How its computed. y outcome data λ parameters hyperparameters. where P denotes the Laplace approximation. k i k k. Andrew B Lawson 2013

Size: px
Start display at page:

Download "How its computed. y outcome data λ parameters hyperparameters. where P denotes the Laplace approximation. k i k k. Andrew B Lawson 2013"

Transcription

1 Andrew Lawson MUSC

2 INLA INLA s a relatvely new tool that can be used to approxmate posteror dstrbutons n Bayesan models INLA stands for ntegrated Nested Laplace Approxmaton The approxmaton has been known for some tme (see e.g. Kass and Steffey (1989) JASA) Recently t has been shown that f nested approxmatons are made and sparse matrx theory exploted t s possble to provde reasonably good and fast estmates of many posteror quanttes

3 INLA more formally Laplace approxmaton matches the mode and curvature of a Gaussan dstrbuton to the posteror n queston and uses ths to provde an ntegral approxmaton to the densty. For models close to Gaussan then the approxmaton s very good. Andrew B Lawson 2013

4 How ts computed y outcome data λ parameters hyperparameters P( λ y) P( λ y, ) P( y) d k P( λ y, ) P( y) k k k where P denotes the Laplace approxmaton Andrew B Lawson 2013

5 INLA bascs Can be used for a wde varety of herarchcal models spatal models Survval data Longtudnal data fmri magng Clncal applcatons econometrcs

6 INLA advantages VERY fast computaton Can ft some spatal models many tmes faster than McMC (n the form of WnBUGS) Can handle very large datasets We have an example wth >60,000 observatons whch can run quckly on INLA but freezes on WnBUGS Can handle large numbers of regresson predctors n fxed effect models Handles random effects easly

7 Models on INLA INLA operates as for the LM functon on R Two components: formula and nla call Example: >formula1=y~1+x >result1=nla(formula1, famly ="gaussan", data= dataframe ) Ths fts a lnear regresson wth ntercept between y and x Andrew B Lawson 2013

8 INLA on R Basc formulaton s akn to usng the lm functon n R Two basc calls are made : Model defnton (formula) Model fttng Example: lnear regresson wth 2 predctors formula1< y~1+x1+x2 res1<nla(formula1,famly="gaussan",data=as,control.compute =lst(dc=true,cpo=true))

9 Bayesan Dsease Mappng Spatal dstrbuton of ncdent counts of dsease wthn small areas I don t consder case events at resdental addresses here Example:

10 SC congental deaths 1990

11 Statstcal Issues Count outcomes n m regons/small areas: y : 1,..., m Need populaton background for each area (expected count or rate): e : 1,..., m Varous methods used to estmate the expected counts BUT they are assumed fxed n analyss. Andrew B Lawson 2013

12 Smple estmator of relatve rsk Standardzed ncdence Rato (SIR): Rato of observed to expected counts: ˆ y / e Ths s a crude estmator and sometmes dffcult to nterpret and unstable (rato qualty) Andrew B Lawson 2013

13 Basc Model Posson count model assumed for small areas: y Pos( ) e multplcatve model Ths s our data level model and we assume a Posson lkelhood The man parameter s the relatve rsk : Ths can have a pror dstrbuton (e.g. a gamma or lognormal) Alternatvely the log of relatve rsk can be modeled Andrew B Lawson 2013

14 Relatve rsk models log( ) log( e ) log( ) offset log( )... model terms A) ntercept (constant) model B) log normal (random ntercept) model C) GLMM D)Convoluton model Andrew B Lawson 2013

15 Rsk models I Constant rsk : Log normal rsk: log( ) exp( ) log( ) v exp( v ) Generalzed Lnear Mxed Model (GLMM): T T log( ) x α z γ T x α : lnear predctor T z γ : lnear combnaton of random effects Andrew B Lawson 2013

16 Convoluton Models Specal case of GLMM Includes spatal correlaton log( ) where u v u s a spatal effect and s called a convoluton Addng covarates s straghtforward: v u log( ) x v u where x s a covarate Andrew B Lawson 2013

