An R implementation of bootstrap procedures for mixed models

Size: px
Start display at page:

Download "An R implementation of bootstrap procedures for mixed models"

Transcription

1 The R User Conference 2009 July 8-10, Agrocampus-Ouest, Rennes, France An R mplementaton of bootstrap procedures for mxed models José A. Sánchez-Espgares Unverstat Poltècnca de Catalunya Jord Ocaña Unverstat de Barcelona

2 Outlne Introducton and motvaton Bootstrap methods for Mxed Models Implementaton detals Some examples Conclusons

3 (Generalzed) Lnear Mxed Models Repeated measures or Longtudnal data: Response vector Y for th subject Y = ( Y 1,..., Yn Observatons on the same unt can be correlated )' Condtonal / Herarchcal approach: Between-subject varablty explaned by Random-effects b usually wth Normal dstrbuton ~ N(0, D) E( Y g( µ ) b ) = µ = θ = X b β + Z b

4 Estmaton n (G)LMM Random-effects are not drectly observed Estmaton of parameters based on Margnal Lkelhood, after ntegraton of Random-effects MLE: L( β, D, φ Y ) = n n = 1 j= 1 f ( Y n = 1 β, b, φ) f ( Y β, D, φ) = f ( b D) db Analytc soluton n the Normal case (Lnear Mxed Models) Approxmatons are needed n the general case. lme4 package: common framework for L-GL-NL/MM Fast and effcent estmaton for ML and REML crtera va Laplace Approxmaton/Adaptatve Gaussan Quadrature for GLMM.

5 Inference (G)LMM Wald-type and F-tests (summary) Asymptotc standard errors for the fxed effects parameters Lkelhood rato test (anova) Comparson of lkelhood of two models Bayesan Inference (mcmcsamp) MCMC samplng procedure for posterors on parameters Some drawbacks: Asymptotc results Degrees of freedom of the reference dstrbuton n F-test Lkelhood Rato test can be conservatve under some condtons Tests on Varance components close to the boundary of the parameter space.

6 Motvaton Inference based on bootstrap for LMM and GLMM Inference on functons of parameters.e. confdence ntervals and hypothess test for rato of varance components Robust approaches.e. n presence of nfluental data and outlers Effect of msspecfcaton.e. non-gaussan random effects and/or resduals

7 Extenson of the package lmer merboot provdes methods for Monte Carlo and bootstrap technques n generalzed and lnear mxedeffects models The mplementaton s object-orented It takes proft of specfctes of the appled algorthms to enhance effcency, usng less tme and memory. It has a flexble nterface to desgn complex experments.

8 Bootstrap n lnear models For (Generalzed) lnear models (wthout random effects) there s only one random component generaton of the response varable accordng to the condtonal mean. µ = g Resdual resamplng: µ = Xβ Y ~ N( µ, σ) 1 ( Xβ ) Y ~ F Estmate parameters for the systematc part of the model Resample random part of the model (parametrc or emprcal) Some varants to deal wth heterocedastcty (Wld bootstrap) µ

9 Bootstrap n Mxed Models In Mxed models, the systematc part has a random component generaton of the response varable n two steps: Bootstrap of the condtonal mean (functon of the lnear predctor) Bootstrap of the response varable µ = Xβ + Zb b~ N(0, θ) Y ~ N( µ, σ) µ = g 1 ( Xβ + Zb) b~ N(0, θ) Y ~ F Two objects n the merboot mplementaton: BGP: Set-up for the Bootstrap Generaton Process merboot: Coeffcents for the resamples and methods for analyss µ

10 Implementaton detals Step I Step II model specfcatons BGP generaton of samples model fttng object merboot number of samples

11 Bootstrap Generaton Process Fxed parameters β Lnear predctor level Desgn matrces X Z Random effects generator (b ) Parametrc: generatng b from a multvarate gaussan dstrbuton Semparametrc/Emprcal (from a ftted object): samplng b from wth replacement. User-defned: any other dstrbuton/crtera to generate b bˆ η = X β + Z b

