Unsupervised dimensionality reduction

Size: px
Start display at page:

Download "Unsupervised dimensionality reduction"

Transcription

1 Unsupervised dimensionality reduction Guillaume Obozinski Ecole des Ponts - ParisTech SOCN course 2014 Guillaume Obozinski Unsupervised dimensionality reduction 1/30

2 Outline 1 PCA 2 Kernel PCA 3 Multidimensional scaling 4 Laplacian Eigenmaps 5 Locally Linear Embedding Guillaume Obozinski Unsupervised dimensionality reduction 2/30

3 PCA Guillaume Obozinski Unsupervised dimensionality reduction 4/30

4 A direction that maximizes the variance Data are points in R d. Looking for a direction v in R d such that the variance of the signals projected on v is maximized: Var((v x i )...n ) = 1 n = 1 n (v x i ) 2 v x i x i v = v ( 1 n = v Σ v x i x i ) v Need to solve max v 2 =1 v Σ v Solution: eigenvector associated to the largest eigenvalue of Σ Guillaume Obozinski Unsupervised dimensionality reduction 5/30

5 Principal directions Assume the design matrix is centered, i.e. X 1 = 0. Principal directions as eigenvectors of the covariance Consider the eigenvalue decomposition of Σ = X X: Σ = VS 2 V with S = Diag(s 1,..., s n ) and s 1... s n. The principal directions are the columns of V Principal directions as singular vectors of the design matrix Consider the singular value decomposition of X X = USV The principal directions are the right singular vectors. Guillaume Obozinski Unsupervised dimensionality reduction 6/30

6 Principal components Obtained by projection of the rows of X on V. But XV = USV V = US. So the principal components are obtained with the left singular vectors and the singular values. Guillaume Obozinski Unsupervised dimensionality reduction 7/30

7 Kernel PCA Guillaume Obozinski Unsupervised dimensionality reduction 9/30

8 Centering implicitly in feature space Assume that we use a mapping φ so that the representation of the data is the design matrix Then φ(x 1 ) Φ =.. φ(x n ) φ = 1 n φ(x i ) = Φ 1. So that if φ(x i ) = φ(x i ) φ then Φ = Φ 11 Φ = ( I n 1 n 11 ) Φ Finally, the center kernel matrix is computed as K = Φ Φ = HKH with H = I n 1 n 11. Guillaume Obozinski Unsupervised dimensionality reduction 10/30

9 Principal function in a RKHS (Schölkopf et al., 1998) Find a function f with f H = 1 that maximizes Equivalently, max f f, h xi 2 H. f (x i ) 2 s.t. f 2 H 1. By the representer theorem, f (x) = n j=1 α jk(x, x j ). So, f (x i ) 2 = = ( ) 2 α j K(x i, x j ) j=1 j,j =1 = α K K α α j α j K(x i, x j )K(x i, x j ) So the problem can be written as max α α K K α s.t. α K α. Guillaume Obozinski Unsupervised dimensionality reduction 11/30

10 Solution of kernel PCA Write K = US 2 U. If β = U α, then the problem is formulated as max β β2 i s 4 i s.t. β 2 i s 2 i 1 This is attained for β = ( 1 s 1, 0,..., 0) and thus α = 1 s 1 u 1. So the first principal function is f (x) = 1 s 1 U i1 K(x i, x) And the kth principal function is f (x) = 1 s k U ik K(x i, x) Guillaume Obozinski Unsupervised dimensionality reduction 12/30

11 Multidimensional scaling Guillaume Obozinski Unsupervised dimensionality reduction 14/30

12 Multidimensional scaling Goal: Given a collection of not necessarily Euclidean distances δ ij between pairs of points indexed by {1,..., n}. Construct a collection of points y i in a Euclidean space such that y i y j 2 δ ij Original formulation: Minimize a function called stress function ( ) 2 min yi y j 2 δ ij Y ij Classical formulation: min Y ( yi y j 2 2 δij 2 ij ) 2 Guillaume Obozinski Unsupervised dimensionality reduction 15/30

13 Centered kernel matrix from a Euclidean distance matrix Lemma If D 2 = ( dij 2 ) 1 i,j n is a matrix of squared Euclidean distances, then K = 1 2 HD 2H with H = I n 1 n 11, is the corresponding centered kernel matrix. Proof: d 2 ij = φ(x i ) φ(x j ) 2 2 = K ii + K jj 2K jj With κ = (K 11,..., K nn ), we have 2K = κ1 + 1κ D 2 K = HKH = 1 2 H ( κ1 + 1κ D 2 ) H. Guillaume Obozinski Unsupervised dimensionality reduction 16/30