17 Use of f() functon A powerful feature of the INLA package s the f() functon Ths allows specal lnks to be specfed to predctors Can have smooth non lnear lnks Can have correlated dependence Can nclude random effects va ths functon Andrew B Lawson 2013

18 Some examples

19 SC congental example: UH only #UH model formulauh = obs~ f(regon, model = "d") resultuh = nla(formulauh,famly="posson", data=sccongen90,control.compute=lst(dc=true,cpo= TRUE),E=expe) summary(resultuh)

20 SC congental example #UH+CH + poverty covarate setwd("workng drectory") formulauhchpov = obs~ 1+pov+f(regon, model = "d")+f(regon2,model="besag",graph="sc.graph") resultuhchpov = nla(formulauhchpov,famly="posson", data=sccongen90,control.compute=lst(dc=true,cpo= TRUE),E=expe) summary(resultuhchpov)

21 Output from UH only model

22 Dagnostcs

23 Space tme examples Oho county level respratory cancer A well known dataset (full dataset 21 years ) Avalable at shown here SIRs dsplayed

24 Andrew Lawson 2013

25 Basc retrospectve model Infnte populaton; small dsease probablty Posson assumpton y ~ Pos( e ) j j j log( ) S T ST S T j ST j 0 j j : spatal terms : temporal terms j : nteracton Andrew Lawson 2013

26 Some Random Effect models model 1a: log( ) v u t model 1b: j 0 j log( ) v u model 2: j 0 j log( ) v u model 3: j 0 1j 2 j log( ) v u model 4: j 0 2 j j log( ) v u j 0 1j 2 j j model 5: varants of (3) wth Andrew Lawson 2013 j

27 Model fttng Results (WnBUGS) Model DIC pd 1a b Andrew Lawson 2013

28 DIC comparson INLA model Model DIC pd WB model 1 Spatal only (UH) UH+CH UH+CH+tme trend a 4 UH+CH+tme d UH+CH+tme RW1 6 UH+CH+tme (d, rw1) 7 UH+tme rw1+st nt 8 UH+CH+tme rw1+stnt b

29 Lmtatons of INLA Models must be expressble n the lnear model format There are restrctons on the types of pror dstrbutons that can be assumed Example: there s no Drchlet or multnomal dstrbuton currently Mxtures cannot be modeled, but jont models are avalable

30 Fnally Other INLA features Measurement error n predctors ( mec, meb) Mssngness n outcomes (copy faclty) Geographcally weghted regresson e.g. f(nd,x1,model= besag,graph= ) Smoothed predctors e.g. f(x1,model= rw1 ) Modelng pont processes va SPDE facltes (LGCP) Caveat: Taylor and Dggle (2012)

31 INLA WnBUGS Fnally INLA versus WnBUGS Runs on R x Only through Brugs or R2WnBUGS Large datasets Mxtures Posteror functonals x x x Specal spatal Models Mssngness X some: LGCP for pont processes Only outcomes n general, but can handle drop out models X GeoBUGS +CAR models Can handle a range of mssngness

32 Conclusons Thanks for your attenton! Contact address: INLA examples gven n Appendx D of Lawson, A. B. (2013) Bayesan Dsease Mappng: herarchcal modelng n spatal epdemology. 2 nd Ed CRC Press, New York Full 2 x 2 day courses on BDM (ncludng WnBUGS and INLA) gven n MUSC (March) Unversty of Ednburgh (June) each year. Contacts: MUSC courses June Watson emal: watsonju@musc.edu UOE courses Bob Carr emal: bob.carr@ed.ac.uk

Andrew B. Lawson 2019 BMTRY 763

Andrew B. Lawson 2019 BMTRY 763 BMTRY 763 FMD Foot and mouth disease (FMD) is a viral disease of clovenfooted animals and being extremely contagious it spreads rapidly. It reduces animal production, and can sometimes be fatal in young

More information

A New Method for Estimating Overdispersion. David Fletcher and Peter Green Department of Mathematics and Statistics

