Understanding graphs through spectral densities

Size: px
Start display at page:

Download "Understanding graphs through spectral densities"

Transcription

1 Understanding graphs through spectral densities David Bindel Department of Computer Science Cornell University SCAN seminar, 29 Feb 216 SCAN 1 / 1

2 Can One Hear the Shape of a Drum? 2 u = λu on Ω, u = on Ω Assume that for each n the eigenvalue λ n for Ω 1 is equal to the eigenvalue µ n for Ω 2. Question: Are the regions Ω 1 and Ω 2 congruent in the sense of Euclidean geometry? I first heard the problem posed this way some ten years ago from Professor Bochner. Much more recently, when I mentioned it to Professor Bers, he said, almost at once: You mean, if you had perfect pitch could you find the shape of a drum. Mark Kac, American Math Monthly, 1966 SCAN 2 / 1

3 Can One Hear the Shape of a Drum? No in general (Gordon, Webb, Wolpert in 1992) Yes with constraints (Zelditch in 29) SCAN 3 / 1

4 What Do You Hear? A B S Size of bottlenecks (Cheeger inequality) h 2 λ 2 SCAN 4 / 1

5 What Do You Hear? Volume (Weyl law) N(x) lim x x d/2 = (2π) d ω d vol(ω), N(x) = {# eigenvalues x} Can also tell lengths of geodesics for a closed Riemannian manifold. SCAN 5 / 1

6 Can One Hear the Shape of a Graph? From eigenvalues of adjacency, Laplacian, normalized Laplacian? SCAN 6 / 1

7 A Bestiary of Matrices Adjacency matrix: A Laplacian matrix: L = D A Unsigned Laplacian: L = D + A Random walk matrix: P = D 1 A Normalized adjacency: Ā = D 1/2 AD 1/2 Normalized Laplacian: L = I Ā = D 1/2 LD 1/2 Modularity matrix: B = A ddt 2n All have examples of co-spectral graphs... through spectrum uniquely identifies quantum graphs SCAN 7 / 1

8 What Do You Hear? Size of separators (Cheeger inequality) L SCAN 8 / 1

9 What Do You Hear? What information hides in the eigenvalue distribution? 1 Discretizations of Laplacian: something like Weyl s law 2 Sparse random graphs: Wigner semicircular distribution 3 Real networks: less well understood But computing all eigenvalues seems expensive! SCAN 9 / 1

10 Reminder: Spectral Mapping Consider a matrix H, and let f be analytic on the spectrum. Then if H = V ΛV 1, f(h) = V f(λ)v 1. (generalizes to non-diagonalizable case) SCAN 1 / 1

11 Another Perspective: Density of States Spectra define a generalized function (a density): tr(f(h)) = f(λ)µ(λ) dx = N f(λ k ) where f is an analytic test function. Smooth out to get a picture: a spectral histogram or kernel density estimate. j=k SCAN 11 / 1

12 Heat Kernels DoS information equivalent to looking at the heat kernel trace: h(s) = tr(exp( sh)) = L[µ](s) where H is a positive semi-definite operator. H = L = h(s)/n = probability of self-return after time s from uniform start SCAN 12 / 1

13 Power Moments DoS information equivalent to looking at the power moments: tr(h j ). Has a natural interpretation for matrices associated with graphs: A: number of length k cycles. Ā or P : return probability for k-step random walk (times N). L:?? SCAN 13 / 1

14 Chebyshev Moments Ordinary moments are not good for numerics prefer Chebyshev: d j = T j (A) where T j (z) = cos(j cos 1 (z)) is the jth Chebyshev polynomial. Compute via three-term recurrence: T (z) = 1 T 1 (z) = z T k+1 z = 2zT k (z) T k 1 (z) SCAN 14 / 1

15 Exploring Spectral Densities Kernel polynomial method (see Weisse, Reviews of Modern Physics) Think of spectral distribution on [ 1, 1] as a generalized function 1 1 µ(x)f(x) dx = 1 N N f(λ k ) k=1 Write f(x) = j=1 c jt j (x) and µ(x) = j=1 d jφ j (x), where 1 1 φ j(x)t k (x) dx = δ jk Estimate d j = tr(t j (H)) by stochastic methods Truncate series for µ(x) and filter (avoid Gibbs) Much cheaper than computing all eigenvalues! SCAN 15 / 1

16 Stochastic Trace and Diagonal Estimation Z R n with independent entries, mean and variance 1. E[(Z HZ) i ] = j h ij E[Z i Z j ] = h ii Var[(Z HZ) i ] = j h 2 ij. Serves as the basis for stochastic estimation of Trace (Hutchinson, others; review by Toledo and Avron) Diagonal (Bekas, Kokiopoulou, and Saad) Power of diagonal estimation is under-appreciated... SCAN 16 / 1

