Linear Algebra & Geometry why is linear algebra useful in computer vision?

Size: px
Start display at page:

Download "Linear Algebra & Geometry why is linear algebra useful in computer vision?"

Transcription

1 Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia I. Camps, Penn State University

2 Why is linear algebra useful in computer vision? Representation 3D points in the scene 2D points in the image Coordinates will be used to Perform geometrical transformations Associate 3D with 2D points Images are matrices of numbers Find properties of these numbers

3 Agenda 1. Basics definitions and properties 2. Geometrical transformations 3. SVD and its applications

4 Vectors (i.e., 2D or 3D vectors) P = [x,y,z] p = [x,y] 3D world Image

5 Vectors (i.e., 2D vectors) x2 v θ P Magnitude: x1 If, Is a UNIT vector Is a unit vector Orientation:

6 Vector Addition v+w v w

7 Vector Subtraction v v-w w

8 Scalar Product v av

9 Inner (dot) Product v α w The inner product is a SCALAR!

10 Orthonormal Basis x2 j i v θ P x1

11 Vector (cross) Product u w α v The cross product is a VECTOR! Magnitude:kuk = kv wk = kvkkwk sin Orientation:

12 Vector Product Computation i = (1,0,0) j = (0,1,0) k = (0,0,1) i = 1 j = 1 k = 1 i = j k j = k i k = i j = ( x2 y 3 x3 y ) i + 2 ( x3 y 1 x1 y3) j+ ( x1 y 2 x2 y1 ) k

13 Matrices A n m = 2 3 a 11 a a 1m a 21 a a 2m a n1 a n2... a nm Pixel s intensity value Sum: A and B must have the same dimensions! Example:

14 Matrices A n m = 2 3 a 11 a a 1m a 21 a a 2m a n1 a n2... a nm Product: A and B must have compatible dimensions!

15 Matrices Transpose: If A is symmetric Examples: Symmetric? No! Symmetric? Yes!

16 Matrices Determinant: A must be square Example:

17 Matrices Inverse: A must be square Example:

18 2D Geometrical Transformations

19 2D Translation P P t

20 2D Translation Equation ty y P t P x tx

21 2D Translation using Matrices ty P t P y x tx

22 Homogeneous Coordinates Multiply the coordinates by a non-zero scalar and add an extra coordinate equal to that scalar. For example,

23 Back to Cartesian Coordinates: Divide by the last coordinate and eliminate it. For example, NOTE: in our example the scalar was 1

24 2D Translation using Homogeneous Coordinates ty P t P y t P x tx

25 Scaling P P

26 Scaling Equation s y y P y P x s x x

27 Scaling & Translating P P P =S P P =T P P =T P =T (S P)=(T S) P = A P

28 Scaling & Translating A

29 Translating & Scaling = Scaling & Translating?

30 Rotation P P

31 Rotation Equations Counter-clockwise rotation by an angle θ y y P x θ x P

32 Degrees of Freedom R is 2x2 4 elements Note: R belongs to the category of normal matrices and satisfies many interesting properties:

33 Rotation+ Scaling +Translation P = (T R S) P If s x =s y, this is a similarity transformation!

34 Transformation in 2D -Isometries -Similarities -Affinity -Projective

35 Transformation in 2D Isometries: [Euclideans] - Preserve distance (areas) - 3 DOF - Regulate motion of rigid object

36 Transformation in 2D Similarities: - Preserve - ratio of lengths - angles -4 DOF

37 Affinities: Transformation in 2D

38 Transformation in 2D Affinities: -Preserve: - Parallel lines - Ratio of areas - Ratio of lengths on collinear lines - others - 6 DOF

39 Transformation in 2D Projective: - 8 DOF - Preserve: - cross ratio of 4 collinear points - collinearity - and a few others

40 Eigenvalues and Eigenvectors

41 Eigenvalues and Eigenvectors The eigenvalues of A are the roots of the characteristic equation diagonal form of matrix Eigenvectors of A are columns of S

42 Singular Value Decomposition UΣV T = A Where U and V are orthogonal matrices, and Σ is a diagonal matrix. For example:

43 Singular Value decomposition that

44

45 An Numerical Example Look at how the multiplication works out, left to right: Column 1 of U gets scaled by the first value from Σ. The resulting vector gets scaled by row 1 of V T to produce a contribution to the columns of A