12 Bootstrap Generaton Process Response level Famly (dstrbuton F + lnk functon g) Response generator (Y ) Parametrc: µ = g -1 (η ιj ), sample Y ~F(.; µ ) Semparametrc/Emprcal (from a ftted object): Resdual-based: bulds Y lke n lnear heterocedastc models, dependng on type of resduals Y = µ + ε Dstrbuton-based: resamples estmated quantles

13 Resduals n GLM Raw resduals: Y µˆ Pearson resduals: Standardzed Pearson resduals: e r = = Y a ˆ µ V ( ˆ µ ) e 1 h( ˆ µ ) Standardzed resduals on the lnear predctor scale: l = a g( Y g' ( ˆ µ ) ) 2 g( ˆ µ ) V ( ˆ µ )(1 h ) Devance resduals: r = sgn( Y ˆ µ ) d

14 Emprcal resdual-based Standardzed Pearson resduals: Resample e from centered e ˆ Calculate Y φ = µ + V ( µ ) e a Standardzed Pearson resduals on the lnear predctor scale: Resample l from l ˆ Calculate φ Y 1 + g η g' ( η ) V ( µ a l = )

15 Emprcal dstrbuton-based Randomzed Quantle resduals (Dunn & Smyth,1996): nvertng the estmated dstrbuton functon for each observaton 1 to obtan exactly unform (q ) or standard normal resduals ( Φ ( for dagnostcs. Randomzaton needed for dscrete dstrbutons. Resamplng scheme wth Quantles Resduals for (G)LMM: q )) Calculate q ˆ = F( ; ˆ µ ) Y Sample q wth replacement from qˆ Generate 1 Y = F ( ; ˆ µ ) q

16 Response generaton For Normal famly and dentty lnk functon, all three strateges (pearson, lnear predctor and quantle resduals) are the same. In all the schemes, response s rounded to the nearest vald value, accordng to the famly consdered. For dscrete varables, randomzaton of the quantles allows for contnuous unform resduals. Transformaton of the random effects n order to have the frst and second moments equal to the parameters (adjusted bootstrap). For all the schemes, f resample of resduals/quantles s restrcted to the subject obtaned n the lnear predctor level, a nested bootstrap s performed.

17 Bootstrap Generaton Process merbgp -model:mer merbgpparam -dstranef:functon -dstresd:functon merbgpsempar -ranef:data.frame -resd:lst -adjusted:logcal merbgpsemparnested merbgpsemparwld -dstwldranef:functon -dstwldresd:functon merbgpsemparnestedwld

18 generatelnpred BGPparam: BGPsempar: BGPsemparWld: BGP Methods generate (lmer) generatelnpred +Resdual-based BGPparam: ε ~ Fθ Y = µ + ε BGPsempar: ε ˆ ~ Fn (., e ) Y = µ + ε BGPsemparWld: ε ˆ ~ Fn (., e ) w ~ W Y = µ + w ε BGPsemparNested ε ˆ ~ Fn (., e j ) Y = µ + ε generate (glmer) generatelnpred +Dstrbuton-based BGPparam: BGPsempar: BGPsemparWld: BGPSemparNested b F η = X β + Z ~ ˆ θ b ˆ η = β + b ˆ + ~ Fn (., b ) X Zb ~ Fn (., b ) w ~ W η = X β Zw b q ~ F µ Y 1 = F µ ( q ) b

19 Object merboot Step II: Extracton of coeffcents pseudo-data set coeffcents model structure model fttng reft other statstcs

20 Bootstrap method for (g)lmer object dstref dstres adj nest wld B model2 Model specfcaton to generate pseudo-data set (glme object or a lst). It contans the formula descrbng the structure, the parameters (β,d) and the desgn matrx (X,Z) Parameters to ndcate how to generate varance components (random-effects) and response. Strngs (for pre-mplemented optons) or functons (userdefned methods) Number of samples. Alternatve model specfcaton used to ft the pseudo-data. Default s same as object

