Constraint Reasoning and Kernel Clustering for Pattern Decomposition With Scaling

Size: px
Start display at page:

Download "Constraint Reasoning and Kernel Clustering for Pattern Decomposition With Scaling"

Transcription

1 Constraint Reasoning and Kernel Clustering for Pattern Decomposition With Scaling Ronan LeBras Theodoros Damoulas Ashish Sabharwal Carla P. Gomes John M. Gregoire Bruce van Dover Computer Science Computer Science Computer Science Computer Science Materials Science / Physics Materials Science / Physics Sept 15, 2011 CP 11

2 Motivation Cornell Fuel Cell Institute Mission: develop new materials for fuel cells. An Electrocatalyst must: 1) Be electronically conducting 2) Facilitate both reactions Platinum is the best known metal to fulfill that role, but: 1) The reaction rate is still considered slow (causing energy loss) 2) Platinum is fairly costly, intolerant to fuel contaminants, and has a short lifetime. Goal: Find an intermetallic compound that is a better catalyst than Pt. 2

3 Motivation Recipe for finding alternatives to Platinum 1) In a vacuum chamber, place a silicon wafer. 2) Add three metals. 3) Mix until smooth, using three sputter guns. 4) Bake for 2 hours at 650ºC Rh Deliberately inhomogeneous composition on Si wafer (38% Ta, 45% Rh, 17% Pd) Atoms are intimately mixed [Source: Pyrotope, Sebastien Merkel] Ta Pd 3

4 Motivation Identifying crystal structure using X-Ray Diffraction at CHESS XRD pattern characterizes the underlying crystal fairly well Expensive experimentations: Bruce van Dover s research team has access to the facility one week every year. Rh [Source: Pyrotope, Sebastien Merkel] (38% Ta, 45% Rh, 17% Pd) Ta Pd 4

5 Motivation Rh γ β α Ta Pd δ 5

6 Motivation Rh γ β γ+δ α+β Ta α δ Pd 6

7 Motivation Rh γ β α Ta Pd δ 7

8 Motivation Rh γ β P j P i α+β Ta α Pd δ 8

9 Motivation Rh γ β P k P j α+β Ta α P i Pd δ 9

10 Motivation INPUT: Al OUTPUT: m phase regions k pure regions m-k mixed regions Al pure phase region Mixed phase region Fe Si XRD pattern characterizing pure phases Fe Si Additional Physical characteristics: Peaks shift by 15% within a region Phase Connectivity Mixtures of 3 phases Small peaks might be discriminative Peak locations matter, more than peak intensities 10

11 Motivation Rh Ta Pd Figure 1: Phase regions of Ta-Rh-Pd Figure 2: Fluorescence activity of Ta-Rh-Pd 11

12 Outline Motivation Problem Definition Abstraction Hardness CP Model Kernel-based Clustering Bridging CP and Machine learning Conclusion and Future work 12

13 Problem Abstraction: Pattern Decomposition with Scaling Input Output 13

14 Problem Abstraction: Pattern Decomposition with Scaling Input Output v 1 v 2 v 3 v 4 v 5 14

15 Problem Abstraction: Pattern Decomposition with Scaling Input Output v 1 P 1 v 2 P 2 v 3 P 3 v 4 P 4 v 5 P 5 15

16 Problem Abstraction: Pattern Decomposition with Scaling Input Output v 1 P 1 v 2 P 2 v 3 P 3 v 4 P 4 v 5 P 5 M= K = 2, δ =

17 Problem Abstraction: Pattern Decomposition with Scaling Input Output B 1 v 1 P 1 v 2 P 2 v 3 P 3 v 4 P 4 v 5 P 5 M= K = 2, δ = 1.5 B 2 17

18 Problem Abstraction: Pattern Decomposition with Scaling Input Output v 1 P 1 B 1 s 11=1.00 s 21 =0.68 v 2 P 2 s 12 =0.95 s 22 =0.78 v 3 P 3 s 13 =0.88 s 23 =0.85 v 4 P 4 s 14 =0.84 s 24 =0.96 v 5 P 5 s 15 =0 s 25 =1.00 M= K = 2, δ = 1.5 B 2 18

19 Problem Hardness Assumptions: Each B k appears by itself in some v i / No experimental noise The problem can be solved* in polynomial time. Assumption: No experimental noise The problem becomes NP-hard (reduction from the Set Basis problem) v 1 v 2 v 3 v 4 v 5 Assumption used in this work: Experimental noise in the form of missing elements in P i P 0 = B 1 s 11=1.00 P 1 P 2 P 3 P 4 P 5 s 12 =0.95 s 13 =0.88 s 14 =0.84 s 15 =0 s 21 =0.68 s 22 =0.78 s 23 =0.85 s 24 =0.96 s 25 =1.00 M= K = 2, δ = 1.5 B 2 19