14 Classical MDS algorithm Algorithm: 1 Compute K = 1 2 HD 2H. 2 Remove negative eigenvalues from K. 3 Solve kernel PCA on K If D 2 are Euclidean distances, step 2 is unnecessary and it can be shown that this solves the classical MDS problem. Guillaume Obozinski Unsupervised dimensionality reduction 17/30

15 Isomap (Tenenbaum et al., 2000) Algorithm: 1 Compute a k-nn graph on the data 2 Compute geodesic distances on the k-nn graph using the l 2 distance on each edge. 3 Apply classical MDS to the obtained distances Remarks: Isomap assumes that we can rely on the l 2 distance locally will fail if there are too many noise dimensions. geodesic distances can be computed with e.g. the Floyd Warshall algorithm Guillaume Obozinski Unsupervised dimensionality reduction 18/30

16 Laplacian Eigenmaps Guillaume Obozinski Unsupervised dimensionality reduction 20/30

17 Graph Laplacians Assume a similarity matrix W is available on the data, e.g. a kernel matrix such as W = (w ij ) 1 i,j n with ( w ij = exp 1 ) h x i x j 2 2 We can think of W as defining a weighted graph on the data. We say that a function is smooth on the weighted graph if its Laplacian L (f ) := 1 w ij (f (x i ) f (x j )) 2 2 ij is small. We say that a vector f is smooth on the weighted graph if its Laplacian L (f) := 1 w ij (f i f j ) 2 2 is small. ij Guillaume Obozinski Unsupervised dimensionality reduction 21/30

18 Laplacian and normalized Laplacian matrices Define D = Diag(d) with d i = j w ij. We then have L (f) = 1 w ij (f i f j ) 2 2 = 1 2 = 1 2 ij ij i w ij f 2 i d i f 2 i ij j w ij f 2 j d j f 2 j = f Df f Wf = f Lf Laplacian matrix: L Normalized Laplacian matrix: ij ij w ij f i f j w ij f i f j L := D 1 2 LD 1 2 = I D 1 2 WD 1 2. Guillaume Obozinski Unsupervised dimensionality reduction 22/30

19 Laplacian embeddings (Belkin and Niyogi, 2001) Principle: Given a weight matrix W find an embedding y i R K for point i that, given scaling and centering constraints on y i, solves We have min Y w ij y i y j 2 2 with Y = [ ] y 1... y n. ij w ij y i y j 2 2 = ( ) 2 w ij Yik Y ij ij ij k=1 K ( ) 2 = w ij Yik Y jk = k=1 ij K K Y k L Y k = tr(y L Y) k=1 Guillaume Obozinski Unsupervised dimensionality reduction 23/30

20 Laplacian embedding formulation min Y tr(y L Y) s.t. Y D Y = I, Y 1 = 0. With the change of variable Ỹ = D 1 2 Y, then Ỹ solves min Ỹ tr(ỹ L Ỹ) s.t. Ỹ Ỹ = I, Ỹ D = 0. But LD = 0, so the columns of Ỹ are the eigenvectors associated with the smallest eigenvalues except for the one D Equivalently, the columns of Y are the solutions of the generalized eigenvalue problem Lu = λdu for the smallest generalized eigenvalues except for the one 1. The rows of the obtained matrix form the embedding. Guillaume Obozinski Unsupervised dimensionality reduction 24/30

21 Locally Linear Embedding Guillaume Obozinski Unsupervised dimensionality reduction 26/30

22 Locally Linear Embedding (Roweis and Saul, 2000) Let x 1,..., x p be a collection of vectors in R p. 1 Construct a k-nn graph 2 Approximate x i by a linear combination of its neighbors, by finding the vector of weights solving the constrained linear regressions: xi min 2 w ij x j, with w ij = 1. w i 2 j N (i) j N (i) 3 Set w ij = 0 for j / N (i). 4 Find a centered set of points y i in R d with white covariance, which minimizes 2 y i w ij y j j=1 2 Guillaume Obozinski Unsupervised dimensionality reduction 27/30

23 LLE step 2: constrained regressions xi min 2 w ij x j, with w ij = 1. w i 2 j N (i) j N (i) But if j N (i) w ij = 1, then x i 2 w ij x j = Need to solve j N (i) 2 j N (i) = j N (i) w ij (x i x j ) min u 1 2 u Ku s.t. u 1 = w ij w ik (x i x j ) (x i x k ) }{{} K (i) jk L(u, λ) = 1 2 u Ku λ(u 1 1) and u L = 0 Ku = λ1 Solved for u = K K 1 1. Guillaume Obozinski Unsupervised dimensionality reduction 28/30

24 LLE step 4: final optimization problem min y 1,...,y n s.t. y i y i = 1, 2 w ij y j j=1 1 n 2 y i y i = I p. Equivalently, denoting Y = [ y 1... y n ], we have to solve Or, min Y min Y Y WY 2 F s.t. 1 Y = 0, Y (I n W) (I n W) Y s.t. Y1 = 0, 1 n Y Y = I p. 1 n Y Y = I p. So the columns of 1 n Y are the k eigenvectors associated with the smallest k non-zero eigenvalues. Guillaume Obozinski Unsupervised dimensionality reduction 29/30