21 Example: sleepstudy model=lmer(reacton~days+(1 Subject) (0+Days Subject),sleepstudy) Average reacton tme (ms) Lnear mxed model ft by REML Formula: form Data: sleepstudy AIC BIC loglk devance REMLdev Random effects: Groups Name Varance Std.Dev. Subject (Intercept) Subject Days Resdual Number of obs: 180, groups: Subject, 18 Fxed effects: Estmate Std. Error t value (Intercept) Days Days of sleep deprvaton Correlaton of Fxed Effects: (Intr) Days

22 Methods merboot: prnt > sleep.boot=bootstrap(model,b=1000) > prnt(sleep.boot) lmer(formula = lmer(reacton~days+(1 Subject)+(0+Days Subject), data = sleepstudy) Resamplng Method: BGPparam Bootstrap Statstcs : orgnal bas mean std. error (Intercept) Days Subject.(Intercept) Subject.Days sgmareml

23 Methods merboot: ntervals > ntervals(sleep.boot) $norm lower upper (Intercept) Days Subject.(Intercept) Subject.Days sgmareml $basc lower upper (Intercept) Days Subject.(Intercept) Subject.Days sgmareml $perc lower upper (Intercept) Days Subject.(Intercept) Subject.Days sgmareml > HPDnterval(mcmcsamp(model,n=1000)) $fxef lower upper (Intercept) Days attr(,"probablty") [1] 0.95 $ST lower upper [1,] [2,] attr(,"probablty") [1] 0.95 $sgma lower upper [1,] attr(,"probablty") [1] 0.95

24 (Intercept) Methods merboot: plot Subject.(Intercept) Quantles of Standard normal Densty (Intercept) Densty Days sgmareml Quantles of Standard normal Densty Days Densty Subject.Days Densty Subject.(Intercept) Densty sgmareml/subject.days Quantles of Standard normal Subject.Days Quantles of Standard normal Quantles of Standard normal sgmareml β 0 β 1 σ 0 σ σ 1 σ /σ 1 Quantles of Standard normal sgmareml/subject.days

25 Methods merboot: LR & pars Devance ML Day s Subject.(Intercept) Subject.Day s sgmareml Densty 230 (Intercept)

26 Conclusons (G)LMM provde a framework to model longtudnal data for a wde range of stuatons (contnuous, count and bnary among others) but approxmate estmaton methods mply weaker nference. Monte-Carlo smulaton and bootstrap can enhance nference provdng emprcal p-values and bootstrap estmators. The BGP/merBoot objects developed allow mplementaton of dfferent bootstrap optons and evaluaton of the technques va smulaton.

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

4.3 Poisson Regression

4.3 Poisson Regression of teratvely reweghted least squares regressons (the IRLS algorthm). We do wthout gvng further detals, but nstead focus on the practcal applcaton. > glm(survval~log(weght)+age, famly="bnomal", data=baby)

More information

Diagnostics in Poisson Regression. Models - Residual Analysis

Diagnostics in Poisson Regression. Models - Residual Analysis Dagnostcs n Posson Regresson Models - Resdual Analyss 1 Outlne Dagnostcs n Posson Regresson Models - Resdual Analyss Example 3: Recall of Stressful Events contnued 2 Resdual Analyss Resduals represent

More information

On Outlier Robust Small Area Mean Estimate Based on Prediction of Empirical Distribution Function

On Outlier Robust Small Area Mean Estimate Based on Prediction of Empirical Distribution Function On Outler Robust Small Area Mean Estmate Based on Predcton of Emprcal Dstrbuton Functon Payam Mokhtaran Natonal Insttute of Appled Statstcs Research Australa Unversty of Wollongong Small Area Estmaton

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Introduction to Generalized Linear Models

Introduction to Generalized Linear Models INTRODUCTION TO STATISTICAL MODELLING TRINITY 00 Introducton to Generalzed Lnear Models I. Motvaton In ths lecture we extend the deas of lnear regresson to the more general dea of a generalzed lnear model

More information

How its computed. y outcome data λ parameters hyperparameters. where P denotes the Laplace approximation. k i k k. Andrew B Lawson 2013

How its computed. y outcome data λ parameters hyperparameters. where P denotes the Laplace approximation. k i k k. Andrew B Lawson 2013 Andrew Lawson MUSC INLA INLA s a relatvely new tool that can be used to approxmate posteror dstrbutons n Bayesan models INLA stands for ntegrated Nested Laplace Approxmaton The approxmaton has been known