20 Outline Motivation Problem Definition CP Model Model Experimental Results Kernel-based Clustering Bridging CP and Machine learning Conclusion and Future work 20

21 CP Model 21

22 CP Model (continued) Advantage: Captures physical properties and relies on peak location rather than height. Drawback: Does not scale to realistic instances; poor propagation if experimental noise. 22

23 Running time (in s) CP Model Experimental Results Number of unknown phases vs. running times (AlLiFe with P = 24) Number of unknown phases (K ) N=10 N=15 N=28 N=218 For realistic instances, K = 6 and N

24 Outline Motivation Problem Definition CP Model Kernel-based Clustering Bridging CP and Machine learning Conclusion and Future work 24

25 Kernel-based Clustering Set of features: X = Similarity matrices: [X.X T ] + + Better approach: take shifts into account + Red: similar Blue: dissimilar Method: K-means on Dynamic Time-Warping kernel Goal: Select groups of samples that belong to the same phase region to feed the CP model, in order to extract the underlying phases of these sub-problems. 25

26 Bridging CP and ML Goal: a robust, physically meaningful, scalable, automated solution method that combines: Underlying Physics A language for Constraints enforcing local details Machine Learning for a global data-driven view Constraint Programming model Similarity Kernels & Clustering 26

27 Bridging Constraint Reasoning and Machine Learning: Overview of the Methodology INPUT: Al Machine Learning: Fe Si Kernel methods, Dynamic Time Wrapping Peak detection Fix errors in data Machine Learning: Partial Clustering Al Full CP Model guided by partial solutions CP Model & Solver on sub-problems Fe Si OUTPUT only only, +, 27

28 Experimental Validation Al-Li-Fe instance with 6 phases: Ground truth (known) Previous work (NMF) violates many physical requirements Our CP + ML hybrid approach is much more robust 28

29 Conclusion Hybrid approach to clustering under constraints More robust than data-driven global ML approaches More scalable than a pure CP model locally enforcing constraints An exciting application in close collaboration with physicists Best inference out of expensive experiments Towards the design of better fuel cell technology 29

30 Future work Ongoing work: Spatial Clustering, to further enhance cluster quality Bayesian Approach, to better exploit prior knowledge about local smoothness and available inorganic libraries Active learning: Where to sample next, assuming we can interfere with the sampling process? When to stop sampling if sufficient information has been obtained? Correlating catalytic properties across many thin-films: In order to understand the underlying physical mechanism of catalysis and to find promising intermettalic compounds 30

31 The end Thank you! 31

32 Extra slides 32

33 Experimental Sample Example on Al-Li-Fe diagram: 33

34 Applications with similar structure Fire Detection Detecting/Locating fires. Flight Calls / Bird conservation Analogy: basis pattern = warmth sources samples = temperature recordings physical constraints = gradient of temperatures, material properties Identifying bird population from sound recordings at night. Analogy: basis pattern = species samples = recordings physical constraints = spatial constraints, species and season specificities 34

35 Previous Work 1: Cluster Analysis (Long et al., 2007) x i = (Feature vector) (Pearson correlation coefficients) (Distance matrix) (PCA 3 dimensional approx) (Hierarchical Agglomerative Clustering) Drawback: Requires sampling of pure phases, detects phase regions (not phases), overlooks peak shifts, may violate physical constraints (phase continuity, etc.). 35

36 Previous Work 2: NMF (Long et al., 2009) x i = X = A.S + E Min E (Feature vector) (Linear positive combination (A) of basis patterns (S)) (Minimizing squared Frobenius norm Drawback: Overlooks peak shifts (linear combination only), may violate physical constraints (phase continuity, etc.). 36

A Computational Challenge Problem in Materials Discovery: Synthetic Problem Generator and Real-World Datasets

A Computational Challenge Problem in Materials Discovery: Synthetic Problem Generator and Real-World Datasets Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence A Computational Challenge Problem in Materials Discovery: Synthetic Problem Generator and Real-World Datasets Ronan Le Bras Richard

More information

MultiscaleMaterialsDesignUsingInformatics. S. R. Kalidindi, A. Agrawal, A. Choudhary, V. Sundararaghavan AFOSR-FA