46 An Numerical Example + = Each product of (column i of U) (value i from Σ) (row i of V T ) produces a

47 An Numerical Example We can look at Σ to see that the first column has a large effect while the second column has a much smaller effect in this example

48 SVD Applications For this image, using only the first 10 of 300 singular values produces a recognizable reconstruction So, SVD can be used for image compression

49 Principal Component Analysis Remember, columns of U are the Principal Components of the data: the major patterns that can be added to produce the columns of the original matrix One use of this is to construct a matrix where each column is a separate data sample Run SVD on that matrix, and look at the first few columns of U to see patterns that are common among the columns This is called Principal Component Analysis (or PCA) of the data samples

50 Principal Component Analysis Often, raw data samples have a lot of redundancy and patterns PCA can allow you to represent data samples as weights on the principal components, rather than using the original raw form of the data By representing each sample as just those weights, you can represent just the meat of what s different between samples. This minimal representation makes machine learning and other algorithms much more efficient

51

52 HW 0.1: Compute eigenvalues and eigenvectors of the following transformations

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed in the

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

Linear Algebra Review. Fei-Fei Li

Linear Algebra Review. Fei-Fei Li Linear Algebra Review Fei-Fei Li 1 / 51 Vectors Vectors and matrices are just collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightnesses, etc. A vector

More information

Linear Algebra Review. Fei-Fei Li

Linear Algebra Review. Fei-Fei Li Linear Algebra Review Fei-Fei Li 1 / 37 Vectors Vectors and matrices are just collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightnesses, etc. A vector

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

Image Registration Lecture 2: Vectors and Matrices

Image Registration Lecture 2: Vectors and Matrices Image Registration Lecture 2: Vectors and Matrices Prof. Charlene Tsai Lecture Overview Vectors Matrices Basics Orthogonal matrices Singular Value Decomposition (SVD) 2 1 Preliminary Comments Some of this

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition Motivatation The diagonalization theorem play a part in many interesting applications. Unfortunately not all matrices can be factored as A = PDP However a factorization A =

More information

Linear Algebra (Review) Volker Tresp 2017

Linear Algebra (Review) Volker Tresp 2017 Linear Algebra (Review) Volker Tresp 2017 1 Vectors k is a scalar (a number) c is a column vector. Thus in two dimensions, c = ( c1 c 2 ) (Advanced: More precisely, a vector is defined in a vector space.

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

Linear Algebra (Review) Volker Tresp 2018

Linear Algebra (Review) Volker Tresp 2018 Linear Algebra (Review) Volker Tresp 2018 1 Vectors k, M, N are scalars A one-dimensional array c is a column vector. Thus in two dimensions, ( ) c1 c = c 2 c i is the i-th component of c c T = (c 1, c

More information

Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T.

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T. Notes on singular value decomposition for Math 54 Recall that if A is a symmetric n n matrix, then A has real eigenvalues λ 1,, λ n (possibly repeated), and R n has an orthonormal basis v 1,, v n, where

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Dr Gerhard Roth COMP 40A Winter 05 Version Linear algebra Is an important area of mathematics It is the basis of computer vision Is very widely taught, and there are many resources

More information

Example Linear Algebra Competency Test

Example Linear Algebra Competency Test Example Linear Algebra Competency Test The 4 questions below are a combination of True or False, multiple choice, fill in the blank, and computations involving matrices and vectors. In the latter case,

More information

CS 143 Linear Algebra Review

CS 143 Linear Algebra Review CS 143 Linear Algebra Review Stefan Roth September 29, 2003 Introductory Remarks This review does not aim at mathematical rigor very much, but instead at ease of understanding and conciseness. Please see

More information

Reduction to the associated homogeneous system via a particular solution

Reduction to the associated homogeneous system via a particular solution June PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 5) Linear Algebra This study guide describes briefly the course materials to be covered in MA 5. In order to be qualified for the credit, one

More information

The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA)

The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) Chapter 5 The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) 5.1 Basics of SVD 5.1.1 Review of Key Concepts We review some key definitions and results about matrices that will

More information

Lecture II: Linear Algebra Revisited

Lecture II: Linear Algebra Revisited Lecture II: Linear Algebra Revisited Overview Vector spaces, Hilbert & Banach Spaces, etrics & Norms atrices, Eigenvalues, Orthogonal Transformations, Singular Values Operators, Operator Norms, Function