17 Diagonal Estimation and LDoS Diagonal estimation also useful for local DoS ν k (x); in the symmetric case with H = QΛQ T, have f(x)ν k (x) dx = f(h) kk = e T k Qf(Λ)QT e k ν k (x) = n qkj 2 δ(x λ j) j=1 DoS is sum of local densities of states: µ(x) = n ν k (x) k=1 SCAN 17 / 1

18 LDoS Information Can compute common centrality measures with LDoS Estrada centrality: exp(γa) kk Resolvent centrality: [ (I γā) 1] kk Some motifs associated with localized eigenvectors at specific values: Chief example: Null vectors of Ā supported on leaves. Use LDoS + topology to find motifs? What else? SCAN 18 / 1

19 Phase Retrieval in Graph Reconstruction Reconstruct graph from completely resolved LDoS at all nodes? Assume H = QΛQ T No multiple eigenvalues = know Q and Λ Can we recover signs in Q? Feels a little like phase retrieval... Of course, we usually have noisy LDoS estimates! SCAN 19 / 1

20 Other methods Golub and Meurant: Gauss quadrature for ν k (x) via Lanczos Good: No stochastic estimation error (vs KPM) Bad: Separate Lanczos per node Roder and Silver: Max entropy estimation Good: Better resolution from Chebyshev moment estimates Bad: More expensive computation per node Under investigation: Hybrid approach. SCAN 2 / 1

21 Exploring Spectral Densities (with David Gleich) Consider spectrum of normalized Laplacian (random walk matrix) Approximate via KPM and compare to full eigencomputation Things we know Eigenvalues in [ 1, 1]; nonsymmetric in general Stability: change d edges, have λ j d ˆλ j λ j+d kth moment = probability of return after k-step random walk Eigenvalue cluster near 1 well-separated clusters Eigenvalue cluster near triangles connected by one node What else can we hear? SCAN 21 / 1

22 Experimental setup Global DoS 1 Chebyshev moments 1 probe vectors (componentwise standard normal) Histogram with 5 bins Local DoS 1 Chebyshev moments 1 probe vectors (componentwise standard normal) Plot smoothed density on [ 1, 1] Spectrally order nodes by density plot Suggestions for better pics are welcome! SCAN 22 / 1

23 Erdos SCAN 23 / 1

24 Erdos (local) SCAN 24 / 1

25 Internet topology SCAN 25 / 1

26 Internet topology (local) SCAN 26 / 1

27 Marvel characters SCAN 27 / 1

28 Marvel characters (local) SCAN 28 / 1

29 Marvel comics SCAN 29 / 1

30 Marvel comics (local) SCAN 3 / 1

31 PGP SCAN 31 / 1

32 PGP (local) SCAN 32 / 1

33 Yeast SCAN 33 / 1

34 Yeast (local) SCAN 34 / 1

35 And a few more... SCAN 35 / 1

36 Enron s (SNAP) SCAN 36 / 1

37 Reuters911 (Pajek) SCAN 37 / 1

38 US power grid (Pajek) SCAN 38 / 1

39 DBLP 21 (LAW) 6 x N = , nnz = 16154, 8 s (1 moments, 1 probes) SCAN 39 / 1

40 Hollywood 29 (LAW) 4 x N = , nnz = , 293 s (1 moments, 1 probes) SCAN 4 / 1

41 x x What Do You Hear? SCAN 41 / 1

Understanding Graphs through Spectral Densities

Understanding Graphs through Spectral Densities Understanding Graphs through Spectral Densities 3 Jun 218 Department of Computer Science Cornell University 1 Acknowledgements Thanks Kun Dong (Cornell CAM), along with Anna Yesypenko, Moteleolu Onabajo,

More information

Understanding Graphs through Spectral Densities

Understanding Graphs through Spectral Densities Understanding Graphs through Spectral Densities 13 Jul 218 Department of Computer Science Cornell University 1 Acknowledgements Thanks Kun Dong (Cornell CAM), along with Anna Yesypenko, Moteleolu Onabajo,

More information

A Tale of Two Eigenvalue Problems

A Tale of Two Eigenvalue Problems A Tale of Two Eigenvalue Problems Music of the Microspheres + Hearing the Shape of a Graph David Bindel Department of Computer Science Cornell University CAM Visit Talk, 28 Feb 214 Brown bag 1 / 22 The

More information

ESTIMATES OF THE TRACE OF THE INVERSE OF A SYMMETRIC MATRIX USING THE MODIFIED CHEBYSHEV ALGORITHM

ESTIMATES OF THE TRACE OF THE INVERSE OF A SYMMETRIC MATRIX USING THE MODIFIED CHEBYSHEV ALGORITHM ESTIMATES OF THE TRACE OF THE INVERSE OF A SYMMETRIC MATRIX USING THE MODIFIED CHEBYSHEV ALGORITHM GÉRARD MEURANT In memory of Gene H. Golub Abstract. In this paper we study how to compute an estimate