A New Method for Estimating Overdispersion. David Fletcher and Peter Green Department of Mathematics and Statistics A New Method for Estmatng Overdsperson Davd Fletcher and Peter Green Department of Mathematcs and Statstcs Byron Morgan Insttute of Mathematcs, Statstcs and Actuaral Scence Unversty of Kent, England Overvew

More information

An R implementation of bootstrap procedures for mixed models

An R implementation of bootstrap procedures for mixed models The R User Conference 2009 July 8-10, Agrocampus-Ouest, Rennes, France An R mplementaton of bootstrap procedures for mxed models José A. Sánchez-Espgares Unverstat Poltècnca de Catalunya Jord Ocaña Unverstat

More information

Chapter 5 Multilevel Models

Chapter 5 Multilevel Models Chapter 5 Multlevel Models 5.1 Cross-sectonal multlevel models 5.1.1 Two-level models 5.1.2 Multple level models 5.1.3 Multple level modelng n other felds 5.2 Longtudnal multlevel models 5.2.1 Two-level

More information

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements CS 750 Machne Learnng Lecture 5 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square CS 750 Machne Learnng Announcements Homework Due on Wednesday before the class Reports: hand n before

More information

Chapter 14: Logit and Probit Models for Categorical Response Variables

Chapter 14: Logit and Probit Models for Categorical Response Variables Chapter 4: Logt and Probt Models for Categorcal Response Varables Sect 4. Models for Dchotomous Data We wll dscuss only ths secton of Chap 4, whch s manly about Logstc Regresson, a specal case of the famly

More information

BIO Lab 2: TWO-LEVEL NORMAL MODELS with school children popularity data

BIO Lab 2: TWO-LEVEL NORMAL MODELS with school children popularity data Lab : TWO-LEVEL NORMAL MODELS wth school chldren popularty data Purpose: Introduce basc two-level models for normally dstrbuted responses usng STATA. In partcular, we dscuss Random ntercept models wthout

More information

Diagnostics in Poisson Regression. Models - Residual Analysis

Diagnostics in Poisson Regression. Models - Residual Analysis Dagnostcs n Posson Regresson Models - Resdual Analyss 1 Outlne Dagnostcs n Posson Regresson Models - Resdual Analyss Example 3: Recall of Stressful Events contnued 2 Resdual Analyss Resduals represent

More information

Overview. Multiple Treatment Meta Analysis II

Overview. Multiple Treatment Meta Analysis II Multple Treatment Meta Analyss II Sofa Das Unversty of Brstol s.das@brstol.ac.uk SMG Tranng Course, March 010, Cardff Wth thanks to: Georga Salant, Ncky Welton, Tony Ades, Debb Caldwell, Alex Sutton Overvew

More information

GENERALIZED LINEAR MIXED MODELS WITH SPATIAL RANDOM EFFECTS FOR SPATIO-TEMPORAL DATA: AN APPLICATION TO DENGUE FEVER MAPPING

GENERALIZED LINEAR MIXED MODELS WITH SPATIAL RANDOM EFFECTS FOR SPATIO-TEMPORAL DATA: AN APPLICATION TO DENGUE FEVER MAPPING Journal of Mathematcs and Statstcs, 9 (2): 137-143, 2013 ISSN 1549-3644 2013 do:10.3844/jmssp.2013.137.143 Publshed Onlne 9 (2) 2013 (http://www.thescpub.com/jmss.toc) GENERALIZED LINEAR MIXED MODELS WITH

More information

The Ordinary Least Squares (OLS) Estimator

The Ordinary Least Squares (OLS) Estimator The Ordnary Least Squares (OLS) Estmator 1 Regresson Analyss Regresson Analyss: a statstcal technque for nvestgatng and modelng the relatonshp between varables. Applcatons: Engneerng, the physcal and chemcal

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Recall: man dea of lnear regresson Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 8 Lnear regresson can be used to study an

More information

Lab 4: Two-level Random Intercept Model

Lab 4: Two-level Random Intercept Model BIO 656 Lab4 009 Lab 4: Two-level Random Intercept Model Data: Peak expratory flow rate (pefr) measured twce, usng two dfferent nstruments, for 17 subjects. (from Chapter 1 of Multlevel and Longtudnal