25 References I Belkin, M. and Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS, volume 14, pages Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500): Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural computation, 10(5): Tenenbaum, J. B., De Silva, V., and Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500): Guillaume Obozinski Unsupervised dimensionality reduction 30/30

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Kernel PCA 2 Isomap 3 Locally Linear Embedding 4 Laplacian Eigenmap

More information

Non-linear Dimensionality Reduction

Non-linear Dimensionality Reduction Non-linear Dimensionality Reduction CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Laplacian Eigenmaps Locally Linear Embedding (LLE)

More information

Manifold Learning: Theory and Applications to HRI

Manifold Learning: Theory and Applications to HRI Manifold Learning: Theory and Applications to HRI Seungjin Choi Department of Computer Science Pohang University of Science and Technology, Korea seungjin@postech.ac.kr August 19, 2008 1 / 46 Greek Philosopher

More information

Intrinsic Structure Study on Whale Vocalizations

Intrinsic Structure Study on Whale Vocalizations 1 2015 DCLDE Conference Intrinsic Structure Study on Whale Vocalizations Yin Xian 1, Xiaobai Sun 2, Yuan Zhang 3, Wenjing Liao 3 Doug Nowacek 1,4, Loren Nolte 1, Robert Calderbank 1,2,3 1 Department of

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Introduction and Data Representation Mikhail Belkin & Partha Niyogi Department of Electrical Engieering University of Minnesota Mar 21, 2017 1/22 Outline Introduction 1 Introduction 2 3 4 Connections to

More information

Nonlinear Dimensionality Reduction. Jose A. Costa

Nonlinear Dimensionality Reduction. Jose A. Costa Nonlinear Dimensionality Reduction Jose A. Costa Mathematics of Information Seminar, Dec. Motivation Many useful of signals such as: Image databases; Gene expression microarrays; Internet traffic time

More information

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto Unsupervised Learning Techniques 9.520 Class 07, 1 March 2006 Andrea Caponnetto About this class Goal To introduce some methods for unsupervised learning: Gaussian Mixtures, K-Means, ISOMAP, HLLE, Laplacian

More information

Lecture 10: Dimension Reduction Techniques

Lecture 10: Dimension Reduction Techniques Lecture 10: Dimension Reduction Techniques Radu Balan Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD April 17, 2018 Input Data It is assumed that there is a set

More information

CSE 291. Assignment Spectral clustering versus k-means. Out: Wed May 23 Due: Wed Jun 13

CSE 291. Assignment Spectral clustering versus k-means. Out: Wed May 23 Due: Wed Jun 13 CSE 291. Assignment 3 Out: Wed May 23 Due: Wed Jun 13 3.1 Spectral clustering versus k-means Download the rings data set for this problem from the course web site. The data is stored in MATLAB format as

More information

Dimensionality Reduction AShortTutorial

Dimensionality Reduction AShortTutorial Dimensionality Reduction AShortTutorial Ali Ghodsi Department of Statistics and Actuarial Science University of Waterloo Waterloo, Ontario, Canada, 2006 c Ali Ghodsi, 2006 Contents 1 An Introduction to

More information

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu Dimension Reduction Techniques Presented by Jie (Jerry) Yu Outline Problem Modeling Review of PCA and MDS Isomap Local Linear Embedding (LLE) Charting Background Advances in data collection and storage

More information

Nonlinear Methods. Data often lies on or near a nonlinear low-dimensional curve aka manifold.

Nonlinear Methods. Data often lies on or near a nonlinear low-dimensional curve aka manifold. Nonlinear Methods Data often lies on or near a nonlinear low-dimensional curve aka manifold. 27 Laplacian Eigenmaps Linear methods Lower-dimensional linear projection that preserves distances between all

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center

Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center 1 Outline Part I - Applications Motivation and Introduction Patient similarity application Part II

More information

Data-dependent representations: Laplacian Eigenmaps

Data-dependent representations: Laplacian Eigenmaps Data-dependent representations: Laplacian Eigenmaps November 4, 2015 Data Organization and Manifold Learning There are many techniques for Data Organization and Manifold Learning, e.g., Principal Component

More information

Apprentissage non supervisée

Apprentissage non supervisée Apprentissage non supervisée Cours 3 Higher dimensions Jairo Cugliari Master ECD 2015-2016 From low to high dimension Density estimation Histograms and KDE Calibration can be done automacally But! Let

More information

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Neural Computation, June 2003; 15 (6):1373-1396 Presentation for CSE291 sp07 M. Belkin 1 P. Niyogi 2 1 University of Chicago, Department

More information

Dimension Reduction and Low-dimensional Embedding

Dimension Reduction and Low-dimensional Embedding Dimension Reduction and Low-dimensional Embedding Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1/26 Dimension

More information

Data dependent operators for the spatial-spectral fusion problem

Data dependent operators for the spatial-spectral fusion problem Data dependent operators for the spatial-spectral fusion problem Wien, December 3, 2012 Joint work with: University of Maryland: J. J. Benedetto, J. A. Dobrosotskaya, T. Doster, K. W. Duke, M. Ehler, A.