More information

LA Support for Scalable Kernel Methods. David Bindel 29 Sep 2018

LA Support for Scalable Kernel Methods. David Bindel 29 Sep 2018 LA Support for Scalable Kernel Methods David Bindel 29 Sep 2018 Collaborators Kun Dong (Cornell CAM) David Eriksson (Cornell CAM) Jake Gardner (Cornell CS) Eric Lee (Cornell CS) Hannes Nickisch (Phillips

More information

Facebook Friends! and Matrix Functions

Facebook Friends! and Matrix Functions Facebook Friends! and Matrix Functions! Graduate Research Day Joint with David F. Gleich, (Purdue), supported by" NSF CAREER 1149756-CCF Kyle Kloster! Purdue University! Network Analysis Use linear algebra

More information

= main diagonal, in the order in which their corresponding eigenvectors appear as columns of E.

= main diagonal, in the order in which their corresponding eigenvectors appear as columns of E. 3.3 Diagonalization Let A = 4. Then and are eigenvectors of A, with corresponding eigenvalues 2 and 6 respectively (check). This means 4 = 2, 4 = 6. 2 2 2 2 Thus 4 = 2 2 6 2 = 2 6 4 2 We have 4 = 2 0 0

More information

Sparse Linear Algebra Issues Arising in the Analysis of Complex Networks

Sparse Linear Algebra Issues Arising in the Analysis of Complex Networks Sparse Linear Algebra Issues Arising in the Analysis of Complex Networks Department of Mathematics and Computer Science Emory University Atlanta, GA 30322, USA Acknowledgments Christine Klymko (Emory)

More information

Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian

Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian Amit Singer Princeton University Department of Mathematics and Program in Applied and Computational Mathematics

More information

EE Technion, Spring then. can be isometrically embedded into can be realized as a Gram matrix of rank, Properties:

EE Technion, Spring then. can be isometrically embedded into can be realized as a Gram matrix of rank, Properties: 5/25/200 2 A mathematical exercise Assume points with the metric are isometrically embeddable into Then, there exists a canonical form such that for all Spectral methods We can also write Alexander & Michael

More information

Diffusion and random walks on graphs

Diffusion and random walks on graphs Diffusion and random walks on graphs Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Structural

More information

Scalable kernel methods and their use in black-box optimization

Scalable kernel methods and their use in black-box optimization with derivatives Scalable kernel methods and their use in black-box optimization David Eriksson Center for Applied Mathematics Cornell University dme65@cornell.edu November 9, 2018 1 2 3 4 1/37 with derivatives

More information

This section is an introduction to the basic themes of the course.

This section is an introduction to the basic themes of the course. Chapter 1 Matrices and Graphs 1.1 The Adjacency Matrix This section is an introduction to the basic themes of the course. Definition 1.1.1. A simple undirected graph G = (V, E) consists of a non-empty

More information

Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs

Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture

More information

Lecture 1 Introduction

Lecture 1 Introduction Lecture 1 Introduction 1 The Laplace operator On the 3-dimensional Euclidean space, the Laplace operator (or Laplacian) is the linear differential operator { C 2 (R 3 ) C 0 (R 3 ) : f 2 f + 2 f + 2 f,

More information

The non-backtracking operator

The non-backtracking operator The non-backtracking operator Florent Krzakala LPS, Ecole Normale Supérieure in collaboration with Paris: L. Zdeborova, A. Saade Rome: A. Decelle Würzburg: J. Reichardt Santa Fe: C. Moore, P. Zhang Berkeley:

More information

What does the average eigenvalue know?

What does the average eigenvalue know? What does the average eigenvalue know? Evans Harrell Georgia Tech www.math.gatech.edu/~harrell CWRU March, 2017 Copyright 2017 by Evans M. Harrell II. What does the average eigenvalue know about geometry,

More information

Laplacians of Graphs, Spectra and Laplacian polynomials

Laplacians of Graphs, Spectra and Laplacian polynomials Mednykh A. D. (Sobolev Institute of Math) Laplacian for Graphs 27 June - 03 July 2015 1 / 30 Laplacians of Graphs, Spectra and Laplacian polynomials Alexander Mednykh Sobolev Institute of Mathematics Novosibirsk

More information

Applications of trace estimation techniques

Applications of trace estimation techniques Applications of trace estimation techniques Shashanka Ubaru and Yousef Saad University of Minnesota at Twin Cities, MN 55455. {ubaru1, saad}@umn.edu Abstract. We discuss various applications of trace estimation

More information

Lecture: Local Spectral Methods (1 of 4)

Lecture: Local Spectral Methods (1 of 4) Stat260/CS294: Spectral Graph Methods Lecture 18-03/31/2015 Lecture: Local Spectral Methods (1 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

Simplified Anti-Gauss Quadrature Rules with Applications in Linear Algebra

Simplified Anti-Gauss Quadrature Rules with Applications in Linear Algebra Noname manuscript No. (will be inserted by the editor) Simplified Anti-Gauss Quadrature Rules with Applications in Linear Algebra Hessah Alqahtani Lothar Reichel the date of receipt and acceptance should