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 008 Recall: man dea of lnear regresson Lnear regresson can be used to study

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

Spatial Frailty Survival Model for Infection of Tuberculosis among HIV Infected Individuals

Spatial Frailty Survival Model for Infection of Tuberculosis among HIV Infected Individuals SSRG Internatonal Journal of Medcal Scence (SSRG-IJMS) Volume 4 Issue 2 February 217 Spatal Fralty Survval Model for Infecton of uberculoss among HIV Infected Indvduals Srnvasan R 1, Ponnuraja C 1, Rajendran

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

Issues To Consider when Estimating Health Care Costs with Generalized Linear Models (GLMs): To Gamma/Log Or Not To Gamma/Log? That Is The New Question

Issues To Consider when Estimating Health Care Costs with Generalized Linear Models (GLMs): To Gamma/Log Or Not To Gamma/Log? That Is The New Question Issues To Consder when Estmatng Health Care Costs wth Generalzed Lnear Models (GLMs): To Gamma/Log Or Not To Gamma/Log? That Is The New Queston ISPOR 20th Annual Internatonal Meetng May 19, 2015 Jalpa

More information

Comparison on Modelling the Relative. Risk Estimation: Bayesian Study

Comparison on Modelling the Relative. Risk Estimation: Bayesian Study Appled Mathematcal Scences, Vol. 4, 00, no. 54, 663-68 Comparson on Modellng the Relatve Rsk Estmaton: Bayesan Study Rafda M. Elobad and Noor Akma I. Laboratory of Appled & Computatonal Statstcs Insttute

More information

Introduction to Generalized Linear Models

Introduction to Generalized Linear Models INTRODUCTION TO STATISTICAL MODELLING TRINITY 00 Introducton to Generalzed Lnear Models I. Motvaton In ths lecture we extend the deas of lnear regresson to the more general dea of a generalzed lnear model

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore 8/5/17 Data Modelng Patrce Koehl Department of Bologcal Scences atonal Unversty of Sngapore http://www.cs.ucdavs.edu/~koehl/teachng/bl59 koehl@cs.ucdavs.edu Data Modelng Ø Data Modelng: least squares Ø

More information

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis Statstcal analyss usng matlab HY 439 Presented by: George Fortetsanaks Roadmap Probablty dstrbutons Statstcal estmaton Fttng data to probablty dstrbutons Contnuous dstrbutons Contnuous random varable X

More information

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition) Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of non-negatve nteger values Examples: number of drver route changes per week, the number of trp departure changes

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

Non-Mixture Cure Model for Interval Censored Data: Simulation Study ABSTRACT

Non-Mixture Cure Model for Interval Censored Data: Simulation Study ABSTRACT Malaysan Journal of Mathematcal Scences 8(S): 37-44 (2014) Specal Issue: Internatonal Conference on Mathematcal Scences and Statstcs 2013 (ICMSS2013) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal

More information

Two-factor model. Statistical Models. Least Squares estimation in LM two-factor model. Rats

Two-factor model. Statistical Models. Least Squares estimation in LM two-factor model. Rats tatstcal Models Lecture nalyss of Varance wo-factor model Overall mean Man effect of factor at level Man effect of factor at level Y µ + α + β + γ + ε Eε f (, ( l, Cov( ε, ε ) lmr f (, nteracton effect

More information

Data Abstraction Form for population PK, PD publications

Data Abstraction Form for population PK, PD publications Data Abstracton Form for populaton PK/PD publcatons Brendel K. 1*, Dartos C. 2*, Comets E. 1, Lemenuel-Dot A. 3, Laffont C.M. 3, Lavelle C. 4, Grard P. 2, Mentré F. 1 1 INSERM U738, Pars, France 2 EA3738,

More information

Semiparametric geographically weighted generalised linear modelling in GWR 4.0

Semiparametric geographically weighted generalised linear modelling in GWR 4.0 Semparametrc geographcally weghted generalsed lnear modellng n GWR 4.0 T. Nakaya 1, A. S. Fotherngham 2, M. Charlton 2, C. Brunsdon 3 1 Department of Geography, Rtsumekan Unversty, 56-1 Tojn-kta-mach,