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Nonlinear Dimensionality Reduction Piyush Rai CS5350/6350: Machine Learning October 25, 2011 Recap: Linear Dimensionality Reduction Linear Dimensionality Reduction: Based on a linear projection of the

More information

LECTURE NOTE #11 PROF. ALAN YUILLE

LECTURE NOTE #11 PROF. ALAN YUILLE LECTURE NOTE #11 PROF. ALAN YUILLE 1. NonLinear Dimension Reduction Spectral Methods. The basic idea is to assume that the data lies on a manifold/surface in D-dimensional space, see figure (1) Perform

More information

Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis

Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis Alvina Goh Vision Reading Group 13 October 2005 Connection of Local Linear Embedding, ISOMAP, and Kernel Principal

More information

Manifold Learning and it s application

Manifold Learning and it s application Manifold Learning and it s application Nandan Dubey SE367 Outline 1 Introduction Manifold Examples image as vector Importance Dimension Reduction Techniques 2 Linear Methods PCA Example MDS Perception

More information

A Duality View of Spectral Methods for Dimensionality Reduction

A Duality View of Spectral Methods for Dimensionality Reduction A Duality View of Spectral Methods for Dimensionality Reduction Lin Xiao 1 Jun Sun 2 Stephen Boyd 3 May 3, 2006 1 Center for the Mathematics of Information, California Institute of Technology, Pasadena,

More information

Learning a Kernel Matrix for Nonlinear Dimensionality Reduction

Learning a Kernel Matrix for Nonlinear Dimensionality Reduction Learning a Kernel Matrix for Nonlinear Dimensionality Reduction Kilian Q. Weinberger kilianw@cis.upenn.edu Fei Sha feisha@cis.upenn.edu Lawrence K. Saul lsaul@cis.upenn.edu Department of Computer and Information

More information

A Duality View of Spectral Methods for Dimensionality Reduction

A Duality View of Spectral Methods for Dimensionality Reduction Lin Xiao lxiao@caltech.edu Center for the Mathematics of Information, California Institute of Technology, Pasadena, CA 91125, USA Jun Sun sunjun@stanford.edu Stephen Boyd boyd@stanford.edu Department of

More information

Dimensionality Reduc1on

Dimensionality Reduc1on Dimensionality Reduc1on contd Aarti Singh Machine Learning 10-601 Nov 10, 2011 Slides Courtesy: Tom Mitchell, Eric Xing, Lawrence Saul 1 Principal Component Analysis (PCA) Principal Components are the

More information

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Overview Introduction Linear Methods for Dimensionality Reduction Nonlinear Methods and Manifold

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

Robust Laplacian Eigenmaps Using Global Information

Robust Laplacian Eigenmaps Using Global Information Manifold Learning and its Applications: Papers from the AAAI Fall Symposium (FS-9-) Robust Laplacian Eigenmaps Using Global Information Shounak Roychowdhury ECE University of Texas at Austin, Austin, TX

More information

Learning a kernel matrix for nonlinear dimensionality reduction

Learning a kernel matrix for nonlinear dimensionality reduction University of Pennsylvania ScholarlyCommons Departmental Papers (CIS) Department of Computer & Information Science 7-4-2004 Learning a kernel matrix for nonlinear dimensionality reduction Kilian Q. Weinberger

More information

L26: Advanced dimensionality reduction

L26: Advanced dimensionality reduction L26: Advanced dimensionality reduction The snapshot CA approach Oriented rincipal Components Analysis Non-linear dimensionality reduction (manifold learning) ISOMA Locally Linear Embedding CSCE 666 attern

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

ISSN: (Online) Volume 3, Issue 5, May 2015 International Journal of Advance Research in Computer Science and Management Studies

ISSN: (Online) Volume 3, Issue 5, May 2015 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 3, Issue 5, May 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at:

More information

Graphs, Geometry and Semi-supervised Learning

Graphs, Geometry and Semi-supervised Learning Graphs, Geometry and Semi-supervised Learning Mikhail Belkin The Ohio State University, Dept of Computer Science and Engineering and Dept of Statistics Collaborators: Partha Niyogi, Vikas Sindhwani In

More information

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.2 Dimensionality Reduction Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University