More information

8.1 Concentration inequality for Gaussian random matrix (cont d)

8.1 Concentration inequality for Gaussian random matrix (cont d) MGMT 69: Topics in High-dimensional Data Analysis Falll 26 Lecture 8: Spectral clustering and Laplacian matrices Lecturer: Jiaming Xu Scribe: Hyun-Ju Oh and Taotao He, October 4, 26 Outline Concentration

More information

Methods for estimating the diagonal of matrix. functions. functions. Jesse Laeuchli Andreas Stathopoulos CSC 2016

Methods for estimating the diagonal of matrix. functions. functions. Jesse Laeuchli Andreas Stathopoulos CSC 2016 Jesse Laeuchli Andreas Stathopoulos CSC 216 1 / 24 The Problem Given a large A, and a function f, find diag(f(a)),or trace(f(a)) = n i=1 f(a) ii = n i=1 f(λ i) Some important examples of f f (A) = A 1

More information

LECTURE NOTE #11 PROF. ALAN YUILLE

LECTURE NOTE #11 PROF. ALAN YUILLE LECTURE NOTE #11 PROF. ALAN YUILLE 1. NonLinear Dimension Reduction Spectral Methods. The basic idea is to assume that the data lies on a manifold/surface in D-dimensional space, see figure (1) Perform

More information

Introduction to Spectral Geometry

Introduction to Spectral Geometry Chapter 1 Introduction to Spectral Geometry From P.-S. Laplace to E. Beltrami The Laplace operator was first introduced by P.-S. Laplace (1749 1827) for describing celestial mechanics (the notation is

More information

Lecture 12: Introduction to Spectral Graph Theory, Cheeger s inequality

Lecture 12: Introduction to Spectral Graph Theory, Cheeger s inequality CSE 521: Design and Analysis of Algorithms I Spring 2016 Lecture 12: Introduction to Spectral Graph Theory, Cheeger s inequality Lecturer: Shayan Oveis Gharan May 4th Scribe: Gabriel Cadamuro Disclaimer:

More information

Communities, Spectral Clustering, and Random Walks

Communities, Spectral Clustering, and Random Walks Communities, Spectral Clustering, and Random Walks David Bindel Department of Computer Science Cornell University 26 Sep 2011 20 21 19 16 22 28 17 18 29 26 27 30 23 1 25 5 8 24 2 4 14 3 9 13 15 11 10 12

More information

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection Eigenvalue Problems Last Time Social Network Graphs Betweenness Girvan-Newman Algorithm Graph Laplacian Spectral Bisection λ 2, w 2 Today Small deviation into eigenvalue problems Formulation Standard eigenvalue

More information

arxiv: v1 [cs.na] 6 Jan 2017

arxiv: v1 [cs.na] 6 Jan 2017 SPECTRAL STATISTICS OF LATTICE GRAPH STRUCTURED, O-UIFORM PERCOLATIOS Stephen Kruzick and José M. F. Moura 2 Carnegie Mellon University, Department of Electrical Engineering 5000 Forbes Avenue, Pittsburgh,

More information

The Sound of Symmetry

The Sound of Symmetry Zhiqin Lu, University of California, Irvine February 28, 2014, California State Long Beach In 1966, M. Kac asked the the following question: Question If two planar domains have the same spectrum, are they

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

Eigenvalue problems and optimization

Eigenvalue problems and optimization Notes for 2016-04-27 Seeking structure For the past three weeks, we have discussed rather general-purpose optimization methods for nonlinear equation solving and optimization. In practice, of course, we

More information

Spectral Generative Models for Graphs

Spectral Generative Models for Graphs Spectral Generative Models for Graphs David White and Richard C. Wilson Department of Computer Science University of York Heslington, York, UK wilson@cs.york.ac.uk Abstract Generative models are well known

More information

Introduction. Chapter One

Introduction. Chapter One Chapter One Introduction The aim of this book is to describe and explain the beautiful mathematical relationships between matrices, moments, orthogonal polynomials, quadrature rules and the Lanczos and

More information

Linear algebra and applications to graphs Part 1

Linear algebra and applications to graphs Part 1 Linear algebra and applications to graphs Part 1 Written up by Mikhail Belkin and Moon Duchin Instructor: Laszlo Babai June 17, 2001 1 Basic Linear Algebra Exercise 1.1 Let V and W be linear subspaces

More information

One can hear the corners of a drum

One can hear the corners of a drum Bull. London Math. Soc. 48 (2016) 85 93 C 2015 London Mathematical Society doi:10.1112/blms/bdv094 One can hear the corners of a drum Zhiqin Lu and Julie M. Rowlett Abstract We prove that the presence

More information

Fluctuations from the Semicircle Law Lecture 1

Fluctuations from the Semicircle Law Lecture 1 Fluctuations from the Semicircle Law Lecture 1 Ioana Dumitriu University of Washington Women and Math, IAS 2014 May 20, 2014 Ioana Dumitriu (UW) Fluctuations from the Semicircle Law Lecture 1 May 20, 2014

More information

1 Extrapolation: A Hint of Things to Come

1 Extrapolation: A Hint of Things to Come Notes for 2017-03-24 1 Extrapolation: A Hint of Things to Come Stationary iterations are simple. Methods like Jacobi or Gauss-Seidel are easy to program, and it s (relatively) easy to analyze their convergence.