More information

Introduction to the R Statistical Computing Environment R Programming

Introduction to the R Statistical Computing Environment R Programming Introducton to the R Statstcal Computng Envronment R Programmng John Fox McMaster Unversty ICPSR 2018 John Fox (McMaster Unversty) R Programmng ICPSR 2018 1 / 14 Programmng Bascs Topcs Functon defnton

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

4.3 Poisson Regression

4.3 Poisson Regression of teratvely reweghted least squares regressons (the IRLS algorthm). We do wthout gvng further detals, but nstead focus on the practcal applcaton. > glm(survval~log(weght)+age, famly="bnomal", data=baby)

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Low default modelling: a comparison of techniques based on a real Brazilian corporate portfolio

Low default modelling: a comparison of techniques based on a real Brazilian corporate portfolio Low default modellng: a comparson of technques based on a real Brazlan corporate portfolo MSc Gulherme Fernandes and MSc Carlos Rocha Credt Scorng and Credt Control Conference XII August 2011 Analytcs

More information

Conjugacy and the Exponential Family

Conjugacy and the Exponential Family CS281B/Stat241B: Advanced Topcs n Learnng & Decson Makng Conjugacy and the Exponental Famly Lecturer: Mchael I. Jordan Scrbes: Bran Mlch 1 Conjugacy In the prevous lecture, we saw conjugate prors for the

More information

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU Group M D L M Chapter Bayesan Decson heory Xn-Shun Xu @ SDU School of Computer Scence and echnology, Shandong Unversty Bayesan Decson heory Bayesan decson theory s a statstcal approach to data mnng/pattern

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2) 1/16 MATH 829: Introducton to Data Mnng and Analyss The EM algorthm (part 2) Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 20, 2016 Recall 2/16 We are gven ndependent observatons

More information

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

Bayesian predictive Configural Frequency Analysis

Bayesian predictive Configural Frequency Analysis Psychologcal Test and Assessment Modelng, Volume 54, 2012 (3), 285-292 Bayesan predctve Confgural Frequency Analyss Eduardo Gutérrez-Peña 1 Abstract Confgural Frequency Analyss s a method for cell-wse

More information

Using the estimated penetrances to determine the range of the underlying genetic model in casecontrol

Using the estimated penetrances to determine the range of the underlying genetic model in casecontrol Georgetown Unversty From the SelectedWorks of Mark J Meyer 8 Usng the estmated penetrances to determne the range of the underlyng genetc model n casecontrol desgn Mark J Meyer Neal Jeffres Gang Zheng Avalable

More information

Scientific Question Determine whether the breastfeeding of Nepalese children varies with child age and/or sex of child.

Scientific Question Determine whether the breastfeeding of Nepalese children varies with child age and/or sex of child. Longtudnal Logstc Regresson: Breastfeedng of Nepalese Chldren PART II GEE models (margnal, populaton average) covered last lab Random Intercept models (subject specfc) Transton models Scentfc Queston Determne

More information

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications Durban Watson for Testng the Lack-of-Ft of Polynomal Regresson Models wthout Replcatons Ruba A. Alyaf, Maha A. Omar, Abdullah A. Al-Shha ralyaf@ksu.edu.sa, maomar@ksu.edu.sa, aalshha@ksu.edu.sa Department

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models Computaton of Hgher Order Moments from Two Multnomal Overdsperson Lkelhood Models BY J. T. NEWCOMER, N. K. NEERCHAL Department of Mathematcs and Statstcs, Unversty of Maryland, Baltmore County, Baltmore,

More information

Lecture 6: Introduction to Linear Regression

Lecture 6: Introduction to Linear Regression Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6

More information

Space of ML Problems. CSE 473: Artificial Intelligence. Parameter Estimation and Bayesian Networks. Learning Topics