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

The Power of Proc Nlmixed

The Power of Proc Nlmixed The Power of Proc Nlmxed Introducton Proc Nlmxed fts nonlnear mxed-effects models (NLMMs) models n whch the fxed and random effects have a nonlnear relatonshp NLMMs are wdespread n pharmacoknetcs? geness

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

A New Method for Estimating Overdispersion. David Fletcher and Peter Green Department of Mathematics and Statistics

A New Method for Estimating Overdispersion. David Fletcher and Peter Green Department of Mathematics and Statistics A New Method for Estmatng Overdsperson Davd Fletcher and Peter Green Department of Mathematcs and Statstcs Byron Morgan Insttute of Mathematcs, Statstcs and Actuaral Scence Unversty of Kent, England Overvew

More information

Lab 4: Two-level Random Intercept Model

Lab 4: Two-level Random Intercept Model BIO 656 Lab4 009 Lab 4: Two-level Random Intercept Model Data: Peak expratory flow rate (pefr) measured twce, usng two dfferent nstruments, for 17 subjects. (from Chapter 1 of Multlevel and Longtudnal

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

Semiparametric geographically weighted generalised linear modelling in GWR 4.0

Semiparametric geographically weighted generalised linear modelling in GWR 4.0 Semparametrc geographcally weghted generalsed lnear modellng n GWR 4.0 T. Nakaya 1, A. S. Fotherngham 2, M. Charlton 2, C. Brunsdon 3 1 Department of Geography, Rtsumekan Unversty, 56-1 Tojn-kta-mach,

More information

BIO Lab 2: TWO-LEVEL NORMAL MODELS with school children popularity data

BIO Lab 2: TWO-LEVEL NORMAL MODELS with school children popularity data Lab : TWO-LEVEL NORMAL MODELS wth school chldren popularty data Purpose: Introduce basc two-level models for normally dstrbuted responses usng STATA. In partcular, we dscuss Random ntercept models wthout

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VIII LECTURE - 34 ANALYSIS OF VARIANCE IN RANDOM-EFFECTS MODEL AND MIXED-EFFECTS EFFECTS MODEL Dr Shalabh Department of Mathematcs and Statstcs Indan

More information

Issues To Consider when Estimating Health Care Costs with Generalized Linear Models (GLMs): To Gamma/Log Or Not To Gamma/Log? That Is The New Question

Issues To Consider when Estimating Health Care Costs with Generalized Linear Models (GLMs): To Gamma/Log Or Not To Gamma/Log? That Is The New Question Issues To Consder when Estmatng Health Care Costs wth Generalzed Lnear Models (GLMs): To Gamma/Log Or Not To Gamma/Log? That Is The New Queston ISPOR 20th Annual Internatonal Meetng May 19, 2015 Jalpa

More information

Population Design in Nonlinear Mixed Effects Multiple Response Models: extension of PFIM and evaluation by simulation with NONMEM and MONOLIX

Population Design in Nonlinear Mixed Effects Multiple Response Models: extension of PFIM and evaluation by simulation with NONMEM and MONOLIX Populaton Desgn n Nonlnear Mxed Effects Multple Response Models: extenson of PFIM and evaluaton by smulaton wth NONMEM and MONOLIX May 4th 007 Carolne Bazzol, Sylve Retout, France Mentré Inserm U738 Unversty

More information

THE APPLICATION OF LINEAR MIXED-EFFECTS MODEL TO THE EFFECT OF MICROCURRENT ON DECUBITUS WOUNDS. A STUDY IN LIMBURG PROVINCE OF BELGIUM

THE APPLICATION OF LINEAR MIXED-EFFECTS MODEL TO THE EFFECT OF MICROCURRENT ON DECUBITUS WOUNDS. A STUDY IN LIMBURG PROVINCE OF BELGIUM The 3 rd Internatonal Conference on Mathematcs and Statstcs (ICoMS-3) Insttut Pertanan Bogor, Indonesa, 5-6 August 008 THE APPLICATIO OF LIEAR MIXED-EFFECTS MODEL TO THE EFFECT OF MICROCURRET O DECUBITUS