More information

Algebraic Representation of Networks

Algebraic Representation of Networks Algebraic Representation of Networks 0 1 2 1 1 0 0 1 2 0 0 1 1 1 1 1 Hiroki Sayama sayama@binghamton.edu Describing networks with matrices (1) Adjacency matrix A matrix with rows and columns labeled by

More information

Finding normalized and modularity cuts by spectral clustering. Ljubjana 2010, October

Finding normalized and modularity cuts by spectral clustering. Ljubjana 2010, October Finding normalized and modularity cuts by spectral clustering Marianna Bolla Institute of Mathematics Budapest University of Technology and Economics marib@math.bme.hu Ljubjana 2010, October Outline Find

More information

Data dependent operators for the spatial-spectral fusion problem

Data dependent operators for the spatial-spectral fusion problem Data dependent operators for the spatial-spectral fusion problem Wien, December 3, 2012 Joint work with: University of Maryland: J. J. Benedetto, J. A. Dobrosotskaya, T. Doster, K. W. Duke, M. Ehler, A.

More information

Spectral Graph Theory and its Applications. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity

Spectral Graph Theory and its Applications. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Spectral Graph Theory and its Applications Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Outline Adjacency matrix and Laplacian Intuition, spectral graph drawing

More information

Recurrence Relations and Fast Algorithms

Recurrence Relations and Fast Algorithms Recurrence Relations and Fast Algorithms Mark Tygert Research Report YALEU/DCS/RR-343 December 29, 2005 Abstract We construct fast algorithms for decomposing into and reconstructing from linear combinations

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors MAT 67L, Laboratory III Contents Instructions (1) Read this document. (2) The questions labeled Experiments are not graded, and should not be turned in. They are designed for

More information

Implicitly Defined High-Order Operator Splittings for Parabolic and Hyperbolic Variable-Coefficient PDE Using Modified Moments

Implicitly Defined High-Order Operator Splittings for Parabolic and Hyperbolic Variable-Coefficient PDE Using Modified Moments Implicitly Defined High-Order Operator Splittings for Parabolic and Hyperbolic Variable-Coefficient PDE Using Modified Moments James V. Lambers September 24, 2008 Abstract This paper presents a reformulation

More information

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline

More information

Math Introduction to Numerical Analysis - Class Notes. Fernando Guevara Vasquez. Version Date: January 17, 2012.

Math Introduction to Numerical Analysis - Class Notes. Fernando Guevara Vasquez. Version Date: January 17, 2012. Math 5620 - Introduction to Numerical Analysis - Class Notes Fernando Guevara Vasquez Version 1990. Date: January 17, 2012. 3 Contents 1. Disclaimer 4 Chapter 1. Iterative methods for solving linear systems

More information

Eugene Wigner [4]: in the natural sciences, Communications in Pure and Applied Mathematics, XIII, (1960), 1 14.

Eugene Wigner [4]: in the natural sciences, Communications in Pure and Applied Mathematics, XIII, (1960), 1 14. Introduction Eugene Wigner [4]: The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve.

More information

ORIE 4741: Learning with Big Messy Data. Spectral Graph Theory

ORIE 4741: Learning with Big Messy Data. Spectral Graph Theory ORIE 4741: Learning with Big Messy Data Spectral Graph Theory Mika Sumida Operations Research and Information Engineering Cornell September 15, 2017 1 / 32 Outline Graph Theory Spectral Graph Theory Laplacian

More information

Locally-biased analytics

Locally-biased analytics Locally-biased analytics You have BIG data and want to analyze a small part of it: Solution 1: Cut out small part and use traditional methods Challenge: cutting out may be difficult a priori Solution 2:

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 34: Improving the Condition Number of the Interpolation Matrix Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu

More information

Lecture 7 Spectral methods

Lecture 7 Spectral methods CSE 291: Unsupervised learning Spring 2008 Lecture 7 Spectral methods 7.1 Linear algebra review 7.1.1 Eigenvalues and eigenvectors Definition 1. A d d matrix M has eigenvalue λ if there is a d-dimensional

More information

Golub-Kahan iterative bidiagonalization and determining the noise level in the data

Golub-Kahan iterative bidiagonalization and determining the noise level in the data Golub-Kahan iterative bidiagonalization and determining the noise level in the data Iveta Hnětynková,, Martin Plešinger,, Zdeněk Strakoš, * Charles University, Prague ** Academy of Sciences of the Czech

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Kernel PCA 2 Isomap 3 Locally Linear Embedding 4 Laplacian Eigenmap

More information

The following definition is fundamental.