More information

Spectral Dimensionality Reduction

Spectral Dimensionality Reduction Spectral Dimensionality Reduction Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux Jean-François Paiement, Pascal Vincent, and Marie Ouimet Département d Informatique et Recherche Opérationnelle Centre

More information

DIMENSION REDUCTION. min. j=1

DIMENSION REDUCTION. min. j=1 DIMENSION REDUCTION 1 Principal Component Analysis (PCA) Principal components analysis (PCA) finds low dimensional approximations to the data by projecting the data onto linear subspaces. Let X R d and

More information

Bi-stochastic kernels via asymmetric affinity functions

Bi-stochastic kernels via asymmetric affinity functions Bi-stochastic kernels via asymmetric affinity functions Ronald R. Coifman, Matthew J. Hirn Yale University Department of Mathematics P.O. Box 208283 New Haven, Connecticut 06520-8283 USA ariv:1209.0237v4

More information

Global (ISOMAP) versus Local (LLE) Methods in Nonlinear Dimensionality Reduction

Global (ISOMAP) versus Local (LLE) Methods in Nonlinear Dimensionality Reduction Global (ISOMAP) versus Local (LLE) Methods in Nonlinear Dimensionality Reduction A presentation by Evan Ettinger on a Paper by Vin de Silva and Joshua B. Tenenbaum May 12, 2005 Outline Introduction The

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 23 1 / 27 Overview

More information

Statistical and Computational Analysis of Locality Preserving Projection

Statistical and Computational Analysis of Locality Preserving Projection Statistical and Computational Analysis of Locality Preserving Projection Xiaofei He xiaofei@cs.uchicago.edu Department of Computer Science, University of Chicago, 00 East 58th Street, Chicago, IL 60637

More information

Nonlinear Manifold Learning Summary

Nonlinear Manifold Learning Summary Nonlinear Manifold Learning 6.454 Summary Alexander Ihler ihler@mit.edu October 6, 2003 Abstract Manifold learning is the process of estimating a low-dimensional structure which underlies a collection

More information

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26 Principal Component Analysis Brett Bernstein CDS at NYU April 25, 2017 Brett Bernstein (CDS at NYU) Lecture 13 April 25, 2017 1 / 26 Initial Question Intro Question Question Let S R n n be symmetric. 1

More information

Data Mining. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395

Data Mining. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395 Data Mining Dimensionality reduction Hamid Beigy Sharif University of Technology Fall 1395 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1395 1 / 42 Outline 1 Introduction 2 Feature selection

More information

SPECTRAL CLUSTERING AND KERNEL PRINCIPAL COMPONENT ANALYSIS ARE PURSUING GOOD PROJECTIONS

SPECTRAL CLUSTERING AND KERNEL PRINCIPAL COMPONENT ANALYSIS ARE PURSUING GOOD PROJECTIONS SPECTRAL CLUSTERING AND KERNEL PRINCIPAL COMPONENT ANALYSIS ARE PURSUING GOOD PROJECTIONS VIKAS CHANDRAKANT RAYKAR DECEMBER 5, 24 Abstract. We interpret spectral clustering algorithms in the light of unsupervised

More information

Data Mining II. Prof. Dr. Karsten Borgwardt, Department Biosystems, ETH Zürich. Basel, Spring Semester 2016 D-BSSE

Data Mining II. Prof. Dr. Karsten Borgwardt, Department Biosystems, ETH Zürich. Basel, Spring Semester 2016 D-BSSE D-BSSE Data Mining II Prof. Dr. Karsten Borgwardt, Department Biosystems, ETH Zürich Basel, Spring Semester 2016 D-BSSE Karsten Borgwardt Data Mining II Course, Basel Spring Semester 2016 2 / 117 Our course

More information

Machine Learning (BSMC-GA 4439) Wenke Liu

Machine Learning (BSMC-GA 4439) Wenke Liu Machine Learning (BSMC-GA 4439) Wenke Liu 02-01-2018 Biomedical data are usually high-dimensional Number of samples (n) is relatively small whereas number of features (p) can be large Sometimes p>>n Problems

More information

A SEMI-SUPERVISED METRIC LEARNING FOR CONTENT-BASED IMAGE RETRIEVAL. {dimane,

A SEMI-SUPERVISED METRIC LEARNING FOR CONTENT-BASED IMAGE RETRIEVAL. {dimane, A SEMI-SUPERVISED METRIC LEARNING FOR CONTENT-BASED IMAGE RETRIEVAL I. Daoudi,, K. Idrissi, S. Ouatik 3 Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR505, F-696, France Faculté Des Sciences, UFR IT, Université

More information

Machine Learning. Data visualization and dimensionality reduction. Eric Xing. Lecture 7, August 13, Eric Xing Eric CMU,