MultiscaleMaterialsDesignUsingInformatics. S. R. Kalidindi, A. Agrawal, A. Choudhary, V. Sundararaghavan AFOSR-FA MultiscaleMaterialsDesignUsingInformatics S. R. Kalidindi, A. Agrawal, A. Choudhary, V. Sundararaghavan AFOSR-FA9550-12-1-0458 1 Hierarchical Material Structure Kalidindi and DeGraef, ARMS, 2015 Main Challenges

More information

Salt Dome Detection and Tracking Using Texture Analysis and Tensor-based Subspace Learning

Salt Dome Detection and Tracking Using Texture Analysis and Tensor-based Subspace Learning Salt Dome Detection and Tracking Using Texture Analysis and Tensor-based Subspace Learning Zhen Wang*, Dr. Tamir Hegazy*, Dr. Zhiling Long, and Prof. Ghassan AlRegib 02/18/2015 1 /42 Outline Introduction

More information

Secondary ion mass spectrometry (SIMS)

Secondary ion mass spectrometry (SIMS) Secondary ion mass spectrometry (SIMS) ELEC-L3211 Postgraduate Course in Micro and Nanosciences Department of Micro and Nanosciences Personal motivation and experience on SIMS Offers the possibility to

More information

Course in Data Science

Course in Data Science Course in Data Science About the Course: In this course you will get an introduction to the main tools and ideas which are required for Data Scientist/Business Analyst/Data Analyst. The course gives an

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Gravitational Wave Astronomy s Next Frontier in Computation

Gravitational Wave Astronomy s Next Frontier in Computation Gravitational Wave Astronomy s Next Frontier in Computation Chad Hanna - Penn State University Penn State Physics Astronomy & Astrophysics Outline 1. Motivation 2. Gravitational waves. 3. Birth of gravitational

More information

CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization

CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization Tim Roughgarden February 28, 2017 1 Preamble This lecture fulfills a promise made back in Lecture #1,

More information

Ichiro Takeuchi University of Maryland

Ichiro Takeuchi University of Maryland High-throughput Experimentation and Machine Learning for Materials Discovery 55 Å 45 Å 35Å Ferroelectric library t s (Å) 25 Å 20 Å 15 Å 10 Å 5 Å No impurity Ti (3 Å) Ti (6 Å) Ti (9 Å) Cu (3 Å) Cu (6Å)

More information

Combinatorial Heterogeneous Catalysis

Combinatorial Heterogeneous Catalysis Combinatorial Heterogeneous Catalysis 650 μm by 650 μm, spaced 100 μm apart Identification of a new blue photoluminescent (PL) composite material, Gd 3 Ga 5 O 12 /SiO 2 Science 13 March 1998: Vol. 279

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Course Info. Instructor: Nicholas Ruozzi Office: ECSS 3.409 Office hours: Tues.

More information

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, 2017 Spis treści Website Acknowledgments Notation xiii xv xix 1 Introduction 1 1.1 Who Should Read This Book?

More information

L 2,1 Norm and its Applications

L 2,1 Norm and its Applications L 2, Norm and its Applications Yale Chang Introduction According to the structure of the constraints, the sparsity can be obtained from three types of regularizers for different purposes.. Flat Sparsity.

More information

Clustering based tensor decomposition

Clustering based tensor decomposition Clustering based tensor decomposition Huan He huan.he@emory.edu Shihua Wang shihua.wang@emory.edu Emory University November 29, 2017 (Huan)(Shihua) (Emory University) Clustering based tensor decomposition

More information

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 CS 2750: Machine Learning Bayesian Networks Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 Plan for today and next week Today and next time: Bayesian networks (Bishop Sec. 8.1) Conditional

More information

Overview of Statistical Tools. Statistical Inference. Bayesian Framework. Modeling. Very simple case. Things are usually more complicated

Overview of Statistical Tools. Statistical Inference. Bayesian Framework. Modeling. Very simple case. Things are usually more complicated Fall 3 Computer Vision Overview of Statistical Tools Statistical Inference Haibin Ling Observation inference Decision Prior knowledge http://www.dabi.temple.edu/~hbling/teaching/3f_5543/index.html Bayesian

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu

CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu Feature engineering is hard 1. Extract informative features from domain knowledge

More information

Provable Alternating Minimization Methods for Non-convex Optimization

Provable Alternating Minimization Methods for Non-convex Optimization Provable Alternating Minimization Methods for Non-convex Optimization Prateek Jain Microsoft Research, India Joint work with Praneeth Netrapalli, Sujay Sanghavi, Alekh Agarwal, Animashree Anandkumar, Rashish