More information

Mobile Robotics 1. A Compact Course on Linear Algebra. Giorgio Grisetti

Mobile Robotics 1. A Compact Course on Linear Algebra. Giorgio Grisetti Mobile Robotics 1 A Compact Course on Linear Algebra Giorgio Grisetti SA-1 Vectors Arrays of numbers They represent a point in a n dimensional space 2 Vectors: Scalar Product Scalar-Vector Product Changes

More information

CSE 554 Lecture 7: Alignment

CSE 554 Lecture 7: Alignment CSE 554 Lecture 7: Alignment Fall 2012 CSE554 Alignment Slide 1 Review Fairing (smoothing) Relocating vertices to achieve a smoother appearance Method: centroid averaging Simplification Reducing vertex

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Definitions An m n (read "m by n") matrix, is a rectangular array of entries, where m is the number of rows and n the number of columns. 2 Definitions (Con t) A is square if m=

More information

Review of Coordinate Systems

Review of Coordinate Systems Vector in 2 R and 3 R Review of Coordinate Systems Used to describe the position of a point in space Common coordinate systems are: Cartesian Polar Cartesian Coordinate System Also called rectangular coordinate

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

Foundations of Computer Vision

Foundations of Computer Vision Foundations of Computer Vision Wesley. E. Snyder North Carolina State University Hairong Qi University of Tennessee, Knoxville Last Edited February 8, 2017 1 3.2. A BRIEF REVIEW OF LINEAR ALGEBRA Apply

More information

Conceptual Questions for Review

Conceptual Questions for Review Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

More information

Econ Slides from Lecture 7

Econ Slides from Lecture 7 Econ 205 Sobel Econ 205 - Slides from Lecture 7 Joel Sobel August 31, 2010 Linear Algebra: Main Theory A linear combination of a collection of vectors {x 1,..., x k } is a vector of the form k λ ix i for

More information

Maths for Signals and Systems Linear Algebra in Engineering

Maths for Signals and Systems Linear Algebra in Engineering Maths for Signals and Systems Linear Algebra in Engineering Lectures 13 15, Tuesday 8 th and Friday 11 th November 016 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

Linear Algebra. 1.1 Introduction to vectors 1.2 Lengths and dot products. January 28th, 2013 Math 301. Monday, January 28, 13

Linear Algebra. 1.1 Introduction to vectors 1.2 Lengths and dot products. January 28th, 2013 Math 301. Monday, January 28, 13 Linear Algebra 1.1 Introduction to vectors 1.2 Lengths and dot products January 28th, 2013 Math 301 Notation for linear systems 12w +4x + 23y +9z =0 2u + v +5w 2x +2y +8z =1 5u + v 6w +2x +4y z =6 8u 4v

More information

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent.

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent. Lecture Notes: Orthogonal and Symmetric Matrices Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Orthogonal Matrix Definition. Let u = [u

More information

TIEA311 Tietokonegrafiikan perusteet kevät 2018

TIEA311 Tietokonegrafiikan perusteet kevät 2018 TIEA311 Tietokonegrafiikan perusteet kevät 2018 ( Principles of Computer Graphics Spring 2018) Copyright and Fair Use Notice: The lecture videos of this course are made available for registered students

More information

Usually, when we first formulate a problem in mathematics, we use the most familiar

Usually, when we first formulate a problem in mathematics, we use the most familiar Change of basis Usually, when we first formulate a problem in mathematics, we use the most familiar coordinates. In R, this means using the Cartesian coordinates x, y, and z. In vector terms, this is equivalent

More information

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Salvador Dalí, Galatea of the Spheres CSC411/2515: Machine Learning and Data Mining, Winter 2018 Michael Guerzhoy and Lisa Zhang Some slides from Derek Hoiem and Alysha

More information

A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 2010

A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 2010 A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 00 Introduction Linear Algebra, also known as matrix theory, is an important element of all branches of mathematics

More information

Background Mathematics (2/2) 1. David Barber

Background Mathematics (2/2) 1. David Barber Background Mathematics (2/2) 1 David Barber University College London Modified by Samson Cheung (sccheung@ieee.org) 1 These slides accompany the book Bayesian Reasoning and Machine Learning. The book and

More information

Data Mining Lecture 4: Covariance, EVD, PCA & SVD

Data Mining Lecture 4: Covariance, EVD, PCA & SVD Data Mining Lecture 4: Covariance, EVD, PCA & SVD Jo Houghton ECS Southampton February 25, 2019 1 / 28 Variance and Covariance - Expectation A random variable takes on different values due to chance The

