Hessian Matrix to Estimate the Number of Communities

A Modified Method Using the Bethe Hessian Matrix to Estimate the Number of Communities Journal of Advanced Statistics, Vol. 3, No. 2, June 2018 https://dx.doi.org/10.22606/jas.2018.32001 15 A Modified Method Using the Bethe Hessian Matrix to Estimate the Number of Communities Laala Zeyneb

More information