More information

Experimental Design and Data Analysis for Biologists

Experimental Design and Data Analysis for Biologists Experimental Design and Data Analysis for Biologists Gerry P. Quinn Monash University Michael J. Keough University of Melbourne CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv I I Introduction 1 1.1

More information

Matrices, Vector Spaces, and Information Retrieval

Matrices, Vector Spaces, and Information Retrieval Matrices, Vector Spaces, and Information Authors: M. W. Berry and Z. Drmac and E. R. Jessup SIAM 1999: Society for Industrial and Applied Mathematics Speaker: Mattia Parigiani 1 Introduction Large volumes

More information

Memory Efficient Kernel Approximation

Memory Efficient Kernel Approximation Si Si Department of Computer Science University of Texas at Austin ICML Beijing, China June 23, 2014 Joint work with Cho-Jui Hsieh and Inderjit S. Dhillon Outline Background Motivation Low-Rank vs. Block

More information

Spectral Clustering of Polarimetric SAR Data With Wishart-Derived Distance Measures

Spectral Clustering of Polarimetric SAR Data With Wishart-Derived Distance Measures Spectral Clustering of Polarimetric SAR Data With Wishart-Derived Distance Measures STIAN NORMANN ANFINSEN ROBERT JENSSEN TORBJØRN ELTOFT COMPUTATIONAL EARTH OBSERVATION AND MACHINE LEARNING LABORATORY

More information

Characterization and inference of weighted graph topologies from observations of diffused signals

Characterization and inference of weighted graph topologies from observations of diffused signals Characterization and inference of weighted graph topologies from observations of diffused signals Bastien Pasdeloup*, Vincent Gripon*, Grégoire Mercier*, Dominique Pastor*, Michael G. Rabbat** * name.surname@telecom-bretagne.eu

More information

Visual Tracking via Geometric Particle Filtering on the Affine Group with Optimal Importance Functions

Visual Tracking via Geometric Particle Filtering on the Affine Group with Optimal Importance Functions Monday, June 22 Visual Tracking via Geometric Particle Filtering on the Affine Group with Optimal Importance Functions Junghyun Kwon 1, Kyoung Mu Lee 1, and Frank C. Park 2 1 Department of EECS, 2 School

More information

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Principal Components Analysis Le Song Lecture 22, Nov 13, 2012 Based on slides from Eric Xing, CMU Reading: Chap 12.1, CB book 1 2 Factor or Component

More information

From perceptrons to word embeddings. Simon Šuster University of Groningen

From perceptrons to word embeddings. Simon Šuster University of Groningen From perceptrons to word embeddings Simon Šuster University of Groningen Outline A basic computational unit Weighting some input to produce an output: classification Perceptron Classify tweets Written

More information

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan Linear Regression CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis Regularization

More information

EE 527 MICROFABRICATION. Lecture 24 Tai-Chang Chen University of Washington

EE 527 MICROFABRICATION. Lecture 24 Tai-Chang Chen University of Washington EE 527 MICROFABRICATION Lecture 24 Tai-Chang Chen University of Washington EDP ETCHING OF SILICON - 1 Ethylene Diamine Pyrocatechol Anisotropy: (100):(111) ~ 35:1 EDP is very corrosive, very carcinogenic,

More information

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan Linear Regression CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis

More information

Probabilistic Machine Learning. Industrial AI Lab.

Probabilistic Machine Learning. Industrial AI Lab. Probabilistic Machine Learning Industrial AI Lab. Probabilistic Linear Regression Outline Probabilistic Classification Probabilistic Clustering Probabilistic Dimension Reduction 2 Probabilistic Linear

More information

Direct MOND/TEVES test with LISA Pathfinder

Direct MOND/TEVES test with LISA Pathfinder Direct MOND/TEVES test with LISA Pathfinder Christian Trenkel and Steve Kemble Astrium Ltd, Stevenage, UK Joao Magueijo and Neil Bevis Imperial College, London, UK Fabrizio io demarchi and Giuseppe Congedo

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [based on slides from Nina Balcan] slide 1 Goals for the lecture you should understand

More information

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Philip D. Rack,, Jason D. Fowlkes,, and Yuepeng Deng Department of Materials Science and Engineering University