More information

Fall TMA4145 Linear Methods. Exercise set Given the matrix 1 2

Fall TMA4145 Linear Methods. Exercise set Given the matrix 1 2 Norwegian University of Science and Technology Department of Mathematical Sciences TMA445 Linear Methods Fall 07 Exercise set Please justify your answers! The most important part is how you arrive at an

More information

Vectors Coordinate frames 2D implicit curves 2D parametric curves. Graphics 2008/2009, period 1. Lecture 2: vectors, curves, and surfaces

Vectors Coordinate frames 2D implicit curves 2D parametric curves. Graphics 2008/2009, period 1. Lecture 2: vectors, curves, and surfaces Graphics 2008/2009, period 1 Lecture 2 Vectors, curves, and surfaces Computer graphics example: Pixar (source: http://www.pixar.com) Computer graphics example: Pixar (source: http://www.pixar.com) Computer

More information

1. Vectors.

1. Vectors. 1. Vectors 1.1 Vectors and Matrices Linear algebra is concerned with two basic kinds of quantities: vectors and matrices. 1.1 Vectors and Matrices Scalars and Vectors - Scalar: a numerical value denoted

More information

Exercise Sheet 1. 1 Probability revision 1: Student-t as an infinite mixture of Gaussians

Exercise Sheet 1. 1 Probability revision 1: Student-t as an infinite mixture of Gaussians Exercise Sheet 1 1 Probability revision 1: Student-t as an infinite mixture of Gaussians Show that an infinite mixture of Gaussian distributions, with Gamma distributions as mixing weights in the following

More information

Linear Algebra for Machine Learning. Sargur N. Srihari

Linear Algebra for Machine Learning. Sargur N. Srihari Linear Algebra for Machine Learning Sargur N. srihari@cedar.buffalo.edu 1 Overview Linear Algebra is based on continuous math rather than discrete math Computer scientists have little experience with it

More information

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7 Linear Algebra and its Applications-Lab 1 1) Use Gaussian elimination to solve the following systems x 1 + x 2 2x 3 + 4x 4 = 5 1.1) 2x 1 + 2x 2 3x 3 + x 4 = 3 3x 1 + 3x 2 4x 3 2x 4 = 1 x + y + 2z = 4 1.4)

More information

Computational math: Assignment 1

Computational math: Assignment 1 Computational math: Assignment 1 Thanks Ting Gao for her Latex file 11 Let B be a 4 4 matrix to which we apply the following operations: 1double column 1, halve row 3, 3add row 3 to row 1, 4interchange

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Scene Planes & Homographies Lecture 19 March 24, 2005 2 In our last lecture, we examined various

More information

Principal Component Analysis (PCA) CSC411/2515 Tutorial

Principal Component Analysis (PCA) CSC411/2515 Tutorial Principal Component Analysis (PCA) CSC411/2515 Tutorial Harris Chan Based on previous tutorial slides by Wenjie Luo, Ladislav Rampasek University of Toronto hchan@cs.toronto.edu October 19th, 2017 (UofT)

More information

Singular Value Decompsition

Singular Value Decompsition Singular Value Decompsition Massoud Malek One of the most useful results from linear algebra, is a matrix decomposition known as the singular value decomposition It has many useful applications in almost

More information

Linear Algebra. Session 12

Linear Algebra. Session 12 Linear Algebra. Session 12 Dr. Marco A Roque Sol 08/01/2017 Example 12.1 Find the constant function that is the least squares fit to the following data x 0 1 2 3 f(x) 1 0 1 2 Solution c = 1 c = 0 f (x)

More information

Positive Definite Matrix

Positive Definite Matrix 1/29 Chia-Ping Chen Professor Department of Computer Science and Engineering National Sun Yat-sen University Linear Algebra Positive Definite, Negative Definite, Indefinite 2/29 Pure Quadratic Function

More information

Lecture 6 Sept Data Visualization STAT 442 / 890, CM 462

Lecture 6 Sept Data Visualization STAT 442 / 890, CM 462 Lecture 6 Sept. 25-2006 Data Visualization STAT 442 / 890, CM 462 Lecture: Ali Ghodsi 1 Dual PCA It turns out that the singular value decomposition also allows us to formulate the principle components

More information

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation

More information

UNIT 6: The singular value decomposition.