The following definition is fundamental. 1. Some Basics from Linear Algebra With these notes, I will try and clarify certain topics that I only quickly mention in class. First and foremost, I will assume that you are familiar with many basic

More information

Lecture 12 : Graph Laplacians and Cheeger s Inequality

Lecture 12 : Graph Laplacians and Cheeger s Inequality CPS290: Algorithmic Foundations of Data Science March 7, 2017 Lecture 12 : Graph Laplacians and Cheeger s Inequality Lecturer: Kamesh Munagala Scribe: Kamesh Munagala Graph Laplacian Maybe the most beautiful

More information

Random Lifts of Graphs

Random Lifts of Graphs 27th Brazilian Math Colloquium, July 09 Plan of this talk A brief introduction to the probabilistic method. A quick review of expander graphs and their spectrum. Lifts, random lifts and their properties.

More information

On sums of eigenvalues, and what they reveal about graphs and manifolds

On sums of eigenvalues, and what they reveal about graphs and manifolds On sums of eigenvalues, and what they reveal about graphs and manifolds Evans Harrell Georgia Tech Université F. Rabelais www.math.gatech.edu/~harrell Tours le 30 janvier, 2014 Copyright 2014 by Evans

More information

Divide and conquer algorithms for large eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota

Divide and conquer algorithms for large eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota Divide and conquer algorithms for large eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota PMAA 14 Lugano, July 4, 2014 Collaborators: Joint work with:

More information

Norms of Random Matrices & Low-Rank via Sampling

Norms of Random Matrices & Low-Rank via Sampling CS369M: Algorithms for Modern Massive Data Set Analysis Lecture 4-10/05/2009 Norms of Random Matrices & Low-Rank via Sampling Lecturer: Michael Mahoney Scribes: Jacob Bien and Noah Youngs *Unedited Notes

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Linear Algebra Practice Problems Math 24 Calculus III Summer 25, Session II. Determine whether the given set is a vector space. If not, give at least one axiom that is not satisfied. Unless otherwise stated,

More information

Chapter 4 & 5: Vector Spaces & Linear Transformations

Chapter 4 & 5: Vector Spaces & Linear Transformations Chapter 4 & 5: Vector Spaces & Linear Transformations Philip Gressman University of Pennsylvania Philip Gressman Math 240 002 2014C: Chapters 4 & 5 1 / 40 Objective The purpose of Chapter 4 is to think

More information

Lecture: Some Practical Considerations (3 of 4)

Lecture: Some Practical Considerations (3 of 4) Stat260/CS294: Spectral Graph Methods Lecture 14-03/10/2015 Lecture: Some Practical Considerations (3 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough.

More information

Lecture 13: Spectral Graph Theory

Lecture 13: Spectral Graph Theory CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 13: Spectral Graph Theory Lecturer: Shayan Oveis Gharan 11/14/18 Disclaimer: These notes have not been subjected to the usual scrutiny reserved

More information

Laplacians of Graphs, Spectra and Laplacian polynomials

Laplacians of Graphs, Spectra and Laplacian polynomials Laplacians of Graphs, Spectra and Laplacian polynomials Lector: Alexander Mednykh Sobolev Institute of Mathematics Novosibirsk State University Winter School in Harmonic Functions on Graphs and Combinatorial

More information

Unsupervised dimensionality reduction

Unsupervised dimensionality reduction Unsupervised dimensionality reduction Guillaume Obozinski Ecole des Ponts - ParisTech SOCN course 2014 Guillaume Obozinski Unsupervised dimensionality reduction 1/30 Outline 1 PCA 2 Kernel PCA 3 Multidimensional

More information

Spring 2019 Exam 2 3/27/19 Time Limit: / Problem Points Score. Total: 280

Spring 2019 Exam 2 3/27/19 Time Limit: / Problem Points Score. Total: 280 Math 307 Spring 2019 Exam 2 3/27/19 Time Limit: / Name (Print): Problem Points Score 1 15 2 20 3 35 4 30 5 10 6 20 7 20 8 20 9 20 10 20 11 10 12 10 13 10 14 10 15 10 16 10 17 10 Total: 280 Math 307 Exam

More information

Classical iterative methods for linear systems

Classical iterative methods for linear systems Classical iterative methods for linear systems Ed Bueler MATH 615 Numerical Analysis of Differential Equations 27 February 1 March, 2017 Ed Bueler (MATH 615 NADEs) Classical iterative methods for linear

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

A Nearly Sublinear Approximation to exp{p}e i for Large Sparse Matrices from Social Networks

A Nearly Sublinear Approximation to exp{p}e i for Large Sparse Matrices from Social Networks A Nearly Sublinear Approximation to exp{p}e i for Large Sparse Matrices from Social Networks Kyle Kloster and David F. Gleich Purdue University December 14, 2013 Supported by NSF CAREER 1149756-CCF Kyle