More information

Simulations of the Microbunching Instability in FEL Beam Delivery Systems

Simulations of the Microbunching Instability in FEL Beam Delivery Systems Simulations of the Microbunching Instability in FEL Beam Delivery Systems Ilya Pogorelov Tech-X Corporation Workshop on High Average Power & High Brightness Beams UCLA, January 2009 Outline The setting:

More information

Bayesian Support Vector Machines for Feature Ranking and Selection

Bayesian Support Vector Machines for Feature Ranking and Selection Bayesian Support Vector Machines for Feature Ranking and Selection written by Chu, Keerthi, Ong, Ghahramani Patrick Pletscher pat@student.ethz.ch ETH Zurich, Switzerland 12th January 2006 Overview 1 Introduction

More information

Leveraging Belief Propagation, Backtrack Search, and Statistics for Model Counting

Leveraging Belief Propagation, Backtrack Search, and Statistics for Model Counting Leveraging Belief Propagation, Backtrack Search, and Statistics for Model Counting Lukas Kroc, Ashish Sabharwal, Bart Selman Cornell University May 23, 2008 CPAIOR-08 Conference, Paris Talk Outline Model

More information

Uncertainty Quantification for Machine Learning and Statistical Models

Uncertainty Quantification for Machine Learning and Statistical Models Uncertainty Quantification for Machine Learning and Statistical Models David J. Stracuzzi Joint work with: Max Chen, Michael Darling, Stephen Dauphin, Matt Peterson, and Chris Young Sandia National Laboratories

More information

Collaborative Filtering

Collaborative Filtering Collaborative Filtering Nicholas Ruozzi University of Texas at Dallas based on the slides of Alex Smola & Narges Razavian Collaborative Filtering Combining information among collaborating entities to make

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks Stephan Dreiseitl University of Applied Sciences Upper Austria at Hagenberg Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support Knowledge

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Centre for Computational Statistics and Machine Learning University College London c.archambeau@cs.ucl.ac.uk CSML

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie

A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie Computational Biology Program Memorial Sloan-Kettering Cancer Center http://cbio.mskcc.org/leslielab

More information

FINDING DESCRIPTORS USEFUL FOR DATA MINING IN THE CHARACTERIZATION DATA OF CATALYSTS

FINDING DESCRIPTORS USEFUL FOR DATA MINING IN THE CHARACTERIZATION DATA OF CATALYSTS Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 338 FINDING DESCRIPTORS USEFUL FOR DATA MINING IN THE CHARACTERIZATION DATA OF CATALYSTS C. K. Lowe-Ma,

More information

A Modular NMF Matching Algorithm for Radiation Spectra

A Modular NMF Matching Algorithm for Radiation Spectra A Modular NMF Matching Algorithm for Radiation Spectra Melissa L. Koudelka Sensor Exploitation Applications Sandia National Laboratories mlkoude@sandia.gov Daniel J. Dorsey Systems Technologies Sandia

More information

Numerical Solutions of Partial Differential Equations

Numerical Solutions of Partial Differential Equations Numerical Solutions of Partial Differential Equations Dr. Xiaozhou Li xiaozhouli@uestc.edu.cn School of Mathematical Sciences University of Electronic Science and Technology of China Introduction Overview

More information

Computational Materials Design and Discovery Energy and Electronic Applications Synthesis Structure Properties

Computational Materials Design and Discovery Energy and Electronic Applications Synthesis Structure Properties Computational Materials Design and Discovery Energy and Electronic Applications Synthesis Structure Properties Supercapacitors Rechargeable batteries Supercomputer Photocatalysts Fuel cell catalysts First

More information

Three right directions and three wrong directions for tensor research

Three right directions and three wrong directions for tensor research Three right directions and three wrong directions for tensor research Michael W. Mahoney Stanford University ( For more info, see: http:// cs.stanford.edu/people/mmahoney/ or Google on Michael Mahoney

More information

Deep Learning for Natural Language Processing. Sidharth Mudgal April 4, 2017

Deep Learning for Natural Language Processing. Sidharth Mudgal April 4, 2017 Deep Learning for Natural Language Processing Sidharth Mudgal April 4, 2017 Table of contents 1. Intro 2. Word Vectors 3. Word2Vec 4. Char Level Word Embeddings 5. Application: Entity Matching 6. Conclusion

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io Machine Learning Lecture 4: Regularization and Bayesian Statistics Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 207 Overfitting Problem

More information

Matrix and Tensor Factorization from a Machine Learning Perspective

Matrix and Tensor Factorization from a Machine Learning Perspective Matrix and Tensor Factorization from a Machine Learning Perspective Christoph Freudenthaler Information Systems and Machine Learning Lab, University of Hildesheim Research Seminar, Vienna University of