Machine Learning. Data visualization and dimensionality reduction. Eric Xing. Lecture 7, August 13, Eric Xing Eric CMU, Eric Xing Eric Xing @ CMU, 2006-2010 1 Machine Learning Data visualization and dimensionality reduction Eric Xing Lecture 7, August 13, 2010 Eric Xing Eric Xing @ CMU, 2006-2010 2 Text document retrieval/labelling

More information

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline

More information

Chap.11 Nonlinear principal component analysis [Book, Chap. 10]

Chap.11 Nonlinear principal component analysis [Book, Chap. 10] Chap.11 Nonlinear principal component analysis [Book, Chap. 1] We have seen machine learning methods nonlinearly generalizing the linear regression method. Now we will examine ways to nonlinearly generalize

More information

Spectral Dimensionality Reduction via Maximum Entropy

Spectral Dimensionality Reduction via Maximum Entropy Sheffield Institute for Translational Neuroscience and Department of Computer Science, University of Sheffield Abstract We introduce a new perspective on spectral dimensionality reduction which views these

More information

Locality Preserving Projections

Locality Preserving Projections Locality Preserving Projections Xiaofei He Department of Computer Science The University of Chicago Chicago, IL 60637 xiaofei@cs.uchicago.edu Partha Niyogi Department of Computer Science The University

More information

Learning on Graphs and Manifolds. CMPSCI 689 Sridhar Mahadevan U.Mass Amherst

Learning on Graphs and Manifolds. CMPSCI 689 Sridhar Mahadevan U.Mass Amherst Learning on Graphs and Manifolds CMPSCI 689 Sridhar Mahadevan U.Mass Amherst Outline Manifold learning is a relatively new area of machine learning (2000-now). Main idea Model the underlying geometry of

More information

Dimensionality Reduction

Dimensionality Reduction Dimensionality Reduction Neil D. Lawrence neill@cs.man.ac.uk Mathematics for Data Modelling University of Sheffield January 23rd 28 Neil Lawrence () Dimensionality Reduction Data Modelling School 1 / 7

More information

Gaussian Process Latent Random Field

Gaussian Process Latent Random Field Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10) Gaussian Process Latent Random Field Guoqiang Zhong, Wu-Jun Li, Dit-Yan Yeung, Xinwen Hou, Cheng-Lin Liu National Laboratory

More information

Learning Eigenfunctions Links Spectral Embedding

Learning Eigenfunctions Links Spectral Embedding Learning Eigenfunctions Links Spectral Embedding and Kernel PCA Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux Jean-François Paiement, Pascal Vincent, and Marie Ouimet Département d Informatique et

More information

LEC 2: Principal Component Analysis (PCA) A First Dimensionality Reduction Approach

LEC 2: Principal Component Analysis (PCA) A First Dimensionality Reduction Approach LEC 2: Principal Component Analysis (PCA) A First Dimensionality Reduction Approach Dr. Guangliang Chen February 9, 2016 Outline Introduction Review of linear algebra Matrix SVD PCA Motivation The digits

More information

Graph Metrics and Dimension Reduction

Graph Metrics and Dimension Reduction Graph Metrics and Dimension Reduction Minh Tang 1 Michael Trosset 2 1 Applied Mathematics and Statistics The Johns Hopkins University 2 Department of Statistics Indiana University, Bloomington November

More information

Large-Scale Manifold Learning

Large-Scale Manifold Learning Large-Scale Manifold Learning Ameet Talwalkar Courant Institute New York, NY ameet@cs.nyu.edu Sanjiv Kumar Google Research New York, NY sanjivk@google.com Henry Rowley Google Research Mountain View, CA

More information

Manifold Learning: From Linear to nonlinear. Presenter: Wei-Lun (Harry) Chao Date: April 26 and May 3, 2012 At: AMMAI 2012

Manifold Learning: From Linear to nonlinear. Presenter: Wei-Lun (Harry) Chao Date: April 26 and May 3, 2012 At: AMMAI 2012 Manifold Learning: From Linear to nonlinear Presenter: Wei-Lun (Harry) Chao Date: April 26 and May 3, 2012 At: AMMAI 2012 1 Preview Goal: Dimensionality Classification reduction and clustering Main idea:

More information

Principal Component Analysis

Principal Component Analysis CSci 5525: Machine Learning Dec 3, 2008 The Main Idea Given a dataset X = {x 1,..., x N } The Main Idea Given a dataset X = {x 1,..., x N } Find a low-dimensional linear projection The Main Idea Given

More information

Learning gradients: prescriptive models

Learning gradients: prescriptive models Department of Statistical Science Institute for Genome Sciences & Policy Department of Computer Science Duke University May 11, 2007 Relevant papers Learning Coordinate Covariances via Gradients. Sayan