More information

SUPPLEMENTARY MATERIALS TO THE PAPER: ON THE LIMITING BEHAVIOR OF PARAMETER-DEPENDENT NETWORK CENTRALITY MEASURES

SUPPLEMENTARY MATERIALS TO THE PAPER: ON THE LIMITING BEHAVIOR OF PARAMETER-DEPENDENT NETWORK CENTRALITY MEASURES SUPPLEMENTARY MATERIALS TO THE PAPER: ON THE LIMITING BEHAVIOR OF PARAMETER-DEPENDENT NETWORK CENTRALITY MEASURES MICHELE BENZI AND CHRISTINE KLYMKO Abstract This document contains details of numerical

More information

Markov Chains, Random Walks on Graphs, and the Laplacian

Markov Chains, Random Walks on Graphs, and the Laplacian Markov Chains, Random Walks on Graphs, and the Laplacian CMPSCI 791BB: Advanced ML Sridhar Mahadevan Random Walks! There is significant interest in the problem of random walks! Markov chain analysis! Computer

More information

A New Spectral Technique Using Normalized Adjacency Matrices for Graph Matching 1

A New Spectral Technique Using Normalized Adjacency Matrices for Graph Matching 1 CHAPTER-3 A New Spectral Technique Using Normalized Adjacency Matrices for Graph Matching Graph matching problem has found many applications in areas as diverse as chemical structure analysis, pattern

More information

What are inverse problems?

What are inverse problems? What are inverse problems? 6th Forum of Polish Mathematicians Warsaw University of Technology Joonas Ilmavirta University of Jyväskylä 8 September 2015 Joonas Ilmavirta (Jyväskylä) Inverse problems 8 September

More information

Monte Carlo simulation inspired by computational optimization. Colin Fox Al Parker, John Bardsley MCQMC Feb 2012, Sydney

Monte Carlo simulation inspired by computational optimization. Colin Fox Al Parker, John Bardsley MCQMC Feb 2012, Sydney Monte Carlo simulation inspired by computational optimization Colin Fox fox@physics.otago.ac.nz Al Parker, John Bardsley MCQMC Feb 2012, Sydney Sampling from π(x) Consider : x is high-dimensional (10 4

More information

Lecture 2: Recognizing Shapes Using the Dirichlet Laplacian. Lotfi Hermi, University of Arizona

Lecture 2: Recognizing Shapes Using the Dirichlet Laplacian. Lotfi Hermi, University of Arizona Lecture 2: Recognizing Shapes Using the Dirichlet Laplacian Lotfi Hermi, University of Arizona based on joint work with M. A. Khabou and M. B. H. Rhouma Summary of Today s Session: Properties of Feature

More information

Lecture III: Matrix Functions in Network Science, Part 2

Lecture III: Matrix Functions in Network Science, Part 2 Lecture III: Matrix Functions in Network Science, Part 2 Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, Georgia, USA Summer School on Theory and Computation of Matrix

More information

Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation

Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation Author: Raif M. Rustamov Presenter: Dan Abretske Johns Hopkins 2007 Outline Motivation and Background Laplace-Beltrami Operator

More information

Spectral Graph Wavelets on the Cortical Connectome and Regularization of the EEG Inverse Problem

Spectral Graph Wavelets on the Cortical Connectome and Regularization of the EEG Inverse Problem Spectral Graph Wavelets on the Cortical Connectome and Regularization of the EEG Inverse Problem David K Hammond University of Oregon / NeuroInformatics Center International Conference on Industrial and

More information

Graph Partitioning Using Random Walks

Graph Partitioning Using Random Walks Graph Partitioning Using Random Walks A Convex Optimization Perspective Lorenzo Orecchia Computer Science Why Spectral Algorithms for Graph Problems in practice? Simple to implement Can exploit very efficient

More information

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices)

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Chapter 14 SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Today we continue the topic of low-dimensional approximation to datasets and matrices. Last time we saw the singular

More information

Communities, Spectral Clustering, and Random Walks

Communities, Spectral Clustering, and Random Walks Communities, Spectral Clustering, and Random Walks David Bindel Department of Computer Science Cornell University 3 Jul 202 Spectral clustering recipe Ingredients:. A subspace basis with useful information

More information

Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Homework 6

Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Homework 6 EECS 16A Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Homework 6 This homework is due March 6, 2017, at 23:59. Self-grades are due March 9, 2017, at 23:59.