More information

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010 Linear Regression Aarti Singh Machine Learning 10-701/15-781 Sept 27, 2010 Discrete to Continuous Labels Classification Sports Science News Anemic cell Healthy cell Regression X = Document Y = Topic X

More information

Phonon calculations with SCAN

Phonon calculations with SCAN Workshop on the SCAN density functional: Fundamentals, practices, and extensions Temple university, Philadelphia May 18th, 2017 Hands-on tutorial 3 Phonon calculations with SCAN Yubo Zhang and Jianwei

More information

Structured tensor missing-trace interpolation in the Hierarchical Tucker format Curt Da Silva and Felix J. Herrmann Sept. 26, 2013

Structured tensor missing-trace interpolation in the Hierarchical Tucker format Curt Da Silva and Felix J. Herrmann Sept. 26, 2013 Structured tensor missing-trace interpolation in the Hierarchical Tucker format Curt Da Silva and Felix J. Herrmann Sept. 6, 13 SLIM University of British Columbia Motivation 3D seismic experiments - 5D

More information

Sound Recognition in Mixtures

Sound Recognition in Mixtures Sound Recognition in Mixtures Juhan Nam, Gautham J. Mysore 2, and Paris Smaragdis 2,3 Center for Computer Research in Music and Acoustics, Stanford University, 2 Advanced Technology Labs, Adobe Systems

More information

Machine Learning and Logic: Fast and Slow Thinking

Machine Learning and Logic: Fast and Slow Thinking Machine Learning and Logic: Fast and Slow Thinking Moshe Y. Vardi Rice University Is Computer Science Fundamentally Changing? Formal Science vs Data Science We are at peak hype about machine learning and

More information

Matrix Factorization Techniques for Recommender Systems

Matrix Factorization Techniques for Recommender Systems Matrix Factorization Techniques for Recommender Systems Patrick Seemann, December 16 th, 2014 16.12.2014 Fachbereich Informatik Recommender Systems Seminar Patrick Seemann Topics Intro New-User / New-Item

More information

a Short Introduction

a Short Introduction Collaborative Filtering in Recommender Systems: a Short Introduction Norm Matloff Dept. of Computer Science University of California, Davis matloff@cs.ucdavis.edu December 3, 2016 Abstract There is a strong

More information

Introduction to Machine Learning. Introduction to ML - TAU 2016/7 1

Introduction to Machine Learning. Introduction to ML - TAU 2016/7 1 Introduction to Machine Learning Introduction to ML - TAU 2016/7 1 Course Administration Lecturers: Amir Globerson (gamir@post.tau.ac.il) Yishay Mansour (Mansour@tau.ac.il) Teaching Assistance: Regev Schweiger

More information

DATA ANALYTICS IN NANOMATERIALS DISCOVERY

DATA ANALYTICS IN NANOMATERIALS DISCOVERY DATA ANALYTICS IN NANOMATERIALS DISCOVERY Michael Fernandez OCE-Postdoctoral Fellow September 2016 www.data61.csiro.au Materials Discovery Process Materials Genome Project Integrating computational methods

More information

Modeling and Computation Core (MCC)

Modeling and Computation Core (MCC) List of Research by Research Cluster Modeling and Computation Core (MCC) GOAL 1: Develop multiscale theories and materials databank that complement experimental approaches for materials design Objective

More information

Applying Latent Dirichlet Allocation to Group Discovery in Large Graphs

Applying Latent Dirichlet Allocation to Group Discovery in Large Graphs Lawrence Livermore National Laboratory Applying Latent Dirichlet Allocation to Group Discovery in Large Graphs Keith Henderson and Tina Eliassi-Rad keith@llnl.gov and eliassi@llnl.gov This work was performed

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2010 Lecture 24: Perceptrons and More! 4/22/2010 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements W7 due tonight [this is your last written for

More information

Novel spectrum sensing schemes for Cognitive Radio Networks

Novel spectrum sensing schemes for Cognitive Radio Networks Novel spectrum sensing schemes for Cognitive Radio Networks Cantabria University Santander, May, 2015 Supélec, SCEE Rennes, France 1 The Advanced Signal Processing Group http://gtas.unican.es The Advanced

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

A DIVISION OF ULVAC-PHI

A DIVISION OF ULVAC-PHI A DIVISION OF ULVAC-PHI X-ray photoelectron spectroscopy (XPS/ESCA) is the most widely used surface analysis technique and has many well established industrial and research applications. XPS provides