More information

Chapter 5 Multilevel Models

Chapter 5 Multilevel Models Chapter 5 Multlevel Models 5.1 Cross-sectonal multlevel models 5.1.1 Two-level models 5.1.2 Multple level models 5.1.3 Multple level modelng n other felds 5.2 Longtudnal multlevel models 5.2.1 Two-level

More information

Introduction to Regression

Introduction to Regression Introducton to Regresson Dr Tom Ilvento Department of Food and Resource Economcs Overvew The last part of the course wll focus on Regresson Analyss Ths s one of the more powerful statstcal technques Provdes

More information

Factor models with many assets: strong factors, weak factors, and the two-pass procedure

Factor models with many assets: strong factors, weak factors, and the two-pass procedure Factor models wth many assets: strong factors, weak factors, and the two-pass procedure Stanslav Anatolyev 1 Anna Mkusheva 2 1 CERGE-EI and NES 2 MIT December 2017 Stanslav Anatolyev and Anna Mkusheva

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

Two-factor model. Statistical Models. Least Squares estimation in LM two-factor model. Rats

Two-factor model. Statistical Models. Least Squares estimation in LM two-factor model. Rats tatstcal Models Lecture nalyss of Varance wo-factor model Overall mean Man effect of factor at level Man effect of factor at level Y µ + α + β + γ + ε Eε f (, ( l, Cov( ε, ε ) lmr f (, nteracton effect

More information

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition) Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of non-negatve nteger values Examples: number of drver route changes per week, the number of trp departure changes

More information

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

Advances in Longitudinal Methods in the Social and Behavioral Sciences. Finite Mixtures of Nonlinear Mixed-Effects Models.

Advances in Longitudinal Methods in the Social and Behavioral Sciences. Finite Mixtures of Nonlinear Mixed-Effects Models. Advances n Longtudnal Methods n the Socal and Behavoral Scences Fnte Mxtures of Nonlnear Mxed-Effects Models Jeff Harrng Department of Measurement, Statstcs and Evaluaton The Center for Integrated Latent

More information

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable

More information

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements CS 750 Machne Learnng Lecture 5 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square CS 750 Machne Learnng Announcements Homework Due on Wednesday before the class Reports: hand n before

More information

Number of cases Number of factors Number of covariates Number of levels of factor i. Value of the dependent variable for case k

Number of cases Number of factors Number of covariates Number of levels of factor i. Value of the dependent variable for case k ANOVA Model and Matrx Computatons Notaton The followng notaton s used throughout ths chapter unless otherwse stated: N F CN Y Z j w W Number of cases Number of factors Number of covarates Number of levels

More information

STAT 405 BIOSTATISTICS (Fall 2016) Handout 15 Introduction to Logistic Regression

STAT 405 BIOSTATISTICS (Fall 2016) Handout 15 Introduction to Logistic Regression STAT 45 BIOSTATISTICS (Fall 26) Handout 5 Introducton to Logstc Regresson Ths handout covers materal found n Secton 3.7 of your text. You may also want to revew regresson technques n Chapter. In ths handout,

More information

Bias-correction under a semi-parametric model for small area estimation

Bias-correction under a semi-parametric model for small area estimation Bas-correcton under a sem-parametrc model for small area estmaton Laura Dumtrescu, Vctora Unversty of Wellngton jont work wth J. N. K. Rao, Carleton Unversty ICORS 2017 Workshop on Robust Inference for

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

Basic Statistical Analysis and Yield Calculations

Basic Statistical Analysis and Yield Calculations October 17, 007 Basc Statstcal Analyss and Yeld Calculatons Dr. José Ernesto Rayas Sánchez 1 Outlne Sources of desgn-performance uncertanty Desgn and development processes Desgn for manufacturablty A general

More information

Small Area Interval Estimation

Small Area Interval Estimation .. Small Area Interval Estmaton Partha Lahr Jont Program n Survey Methodology Unversty of Maryland, College Park (Based on jont work wth Masayo Yoshmor, Former JPSM Vstng PhD Student and Research Fellow

More information

A Particle Filter Algorithm based on Mixing of Prior probability density and UKF as Generate Importance Function

A Particle Filter Algorithm based on Mixing of Prior probability density and UKF as Generate Importance Function Advanced Scence and Technology Letters, pp.83-87 http://dx.do.org/10.14257/astl.2014.53.20 A Partcle Flter Algorthm based on Mxng of Pror probablty densty and UKF as Generate Importance Functon Lu Lu 1,1,

More information

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6 Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.