UNIT 6: The singular value decomposition. UNIT 6: The singular value decomposition. María Barbero Liñán Universidad Carlos III de Madrid Bachelor in Statistics and Business Mathematical methods II 2011-2012 A square matrix is symmetric if A T

More information

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) SVD Fall 2015 1 / 13 Review of Key Concepts We review some key definitions and results about matrices that will

More information

Linear Algebra in Actuarial Science: Slides to the lecture

Linear Algebra in Actuarial Science: Slides to the lecture Linear Algebra in Actuarial Science: Slides to the lecture Fall Semester 2010/2011 Linear Algebra is a Tool-Box Linear Equation Systems Discretization of differential equations: solving linear equations

More information

22.3. Repeated Eigenvalues and Symmetric Matrices. Introduction. Prerequisites. Learning Outcomes

22.3. Repeated Eigenvalues and Symmetric Matrices. Introduction. Prerequisites. Learning Outcomes Repeated Eigenvalues and Symmetric Matrices. Introduction In this Section we further develop the theory of eigenvalues and eigenvectors in two distinct directions. Firstly we look at matrices where one

More information

Camera Models and Affine Multiple Views Geometry

Camera Models and Affine Multiple Views Geometry Camera Models and Affine Multiple Views Geometry Subhashis Banerjee Dept. Computer Science and Engineering IIT Delhi email: suban@cse.iitd.ac.in May 29, 2001 1 1 Camera Models A Camera transforms a 3D

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

2. Review of Linear Algebra

2. Review of Linear Algebra 2. Review of Linear Algebra ECE 83, Spring 217 In this course we will represent signals as vectors and operators (e.g., filters, transforms, etc) as matrices. This lecture reviews basic concepts from linear

More information

12x + 18y = 30? ax + by = m

12x + 18y = 30? ax + by = m Math 2201, Further Linear Algebra: a practical summary. February, 2009 There are just a few themes that were covered in the course. I. Algebra of integers and polynomials. II. Structure theory of one endomorphism.

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Singular Value Decomposition 1 / 35 Understanding

More information

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3].

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3]. Appendix : A Very Brief Linear ALgebra Review Introduction Linear Algebra, also known as matrix theory, is an important element of all branches of mathematics Very often in this course we study the shapes

More information

Lecture 7. Econ August 18

Lecture 7. Econ August 18 Lecture 7 Econ 2001 2015 August 18 Lecture 7 Outline First, the theorem of the maximum, an amazing result about continuity in optimization problems. Then, we start linear algebra, mostly looking at familiar

More information

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017 Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

More information

Basic Calculus Review

Basic Calculus Review Basic Calculus Review Lorenzo Rosasco ISML Mod. 2 - Machine Learning Vector Spaces Functionals and Operators (Matrices) Vector Space A vector space is a set V with binary operations +: V V V and : R V

More information

Maths for Signals and Systems Linear Algebra in Engineering

Maths for Signals and Systems Linear Algebra in Engineering Maths for Signals and Systems Linear Algebra in Engineering Lecture 18, Friday 18 th November 2016 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON Mathematics

More information

Linear Algebra V = T = ( 4 3 ).

Linear Algebra V = T = ( 4 3 ). Linear Algebra Vectors A column vector is a list of numbers stored vertically The dimension of a column vector is the number of values in the vector W is a -dimensional column vector and V is a 5-dimensional

More information

Deep Learning Book Notes Chapter 2: Linear Algebra

Deep Learning Book Notes Chapter 2: Linear Algebra Deep Learning Book Notes Chapter 2: Linear Algebra Compiled By: Abhinaba Bala, Dakshit Agrawal, Mohit Jain Section 2.1: Scalars, Vectors, Matrices and Tensors Scalar Single Number Lowercase names in italic

More information

Announcements (repeat) Principal Components Analysis

Announcements (repeat) Principal Components Analysis 4/7/7 Announcements repeat Principal Components Analysis CS 5 Lecture #9 April 4 th, 7 PA4 is due Monday, April 7 th Test # will be Wednesday, April 9 th Test #3 is Monday, May 8 th at 8AM Just hour long

More information

Singular Value Decomposition and Digital Image Compression

Singular Value Decomposition and Digital Image Compression Singular Value Decomposition and Digital Image Compression Chris Bingham December 1, 016 Page 1 of Abstract The purpose of this document is to be a very basic introduction to the singular value decomposition