Space of ML Problems. CSE 473: Artificial Intelligence. Parameter Estimation and Bayesian Networks. Learning Topics /7/7 CSE 73: Artfcal Intellgence Bayesan - Learnng Deter Fox Sldes adapted from Dan Weld, Jack Breese, Dan Klen, Daphne Koller, Stuart Russell, Andrew Moore & Luke Zettlemoyer What s Beng Learned? Space

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrcs of Panel Data Jakub Mućk Meetng # 8 Jakub Mućk Econometrcs of Panel Data Meetng # 8 1 / 17 Outlne 1 Heterogenety n the slope coeffcents 2 Seemngly Unrelated Regresson (SUR) 3 Swamy s random

More information

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

Gaussian Mixture Models

Gaussian Mixture Models Lab Gaussan Mxture Models Lab Objectve: Understand the formulaton of Gaussan Mxture Models (GMMs) and how to estmate GMM parameters. You ve already seen GMMs as the observaton dstrbuton n certan contnuous

More information

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018 INF 5860 Machne learnng for mage classfcaton Lecture 3 : Image classfcaton and regresson part II Anne Solberg January 3, 08 Today s topcs Multclass logstc regresson and softma Regularzaton Image classfcaton

More information

Calculating CLs Limits. Abstract

Calculating CLs Limits. Abstract DØNote 4492 Calculatng CLs Lmts Harrson B. Prosper Florda State Unversty, Tallahassee, Florda 32306 (Dated: June 8, 2004) Abstract Ths note suggests how the calculaton of lmts based on the CLs method mght

More information

Machine learning: Density estimation

Machine learning: Density estimation CS 70 Foundatons of AI Lecture 3 Machne learnng: ensty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square ata: ensty estmaton {.. n} x a vector of attrbute values Objectve: estmate the model of

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1 On an Extenson of Stochastc Approxmaton EM Algorthm for Incomplete Data Problems Vahd Tadayon Abstract: The Stochastc Approxmaton EM (SAEM algorthm, a varant stochastc approxmaton of EM, s a versatle tool

More information

ANOVA. The Observations y ij

ANOVA. The Observations y ij ANOVA Stands for ANalyss Of VArance But t s a test of dfferences n means The dea: The Observatons y j Treatment group = 1 = 2 = k y 11 y 21 y k,1 y 12 y 22 y k,2 y 1, n1 y 2, n2 y k, nk means: m 1 m 2

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis SK48/98 Survval and event hstory analyss Lecture 7: Regresson modellng Relatve rsk regresson Regresson models Assume that we have a sample of n ndvduals, and let N (t) count the observed occurrences of

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Spatial Modelling of Peak Frequencies of Brain Signals

Spatial Modelling of Peak Frequencies of Brain Signals Malaysan Journal of Mathematcal Scences 3(1): 13-6 (9) Spatal Modellng of Peak Frequences of Bran Sgnals 1 Mahendran Shtan, Hernando Ombao, 1 Kok We Lng 1 Department of Mathematcs, Faculty of Scence, and

More information

Stat 642, Lecture notes for 01/27/ d i = 1 t. n i t nj. n j

Stat 642, Lecture notes for 01/27/ d i = 1 t. n i t nj. n j Stat 642, Lecture notes for 01/27/05 18 Rate Standardzaton Contnued: Note that f T n t where T s the cumulatve follow-up tme and n s the number of subjects at rsk at the mdpont or nterval, and d s the

More information

Primer on High-Order Moment Estimators

Primer on High-Order Moment Estimators Prmer on Hgh-Order Moment Estmators Ton M. Whted July 2007 The Errors-n-Varables Model We wll start wth the classcal EIV for one msmeasured regressor. The general case s n Erckson and Whted Econometrc

More information

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University PHYS 45 Sprng semester 7 Lecture : Dealng wth Expermental Uncertantes Ron Refenberger Brck anotechnology Center Purdue Unversty Lecture Introductory Comments Expermental errors (really expermental uncertantes)

More information

U-Pb Geochronology Practical: Background

U-Pb Geochronology Practical: Background U-Pb Geochronology Practcal: Background Basc Concepts: accuracy: measure of the dfference between an expermental measurement and the true value precson: measure of the reproducblty of the expermental result