More information

MLCC 2015 Dimensionality Reduction and PCA

MLCC 2015 Dimensionality Reduction and PCA MLCC 2015 Dimensionality Reduction and PCA Lorenzo Rosasco UNIGE-MIT-IIT June 25, 2015 Outline PCA & Reconstruction PCA and Maximum Variance PCA and Associated Eigenproblem Beyond the First Principal Component

More information

(Non-linear) dimensionality reduction. Department of Computer Science, Czech Technical University in Prague

(Non-linear) dimensionality reduction. Department of Computer Science, Czech Technical University in Prague (Non-linear) dimensionality reduction Jiří Kléma Department of Computer Science, Czech Technical University in Prague http://cw.felk.cvut.cz/wiki/courses/a4m33sad/start poutline motivation, task definition,

More information

Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining

Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes October 3, 2012 1 / 1 Combinations of features Given a data matrix X n p with p fairly large, it can

More information

Dimensionality Reduction

Dimensionality Reduction Lecture 5 1 Outline 1. Overview a) What is? b) Why? 2. Principal Component Analysis (PCA) a) Objectives b) Explaining variability c) SVD 3. Related approaches a) ICA b) Autoencoders 2 Example 1: Sportsball

More information

Kernel Principal Component Analysis

Kernel Principal Component Analysis Kernel Principal Component Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

The Curse of Dimensionality for Local Kernel Machines

The Curse of Dimensionality for Local Kernel Machines The Curse of Dimensionality for Local Kernel Machines Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux Dept. IRO, Université de Montréal P.O. Box 6128, Downtown Branch, Montreal, H3C 3J7, Qc, Canada {bengioy,delallea,lerouxni}@iro.umontreal.ca

More information

Dimensionality Reduction: A Comparative Review

Dimensionality Reduction: A Comparative Review Tilburg centre for Creative Computing P.O. Box 90153 Tilburg University 5000 LE Tilburg, The Netherlands http://www.uvt.nl/ticc Email: ticc@uvt.nl Copyright c Laurens van der Maaten, Eric Postma, and Jaap

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machine Learning & Perception Instructor: Tony Jebara Topic 2 Nonlinear Manifold Learning Multidimensional Scaling (MDS) Locally Linear Embedding (LLE) Beyond Principal Components Analysis (PCA)

More information

Localized Sliced Inverse Regression

Localized Sliced Inverse Regression Localized Sliced Inverse Regression Qiang Wu, Sayan Mukherjee Department of Statistical Science Institute for Genome Sciences & Policy Department of Computer Science Duke University, Durham NC 2778-251,

More information

A graph based approach to semi-supervised learning

A graph based approach to semi-supervised learning A graph based approach to semi-supervised learning 1 Feb 2011 Two papers M. Belkin, P. Niyogi, and V Sindhwani. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples.

More information

Fisher s Linear Discriminant Analysis

Fisher s Linear Discriminant Analysis Fisher s Linear Discriminant Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Statistical Learning. Dong Liu. Dept. EEIS, USTC

Statistical Learning. Dong Liu. Dept. EEIS, USTC Statistical Learning Dong Liu Dept. EEIS, USTC Chapter 6. Unsupervised and Semi-Supervised Learning 1. Unsupervised learning 2. k-means 3. Gaussian mixture model 4. Other approaches to clustering 5. Principle

More information

14 Singular Value Decomposition

14 Singular Value Decomposition 14 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

Discriminative Direction for Kernel Classifiers

Discriminative Direction for Kernel Classifiers Discriminative Direction for Kernel Classifiers Polina Golland Artificial Intelligence Lab Massachusetts Institute of Technology Cambridge, MA 02139 polina@ai.mit.edu Abstract In many scientific and engineering

More information

Linear Dimensionality Reduction

Linear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Principal Component Analysis 3 Factor Analysis

More information

Table of Contents. Multivariate methods. Introduction II. Introduction I

Table of Contents. Multivariate methods. Introduction II. Introduction I Table of Contents Introduction Antti Penttilä Department of Physics University of Helsinki Exactum summer school, 04 Construction of multinormal distribution Test of multinormality with 3 Interpretation

More information

Discriminant Uncorrelated Neighborhood Preserving Projections

Discriminant Uncorrelated Neighborhood Preserving Projections Journal of Information & Computational Science 8: 14 (2011) 3019 3026 Available at http://www.joics.com Discriminant Uncorrelated Neighborhood Preserving Projections Guoqiang WANG a,, Weijuan ZHANG a,

More information

Advances in Manifold Learning Presented by: Naku Nak l Verm r a June 10, 2008

Advances in Manifold Learning Presented by: Naku Nak l Verm r a June 10, 2008 Advances in Manifold Learning Presented by: Nakul Verma June 10, 008 Outline Motivation Manifolds Manifold Learning Random projection of manifolds for dimension reduction Introduction to random projections