More information

Spectral Graph Theory Lecture 2. The Laplacian. Daniel A. Spielman September 4, x T M x. ψ i = arg min

Spectral Graph Theory Lecture 2. The Laplacian. Daniel A. Spielman September 4, x T M x. ψ i = arg min Spectral Graph Theory Lecture 2 The Laplacian Daniel A. Spielman September 4, 2015 Disclaimer These notes are not necessarily an accurate representation of what happened in class. The notes written before

More information

Statistical Geometry Processing Winter Semester 2011/2012

Statistical Geometry Processing Winter Semester 2011/2012 Statistical Geometry Processing Winter Semester 2011/2012 Linear Algebra, Function Spaces & Inverse Problems Vector and Function Spaces 3 Vectors vectors are arrows in space classically: 2 or 3 dim. Euclidian

More information

U.C. Berkeley Better-than-Worst-Case Analysis Handout 3 Luca Trevisan May 24, 2018

U.C. Berkeley Better-than-Worst-Case Analysis Handout 3 Luca Trevisan May 24, 2018 U.C. Berkeley Better-than-Worst-Case Analysis Handout 3 Luca Trevisan May 24, 2018 Lecture 3 In which we show how to find a planted clique in a random graph. 1 Finding a Planted Clique We will analyze

More information

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline.

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline. Practitioner Course: Portfolio Optimization September 10, 2008 Before we define dependence, it is useful to define Random variables X and Y are independent iff For all x, y. In particular, F (X,Y ) (x,

More information

Math 443/543 Graph Theory Notes 5: Graphs as matrices, spectral graph theory, and PageRank

Math 443/543 Graph Theory Notes 5: Graphs as matrices, spectral graph theory, and PageRank Math 443/543 Graph Theory Notes 5: Graphs as matrices, spectral graph theory, and PageRank David Glickenstein November 3, 4 Representing graphs as matrices It will sometimes be useful to represent graphs

More information

Jordan Journal of Mathematics and Statistics (JJMS) 5(3), 2012, pp A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS OF EQUATIONS

Jordan Journal of Mathematics and Statistics (JJMS) 5(3), 2012, pp A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS OF EQUATIONS Jordan Journal of Mathematics and Statistics JJMS) 53), 2012, pp.169-184 A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS OF EQUATIONS ADEL H. AL-RABTAH Abstract. The Jacobi and Gauss-Seidel iterative

More information

Machine Learning for Data Science (CS4786) Lecture 11

Machine Learning for Data Science (CS4786) Lecture 11 Machine Learning for Data Science (CS4786) Lecture 11 Spectral clustering Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ ANNOUNCEMENT 1 Assignment P1 the Diagnostic assignment 1 will

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

Meaning of the Hessian of a function in a critical point

Meaning of the Hessian of a function in a critical point Meaning of the Hessian of a function in a critical point Mircea Petrache February 1, 2012 We consider a function f : R n R and assume for it to be differentiable with continuity at least two times (that

More information

An Algorithmist s Toolkit September 10, Lecture 1

An Algorithmist s Toolkit September 10, Lecture 1 18.409 An Algorithmist s Toolkit September 10, 2009 Lecture 1 Lecturer: Jonathan Kelner Scribe: Jesse Geneson (2009) 1 Overview The class s goals, requirements, and policies were introduced, and topics

More information

Nonlinear Eigenvalue Problems: Theory and Applications

Nonlinear Eigenvalue Problems: Theory and Applications Nonlinear Eigenvalue Problems: Theory and Applications David Bindel 1 Department of Computer Science Cornell University 12 January 217 1 Joint work with Amanda Hood Berkeley 1 / 37 The Computational Science

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

Markov Chains and Spectral Clustering

Markov Chains and Spectral Clustering Markov Chains and Spectral Clustering Ning Liu 1,2 and William J. Stewart 1,3 1 Department of Computer Science North Carolina State University, Raleigh, NC 27695-8206, USA. 2 nliu@ncsu.edu, 3 billy@ncsu.edu

More information

Orthogonal Polynomial Ensembles

Orthogonal Polynomial Ensembles Chater 11 Orthogonal Polynomial Ensembles 11.1 Orthogonal Polynomials of Scalar rgument Let wx) be a weight function on a real interval, or the unit circle, or generally on some curve in the comlex lane.

More information

On the Spectra of General Random Graphs

On the Spectra of General Random Graphs On the Spectra of General Random Graphs Fan Chung Mary Radcliffe University of California, San Diego La Jolla, CA 92093 Abstract We consider random graphs such that each edge is determined by an independent

More information

Pascal s Triangle on a Budget. Accuracy, Precision and Efficiency in Sparse Grids

Pascal s Triangle on a Budget. Accuracy, Precision and Efficiency in Sparse Grids Covering : Accuracy, Precision and Efficiency in Sparse Grids https://people.sc.fsu.edu/ jburkardt/presentations/auburn 2009.pdf... John Interdisciplinary Center for Applied Mathematics & Information Technology

More information

MATH 1553-C MIDTERM EXAMINATION 3

MATH 1553-C MIDTERM EXAMINATION 3 MATH 553-C MIDTERM EXAMINATION 3 Name GT Email @gatech.edu Please read all instructions carefully before beginning. Please leave your GT ID card on your desk until your TA scans your exam. Each problem

More information