More information

Chapter 8 Indicator Variables

Chapter 8 Indicator Variables Chapter 8 Indcator Varables In general, e explanatory varables n any regresson analyss are assumed to be quanttatve n nature. For example, e varables lke temperature, dstance, age etc. are quanttatve n

More information

Applications of GEE Methodology Using the SAS System

Applications of GEE Methodology Using the SAS System Applcatons of GEE Methodology Usng the SAS System Gordon Johnston Maura Stokes SAS Insttute Inc, Cary, NC Abstract The analyss of correlated data arsng from repeated measurements when the measurements

More information

Uncertainty as the Overlap of Alternate Conditional Distributions

Uncertainty as the Overlap of Alternate Conditional Distributions Uncertanty as the Overlap of Alternate Condtonal Dstrbutons Olena Babak and Clayton V. Deutsch Centre for Computatonal Geostatstcs Department of Cvl & Envronmental Engneerng Unversty of Alberta An mportant

More information

CIE4801 Transportation and spatial modelling Trip distribution

CIE4801 Transportation and spatial modelling Trip distribution CIE4801 ransportaton and spatal modellng rp dstrbuton Rob van Nes, ransport & Plannng 17/4/13 Delft Unversty of echnology Challenge the future Content What s t about hree methods Wth specal attenton for

More information

The conjugate prior to a Bernoulli is. A) Bernoulli B) Gaussian C) Beta D) none of the above

The conjugate prior to a Bernoulli is. A) Bernoulli B) Gaussian C) Beta D) none of the above The conjugate pror to a Bernoull s A) Bernoull B) Gaussan C) Beta D) none of the above The conjugate pror to a Gaussan s A) Bernoull B) Gaussan C) Beta D) none of the above MAP estmates A) argmax θ p(θ

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

Why Bayesian? 3. Bayes and Normal Models. State of nature: class. Decision rule. Rev. Thomas Bayes ( ) Bayes Theorem (yes, the famous one)

Why Bayesian? 3. Bayes and Normal Models. State of nature: class. Decision rule. Rev. Thomas Bayes ( ) Bayes Theorem (yes, the famous one) Why Bayesan? 3. Bayes and Normal Models Alex M. Martnez alex@ece.osu.edu Handouts Handoutsfor forece ECE874 874Sp Sp007 If all our research (n PR was to dsappear and you could only save one theory, whch

More information

Decision Analysis (part 2 of 2) Review Linear Regression

Decision Analysis (part 2 of 2) Review Linear Regression Harvard-MIT Dvson of Health Scences and Technology HST.951J: Medcal Decson Support, Fall 2005 Instructors: Professor Lucla Ohno-Machado and Professor Staal Vnterbo 6.873/HST.951 Medcal Decson Support Fall

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

Quantifying Uncertainty

Quantifying Uncertainty Partcle Flters Quantfyng Uncertanty Sa Ravela M. I. T Last Updated: Sprng 2013 1 Quantfyng Uncertanty Partcle Flters Partcle Flters Appled to Sequental flterng problems Can also be appled to smoothng problems

More information

Mapping of human health risks and of the uncertainty of the risk estimates

Mapping of human health risks and of the uncertainty of the risk estimates Mappng of human health rsks and of the uncertanty of the rsk estmates Schlnk U, Strebel K, Rchter M, Rolle-Kampczyk U, Rtzer S, Herbarth O UFZ Centre for Envronmental Research Lepzg-Halle Content Characterstcs

More information

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y)

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y) Secton 1.5 Correlaton In the prevous sectons, we looked at regresson and the value r was a measurement of how much of the varaton n y can be attrbuted to the lnear relatonshp between y and x. In ths secton,

More information

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980 MT07: Multvarate Statstcal Methods Mke Tso: emal mke.tso@manchester.ac.uk Webpage for notes: http://www.maths.manchester.ac.uk/~mkt/new_teachng.htm. Introducton to multvarate data. Books Chat eld, C. and

More information

Scalable Multi-Class Gaussian Process Classification using Expectation Propagation