More information

Graph-Laplacian PCA: Closed-form Solution and Robustness

Graph-Laplacian PCA: Closed-form Solution and Robustness 2013 IEEE Conference on Computer Vision and Pattern Recognition Graph-Laplacian PCA: Closed-form Solution and Robustness Bo Jiang a, Chris Ding b,a, Bin Luo a, Jin Tang a a School of Computer Science and

More information

Data Analysis and Manifold Learning Lecture 7: Spectral Clustering

Data Analysis and Manifold Learning Lecture 7: Spectral Clustering Data Analysis and Manifold Learning Lecture 7: Spectral Clustering Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture 7 What is spectral

More information

Kernel methods for comparing distributions, measuring dependence

Kernel methods for comparing distributions, measuring dependence Kernel methods for comparing distributions, measuring dependence Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Principal component analysis Given a set of M centered observations

More information

Image Analysis & Retrieval Lec 13 - Feature Dimension Reduction

Image Analysis & Retrieval Lec 13 - Feature Dimension Reduction CS/EE 5590 / ENG 401 Special Topics, Spring 2018 Image Analysis & Retrieval Lec 13 - Feature Dimension Reduction Zhu Li Dept of CSEE, UMKC http://l.web.umkc.edu/lizhu Office Hour: Tue/Thr 2:30-4pm@FH560E,

More information

Lecture 7 Spectral methods

Lecture 7 Spectral methods CSE 291: Unsupervised learning Spring 2008 Lecture 7 Spectral methods 7.1 Linear algebra review 7.1.1 Eigenvalues and eigenvectors Definition 1. A d d matrix M has eigenvalue λ if there is a d-dimensional

More information

Preprocessing & dimensionality reduction

Preprocessing & dimensionality reduction Introduction to Data Mining Preprocessing & dimensionality reduction CPSC/AMTH 445a/545a Guy Wolf guy.wolf@yale.edu Yale University Fall 2016 CPSC 445 (Guy Wolf) Dimensionality reduction Yale - Fall 2016

More information

Manifold Regularization

Manifold Regularization 9.520: Statistical Learning Theory and Applications arch 3rd, 200 anifold Regularization Lecturer: Lorenzo Rosasco Scribe: Hooyoung Chung Introduction In this lecture we introduce a class of learning algorithms,

More information

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University PRINCIPAL COMPONENT ANALYSIS DIMENSIONALITY

More information

L 2,1 Norm and its Applications

L 2,1 Norm and its Applications L 2, Norm and its Applications Yale Chang Introduction According to the structure of the constraints, the sparsity can be obtained from three types of regularizers for different purposes.. Flat Sparsity.

More information

Lecture: Some Practical Considerations (3 of 4)

Lecture: Some Practical Considerations (3 of 4) Stat260/CS294: Spectral Graph Methods Lecture 14-03/10/2015 Lecture: Some Practical Considerations (3 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough.

More information

Discriminative K-means for Clustering

Discriminative K-means for Clustering Discriminative K-means for Clustering Jieping Ye Arizona State University Tempe, AZ 85287 jieping.ye@asu.edu Zheng Zhao Arizona State University Tempe, AZ 85287 zhaozheng@asu.edu Mingrui Wu MPI for Biological

More information

Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian

Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian Amit Singer Princeton University Department of Mathematics and Program in Applied and Computational Mathematics

More information

Dimensionality Reduction:

Dimensionality Reduction: Dimensionality Reduction: From Data Representation to General Framework Dong XU School of Computer Engineering Nanyang Technological University, Singapore What is Dimensionality Reduction? PCA LDA Examples:

More information

Machine Learning. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395

Machine Learning. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395 Machine Learning Dimensionality reduction Hamid Beigy Sharif University of Technology Fall 1395 Hamid Beigy (Sharif University of Technology) Machine Learning Fall 1395 1 / 47 Table of contents 1 Introduction

More information

Dimensionality Reduction: A Comparative Review

Dimensionality Reduction: A Comparative Review Dimensionality Reduction: A Comparative Review L.J.P. van der Maaten, E.O. Postma, H.J. van den Herik MICC, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands. Abstract In recent

More information

Global Positioning from Local Distances

Global Positioning from Local Distances Global Positioning from Local Distances Amit Singer Yale University, Department of Mathematics, Program in Applied Mathematics SIAM Annual Meeting, July 2008 Amit Singer (Yale University) San Diego 1 /

More information

Linear and Non-Linear Dimensionality Reduction

Linear and Non-Linear Dimensionality Reduction Linear and Non-Linear Dimensionality Reduction Alexander Schulz aschulz(at)techfak.uni-bielefeld.de University of Pisa, Pisa 4.5.215 and 7.5.215 Overview Dimensionality Reduction Motivation Linear Projections

More information