More information

Outline Introduction OLS Design of experiments Regression. Metamodeling. ME598/494 Lecture. Max Yi Ren

Outline Introduction OLS Design of experiments Regression. Metamodeling. ME598/494 Lecture. Max Yi Ren 1 / 34 Metamodeling ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 1, 2015 2 / 34 1. preliminaries 1.1 motivation 1.2 ordinary least square 1.3 information

More information

Michael Lechner Causal Analysis RDD 2014 page 1. Lecture 7. The Regression Discontinuity Design. RDD fuzzy and sharp

Michael Lechner Causal Analysis RDD 2014 page 1. Lecture 7. The Regression Discontinuity Design. RDD fuzzy and sharp page 1 Lecture 7 The Regression Discontinuity Design fuzzy and sharp page 2 Regression Discontinuity Design () Introduction (1) The design is a quasi-experimental design with the defining characteristic

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Instance-based Learning CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Outline Non-parametric approach Unsupervised: Non-parametric density estimation Parzen Windows Kn-Nearest

More information

Present status and future of DC photoemission electron guns for high power, high brightness applications

Present status and future of DC photoemission electron guns for high power, high brightness applications Present status and future of DC photoemission electron guns for high power, high brightness applications DC photoemission electron guns using GaAs cathodes have been in use to produce polarized electrons

More information

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 1 MACHINE LEARNING Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 2 Practicals Next Week Next Week, Practical Session on Computer Takes Place in Room GR

More information

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University Lecture 4: Principal Component Analysis Aykut Erdem May 016 Hacettepe University This week Motivation PCA algorithms Applications PCA shortcomings Autoencoders Kernel PCA PCA Applications Data Visualization

More information

Non-Negative Matrix Factorization

Non-Negative Matrix Factorization Chapter 3 Non-Negative Matrix Factorization Part : Introduction & computation Motivating NMF Skillicorn chapter 8; Berry et al. (27) DMM, summer 27 2 Reminder A T U Σ V T T Σ, V U 2 Σ 2,2 V 2.8.6.6.3.6.5.3.6.3.6.4.3.6.4.3.3.4.5.3.5.8.3.8.3.3.5

More information

Computer Vision Group Prof. Daniel Cremers. 14. Clustering

Computer Vision Group Prof. Daniel Cremers. 14. Clustering Group Prof. Daniel Cremers 14. Clustering Motivation Supervised learning is good for interaction with humans, but labels from a supervisor are hard to obtain Clustering is unsupervised learning, i.e. it

More information

Machine Learning: Basis and Wavelet 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 Haar DWT in 2 levels

Machine Learning: Basis and Wavelet 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 Haar DWT in 2 levels Machine Learning: Basis and Wavelet 32 157 146 204 + + + + + - + - 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 7 22 38 191 17 83 188 211 71 167 194 207 135 46 40-17 18 42 20 44 31 7 13-32 + + - - +

More information

Bayesian Identity Clustering

Bayesian Identity Clustering Bayesian Identity Clustering Simon JD Prince Department of Computer Science University College London James Elder Centre for Vision Research York University http://pvlcsuclacuk sprince@csuclacuk The problem

More information

Study of the decays at Wasa-at-COSY. Elisabetta Prencipe on behalf of the Wasa Collaboration MesonNet Workshop, 17th -19th June 2013, Praha

Study of the decays at Wasa-at-COSY. Elisabetta Prencipe on behalf of the Wasa Collaboration MesonNet Workshop, 17th -19th June 2013, Praha Study of the decays at Wasa-at-COSY on behalf of the Wasa Collaboration MesonNet Workshop, 17th -19th June 2013, Praha Outline Introduction The Wasa-at-COSY detector decays in the pd reaction e+e e+e e+e

More information

An overview of word2vec

An overview of word2vec An overview of word2vec Benjamin Wilson Berlin ML Meetup, July 8 2014 Benjamin Wilson word2vec Berlin ML Meetup 1 / 25 Outline 1 Introduction 2 Background & Significance 3 Architecture 4 CBOW word representations

More information

Machine Learning - MT & 14. PCA and MDS

Machine Learning - MT & 14. PCA and MDS Machine Learning - MT 2016 13 & 14. PCA and MDS Varun Kanade University of Oxford November 21 & 23, 2016 Announcements Sheet 4 due this Friday by noon Practical 3 this week (continue next week if necessary)