More information

( ) ( ) ( ) ( ) STOCHASTIC SIMULATION FOR BLOCKED DATA. Monte Carlo simulation Rejection sampling Importance sampling Markov chain Monte Carlo

( ) ( ) ( ) ( ) STOCHASTIC SIMULATION FOR BLOCKED DATA. Monte Carlo simulation Rejection sampling Importance sampling Markov chain Monte Carlo SOCHASIC SIMULAIO FOR BLOCKED DAA Stochastc System Analyss and Bayesan Model Updatng Monte Carlo smulaton Rejecton samplng Importance samplng Markov chan Monte Carlo Monte Carlo smulaton Introducton: If

More information

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1 On an Extenson of Stochastc Approxmaton EM Algorthm for Incomplete Data Problems Vahd Tadayon Abstract: The Stochastc Approxmaton EM (SAEM algorthm, a varant stochastc approxmaton of EM, s a versatle tool

More information

Applications of GEE Methodology Using the SAS System

Applications of GEE Methodology Using the SAS System Applcatons of GEE Methodology Usng the SAS System Gordon Johnston Maura Stokes SAS Insttute Inc, Cary, NC Abstract The analyss of correlated data arsng from repeated measurements when the measurements

More information

The Ordinary Least Squares (OLS) Estimator

The Ordinary Least Squares (OLS) Estimator The Ordnary Least Squares (OLS) Estmator 1 Regresson Analyss Regresson Analyss: a statstcal technque for nvestgatng and modelng the relatonshp between varables. Applcatons: Engneerng, the physcal and chemcal

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Data Abstraction Form for population PK, PD publications

Data Abstraction Form for population PK, PD publications Data Abstracton Form for populaton PK/PD publcatons Brendel K. 1*, Dartos C. 2*, Comets E. 1, Lemenuel-Dot A. 3, Laffont C.M. 3, Lavelle C. 4, Grard P. 2, Mentré F. 1 1 INSERM U738, Pars, France 2 EA3738,

More information

Regression Analysis. Regression Analysis

Regression Analysis. Regression Analysis Regresson Analyss Smple Regresson Multvarate Regresson Stepwse Regresson Replcaton and Predcton Error 1 Regresson Analyss In general, we "ft" a model by mnmzng a metrc that represents the error. n mn (y

More information

Lecture 6: Introduction to Linear Regression

Lecture 6: Introduction to Linear Regression Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6

More information

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y)

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y) Secton 1.5 Correlaton In the prevous sectons, we looked at regresson and the value r was a measurement of how much of the varaton n y can be attrbuted to the lnear relatonshp between y and x. In ths secton,

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

STAT 3008 Applied Regression Analysis

STAT 3008 Applied Regression Analysis STAT 3008 Appled Regresson Analyss Tutoral : Smple Lnear Regresson LAI Chun He Department of Statstcs, The Chnese Unversty of Hong Kong 1 Model Assumpton To quantfy the relatonshp between two factors,

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications Durban Watson for Testng the Lack-of-Ft of Polynomal Regresson Models wthout Replcatons Ruba A. Alyaf, Maha A. Omar, Abdullah A. Al-Shha ralyaf@ksu.edu.sa, maomar@ksu.edu.sa, aalshha@ksu.edu.sa Department

More information

A Robust Method for Calculating the Correlation Coefficient

A Robust Method for Calculating the Correlation Coefficient A Robust Method for Calculatng the Correlaton Coeffcent E.B. Nven and C. V. Deutsch Relatonshps between prmary and secondary data are frequently quantfed usng the correlaton coeffcent; however, the tradtonal