More information

Linear Algebra II. 7 Inner product spaces. Notes 7 16th December Inner products and orthonormal bases

Linear Algebra II. 7 Inner product spaces. Notes 7 16th December Inner products and orthonormal bases MTH6140 Linear Algebra II Notes 7 16th December 2010 7 Inner product spaces Ordinary Euclidean space is a 3-dimensional vector space over R, but it is more than that: the extra geometric structure (lengths,

More information

Coding the Matrix Index - Version 0

Coding the Matrix Index - Version 0 0 vector, [definition]; (2.4.1): 68 2D geometry, transformations in, [lab]; (4.15.0): 196-200 A T (matrix A transpose); (4.5.4): 157 absolute value, complex number; (1.4.1): 43 abstract/abstracting, over

More information

Linear Algebra Review Part I: Geometry

Linear Algebra Review Part I: Geometry Linear Algebra Review Part I: Geometry Edwin Olson University of Michigan The Three-Day Plan Geometry of Linear Algebra Vectors, matrices, basic operations, lines, planes, homogeneous coordinates, transformations

More information

Repeated Eigenvalues and Symmetric Matrices

Repeated Eigenvalues and Symmetric Matrices Repeated Eigenvalues and Symmetric Matrices. Introduction In this Section we further develop the theory of eigenvalues and eigenvectors in two distinct directions. Firstly we look at matrices where one

More information

Math for ML: review. CS 1675 Introduction to ML. Administration. Lecture 2. Milos Hauskrecht 5329 Sennott Square, x4-8845

Math for ML: review. CS 1675 Introduction to ML. Administration. Lecture 2. Milos Hauskrecht 5329 Sennott Square, x4-8845 CS 75 Introduction to ML Lecture Math for ML: review Milos Hauskrecht milos@cs.pitt.edu 5 Sennott Square, x4-45 people.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Prof. Milos Hauskrecht

More information

Some practical remarks (recap) Statistical Natural Language Processing. Today s lecture. Linear algebra. Why study linear algebra?

Some practical remarks (recap) Statistical Natural Language Processing. Today s lecture. Linear algebra. Why study linear algebra? Some practical remarks (recap) Statistical Natural Language Processing Mathematical background: a refresher Çağrı Çöltekin Universit of Tübingen Seminar für Sprachwissenschaft Summer Semester 017 Course

More information

8. Diagonalization.

8. Diagonalization. 8. Diagonalization 8.1. Matrix Representations of Linear Transformations Matrix of A Linear Operator with Respect to A Basis We know that every linear transformation T: R n R m has an associated standard

More information

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD DATA MINING LECTURE 8 Dimensionality Reduction PCA -- SVD The curse of dimensionality Real data usually have thousands, or millions of dimensions E.g., web documents, where the dimensionality is the vocabulary

More information

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2011/2012, 4th quarter. Lecture 2: vectors, curves, and surfaces

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2011/2012, 4th quarter. Lecture 2: vectors, curves, and surfaces Lecture 2, curves, and surfaces Organizational remarks Tutorials: Tutorial 1 will be online later today TA sessions for questions start next week Practicals: Exams: Make sure to find a team partner very

More information

1 Last time: least-squares problems

1 Last time: least-squares problems MATH Linear algebra (Fall 07) Lecture Last time: least-squares problems Definition. If A is an m n matrix and b R m, then a least-squares solution to the linear system Ax = b is a vector x R n such that

More information

GEOG 4110/5100 Advanced Remote Sensing Lecture 15

GEOG 4110/5100 Advanced Remote Sensing Lecture 15 GEOG 4110/5100 Advanced Remote Sensing Lecture 15 Principal Component Analysis Relevant reading: Richards. Chapters 6.3* http://www.ce.yildiz.edu.tr/personal/songul/file/1097/principal_components.pdf *For

More information

Singular Value Decomposition

Singular Value Decomposition Chapter 5 Singular Value Decomposition We now reach an important Chapter in this course concerned with the Singular Value Decomposition of a matrix A. SVD, as it is commonly referred to, is one of the

More information

Lecture 02 Linear Algebra Basics

Lecture 02 Linear Algebra Basics Introduction to Computational Data Analysis CX4240, 2019 Spring Lecture 02 Linear Algebra Basics Chao Zhang College of Computing Georgia Tech These slides are based on slides from Le Song and Andres Mendez-Vazquez.