More information

CS6375: Machine Learning Gautam Kunapuli. Support Vector Machines

CS6375: Machine Learning Gautam Kunapuli. Support Vector Machines Gautam Kunapuli Example: Text Categorization Example: Develop a model to classify news stories into various categories based on their content. sports politics Use the bag-of-words representation for this

More information

Matrix Factorization & Latent Semantic Analysis Review. Yize Li, Lanbo Zhang

Matrix Factorization & Latent Semantic Analysis Review. Yize Li, Lanbo Zhang Matrix Factorization & Latent Semantic Analysis Review Yize Li, Lanbo Zhang Overview SVD in Latent Semantic Indexing Non-negative Matrix Factorization Probabilistic Latent Semantic Indexing Vector Space

More information

Lecture: Local Spectral Methods (1 of 4)

Lecture: Local Spectral Methods (1 of 4) Stat260/CS294: Spectral Graph Methods Lecture 18-03/31/2015 Lecture: Local Spectral Methods (1 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

Machine Learning (CS 567) Lecture 5

Machine Learning (CS 567) Lecture 5 Machine Learning (CS 567) Lecture 5 Time: T-Th 5:00pm - 6:20pm Location: GFS 118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

CS534 Machine Learning - Spring Final Exam

CS534 Machine Learning - Spring Final Exam CS534 Machine Learning - Spring 2013 Final Exam Name: You have 110 minutes. There are 6 questions (8 pages including cover page). If you get stuck on one question, move on to others and come back to the

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 http://intelligentoptimization.org/lionbook Roberto Battiti

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Approximate Inference Part 1 of 2

Approximate Inference Part 1 of 2 Approximate Inference Part 1 of 2 Tom Minka Microsoft Research, Cambridge, UK Machine Learning Summer School 2009 http://mlg.eng.cam.ac.uk/mlss09/ Bayesian paradigm Consistent use of probability theory

More information

Latest advances in identifying mineral composition variation by the M4 TORNADO AMICS

Latest advances in identifying mineral composition variation by the M4 TORNADO AMICS Latest advances in identifying mineral composition variation by the M4 TORNADO AMICS Bruker Nano Analytics, Berlin, Germany Webinar, June 15, 2017 Innovation with Integrity Presenters Samuel Scheller Sr.

More information

Feature Engineering, Model Evaluations

Feature Engineering, Model Evaluations Feature Engineering, Model Evaluations Giri Iyengar Cornell University gi43@cornell.edu Feb 5, 2018 Giri Iyengar (Cornell Tech) Feature Engineering Feb 5, 2018 1 / 35 Overview 1 ETL 2 Feature Engineering

More information

Remote Access to Hi-tech Equipment

Remote Access to Hi-tech Equipment Remote Access to Hi-tech Equipment From Your Classroom to Ours Sebastien Maeder Outline What is Remote Access? The Method vs. the Goal The role within NACK Why should we try? Confines of Classroom Characterization

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 4 Occam s Razor, Model Construction, and Directed Graphical Models https://people.orie.cornell.edu/andrew/orie6741 Cornell University September

More information

CSC411: Final Review. James Lucas & David Madras. December 3, 2018

CSC411: Final Review. James Lucas & David Madras. December 3, 2018 CSC411: Final Review James Lucas & David Madras December 3, 2018 Agenda 1. A brief overview 2. Some sample questions Basic ML Terminology The final exam will be on the entire course; however, it will be

More information

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis Tim Nunney The world leader in serving science 2 XPS Surface Analysis XPS +... UV Photoelectron Spectroscopy UPS He(I)

More information

Inmaculada Rodríguez Ramos Nanostructured catalysts for sustainable chemical processes

Inmaculada Rodríguez Ramos Nanostructured catalysts for sustainable chemical processes Inmaculada Rodríguez Ramos Nanostructured catalysts for sustainable chemical processes Instituto de Catálisis y Petroleoquímica (ICP) Institute of Catalysis and Petroleochemistry http://www.icp.csic.es

More information

DISCRIMINATION AND IDENTIFICATION OF UNEXPLODED ORDINANCES (UXO) USING AIRBORNE MAGNETIC GRADIENTS

DISCRIMINATION AND IDENTIFICATION OF UNEXPLODED ORDINANCES (UXO) USING AIRBORNE MAGNETIC GRADIENTS DISCRIMINATION AND IDENTIFICATION OF UNEXPLODED ORDINANCES (UXO) USING AIRBORNE MAGNETIC GRADIENTS M.C. Jeoffreys Abstract The problem of discriminating the magnetic dipoles of objects on the surface of

More information