Scalable Multi-Class Gaussian Process Classification using Expectation Propagation Scalable Mult-Class Gaussan Process Classfcaton usng Expectaton Propagaton Carlos Vllacampa-Calvo and Danel Hernández Lobato Computer Scence Department Unversdad Autónoma de Madrd http://dhnzl.org, danel.hernandez@uam.es

More information

Statistical pattern recognition

Statistical pattern recognition Statstcal pattern recognton Bayes theorem Problem: decdng f a patent has a partcular condton based on a partcular test However, the test s mperfect Someone wth the condton may go undetected (false negatve

More information

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS Darusz Bskup 1. Introducton The paper presents a nonparaetrc procedure for estaton of an unknown functon f n the regresson odel y = f x + ε = N. (1) (

More information

Spatial Statistics and Analysis Methods (for GEOG 104 class).

Spatial Statistics and Analysis Methods (for GEOG 104 class). Spatal Statstcs and Analyss Methods (for GEOG 104 class). Provded by Dr. An L, San Dego State Unversty. 1 Ponts Types of spatal data Pont pattern analyss (PPA; such as nearest neghbor dstance, quadrat

More information

Hydrological statistics. Hydrological statistics and extremes

Hydrological statistics. Hydrological statistics and extremes 5--0 Stochastc Hydrology Hydrologcal statstcs and extremes Marc F.P. Berkens Professor of Hydrology Faculty of Geoscences Hydrologcal statstcs Mostly concernes wth the statstcal analyss of hydrologcal

More information

Professor Chris Murray. Midterm Exam

Professor Chris Murray. Midterm Exam Econ 7 Econometrcs Sprng 4 Professor Chrs Murray McElhnney D cjmurray@uh.edu Mdterm Exam Wrte your answers on one sde of the blank whte paper that I have gven you.. Do not wrte your answers on ths exam.

More information

Estimation of accelerated failure time models with random effects

Estimation of accelerated failure time models with random effects Retrospectve Theses and Dssertatons Iowa State Unversty Capstones, Theses and Dssertatons 6 Estmaton of accelerated falure tme models wth random effects Yaqn Wang Iowa State Unversty Follow ths and addtonal

More information

Advanced Statistical Methods: Beyond Linear Regression

Advanced Statistical Methods: Beyond Linear Regression Advanced Statstcal Methods: Beyond Lnear Regresson John R. Stevens Utah State Unversty Notes 2. Statstcal Methods I Mathematcs Educators Workshop 28 March 2009 1 http://www.stat.usu.edu/~rstevens/pcm 2

More information

Module Contact: Dr Susan Long, ECO Copyright of the University of East Anglia Version 1

Module Contact: Dr Susan Long, ECO Copyright of the University of East Anglia Version 1 UNIVERSITY OF EAST ANGLIA School of Economcs Man Seres PG Examnaton 016-17 ECONOMETRIC METHODS ECO-7000A Tme allowed: hours Answer ALL FOUR Questons. Queston 1 carres a weght of 5%; Queston carres 0%;

More information

Advances in Longitudinal Methods in the Social and Behavioral Sciences. Finite Mixtures of Nonlinear Mixed-Effects Models.

Advances in Longitudinal Methods in the Social and Behavioral Sciences. Finite Mixtures of Nonlinear Mixed-Effects Models. Advances n Longtudnal Methods n the Socal and Behavoral Scences Fnte Mxtures of Nonlnear Mxed-Effects Models Jeff Harrng Department of Measurement, Statstcs and Evaluaton The Center for Integrated Latent

More information

Introduction to Regression

Introduction to Regression Introducton to Regresson Dr Tom Ilvento Department of Food and Resource Economcs Overvew The last part of the course wll focus on Regresson Analyss Ths s one of the more powerful statstcal technques Provdes

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 Prentce-Hall, Inc. Chap. 13-1 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear

More information

Classification as a Regression Problem

Classification as a Regression Problem Target varable y C C, C,, ; Classfcaton as a Regresson Problem { }, 3 L C K To treat classfcaton as a regresson problem we should transform the target y nto numercal values; The choce of numercal class

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information