More information

December 20, MAA704, Multivariate analysis. Christopher Engström. Multivariate. analysis. Principal component analysis

December 20, MAA704, Multivariate analysis. Christopher Engström. Multivariate. analysis. Principal component analysis .. December 20, 2013 Todays lecture. (PCA) (PLS-R) (LDA) . (PCA) is a method often used to reduce the dimension of a large dataset to one of a more manageble size. The new dataset can then be used to make

More information

PCA, Kernel PCA, ICA

PCA, Kernel PCA, ICA PCA, Kernel PCA, ICA Learning Representations. Dimensionality Reduction. Maria-Florina Balcan 04/08/2015 Big & High-Dimensional Data High-Dimensions = Lot of Features Document classification Features per

More information

Covariance to PCA. CS 510 Lecture #8 February 17, 2014

Covariance to PCA. CS 510 Lecture #8 February 17, 2014 Covariance to PCA CS 510 Lecture 8 February 17, 2014 Status Update Programming Assignment 2 is due March 7 th Expect questions about your progress at the start of class I still owe you Assignment 1 back

More information

Principal Component Analysis

Principal Component Analysis Machine Learning Michaelmas 2017 James Worrell Principal Component Analysis 1 Introduction 1.1 Goals of PCA Principal components analysis (PCA) is a dimensionality reduction technique that can be used

More information

Vectors and Matrices Statistics with Vectors and Matrices

Vectors and Matrices Statistics with Vectors and Matrices Vectors and Matrices Statistics with Vectors and Matrices Lecture 3 September 7, 005 Analysis Lecture #3-9/7/005 Slide 1 of 55 Today s Lecture Vectors and Matrices (Supplement A - augmented with SAS proc

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Anders Øland David Christiansen 1 Introduction Principal Component Analysis, or PCA, is a commonly used multi-purpose technique in data analysis. It can be used for feature

More information

Linear Algebra - Part II

Linear Algebra - Part II Linear Algebra - Part II Projection, Eigendecomposition, SVD (Adapted from Sargur Srihari s slides) Brief Review from Part 1 Symmetric Matrix: A = A T Orthogonal Matrix: A T A = AA T = I and A 1 = A T

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 1: Vectors, Representations Algebra and Linear Algebra Algebra: numbers and operations on numbers 2 + 3 = 5 3 7 = 21 Linear Algebra: tuples, triples... of numbers

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

1 Singular Value Decomposition and Principal Component

1 Singular Value Decomposition and Principal Component Singular Value Decomposition and Principal Component Analysis In these lectures we discuss the SVD and the PCA, two of the most widely used tools in machine learning. Principal Component Analysis (PCA)

More information

ANSWERS (5 points) Let A be a 2 2 matrix such that A =. Compute A. 2

ANSWERS (5 points) Let A be a 2 2 matrix such that A =. Compute A. 2 MATH 7- Final Exam Sample Problems Spring 7 ANSWERS ) ) ). 5 points) Let A be a matrix such that A =. Compute A. ) A = A ) = ) = ). 5 points) State ) the definition of norm, ) the Cauchy-Schwartz inequality

More information

Eigenvalues and diagonalization

Eigenvalues and diagonalization Eigenvalues and diagonalization Patrick Breheny November 15 Patrick Breheny BST 764: Applied Statistical Modeling 1/20 Introduction The next topic in our course, principal components analysis, revolves

More information

1 Linearity and Linear Systems

1 Linearity and Linear Systems Mathematical Tools for Neuroscience (NEU 34) Princeton University, Spring 26 Jonathan Pillow Lecture 7-8 notes: Linear systems & SVD Linearity and Linear Systems Linear system is a kind of mapping f( x)

More information

Review of linear algebra

Review of linear algebra Review of linear algebra 1 Vectors and matrices We will just touch very briefly on certain aspects of linear algebra, most of which should be familiar. Recall that we deal with vectors, i.e. elements of

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [based on slides from Nina Balcan] slide 1 Goals for the lecture you should understand

More information

Machine Learning (Spring 2012) Principal Component Analysis

Machine Learning (Spring 2012) Principal Component Analysis 1-71 Machine Learning (Spring 1) Principal Component Analysis Yang Xu This note is partly based on Chapter 1.1 in Chris Bishop s book on PRML and the lecture slides on PCA written by Carlos Guestrin in

More information