More information

Y = β 0 + β 1 X 1 + β 2 X β k X k + ε

Y = β 0 + β 1 X 1 + β 2 X β k X k + ε Chapter 3 Secton 3.1 Model Assumptons: Multple Regresson Model Predcton Equaton Std. Devaton of Error Correlaton Matrx Smple Lnear Regresson: 1.) Lnearty.) Constant Varance 3.) Independent Errors 4.) Normalty

More information

Unit 10: Simple Linear Regression and Correlation

Unit 10: Simple Linear Regression and Correlation Unt 10: Smple Lnear Regresson and Correlaton Statstcs 571: Statstcal Methods Ramón V. León 6/28/2004 Unt 10 - Stat 571 - Ramón V. León 1 Introductory Remarks Regresson analyss s a method for studyng the

More information

Topic 23 - Randomized Complete Block Designs (RCBD)

Topic 23 - Randomized Complete Block Designs (RCBD) Topc 3 ANOVA (III) 3-1 Topc 3 - Randomzed Complete Block Desgns (RCBD) Defn: A Randomzed Complete Block Desgn s a varant of the completely randomzed desgn (CRD) that we recently learned. In ths desgn,

More information

EM and Structure Learning

EM and Structure Learning EM and Structure Learnng Le Song Machne Learnng II: Advanced Topcs CSE 8803ML, Sprng 2012 Partally observed graphcal models Mxture Models N(μ 1, Σ 1 ) Z X N N(μ 2, Σ 2 ) 2 Gaussan mxture model Consder

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

STAT 511 FINAL EXAM NAME Spring 2001

STAT 511 FINAL EXAM NAME Spring 2001 STAT 5 FINAL EXAM NAME Sprng Instructons: Ths s a closed book exam. No notes or books are allowed. ou may use a calculator but you are not allowed to store notes or formulas n the calculator. Please wrte

More information

Quantifying Uncertainty

Quantifying Uncertainty Partcle Flters Quantfyng Uncertanty Sa Ravela M. I. T Last Updated: Sprng 2013 1 Quantfyng Uncertanty Partcle Flters Partcle Flters Appled to Sequental flterng problems Can also be appled to smoothng problems

More information

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models Computaton of Hgher Order Moments from Two Multnomal Overdsperson Lkelhood Models BY J. T. NEWCOMER, N. K. NEERCHAL Department of Mathematcs and Statstcs, Unversty of Maryland, Baltmore County, Baltmore,

More information

Parametric fractional imputation for missing data analysis

Parametric fractional imputation for missing data analysis Secton on Survey Research Methods JSM 2008 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Wayne Fuller Abstract Under a parametrc model for mssng data, the EM algorthm s a popular tool

More information

Selecting the Best Linear Mixed Model Using Predictive Approaches

Selecting the Best Linear Mixed Model Using Predictive Approaches Brgham Young Unversty BYU ScholarsArchve All Theses and Dssertatons 007-0-3 Selectng the Best Lnear Mxed Model Usng Predctve Approaches Jun Wang Brgham Young Unversty - Provo Follow ths and addtonal works

More information

Lecture 4 Hypothesis Testing

Lecture 4 Hypothesis Testing Lecture 4 Hypothess Testng We may wsh to test pror hypotheses about the coeffcents we estmate. We can use the estmates to test whether the data rejects our hypothess. An example mght be that we wsh to

More information

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis Statstcal analyss usng matlab HY 439 Presented by: George Fortetsanaks Roadmap Probablty dstrbutons Statstcal estmaton Fttng data to probablty dstrbutons Contnuous dstrbutons Contnuous random varable X

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

Generalized Linear Mixed Models. Bruce Craig - Purdue University

Generalized Linear Mixed Models. Bruce Craig - Purdue University Generalzed Lnear Mxed Models Bruce Crag - Purdue Unversty Lnear Models Explanatory Explanatory / Error Response varable Fxed - Categorcal Fxed - Contnuous Random effects Correlated errors Gaussan (normal)

More information

Chapter 15 Student Lecture Notes 15-1

Chapter 15 Student Lecture Notes 15-1 Chapter 15 Student Lecture Notes 15-1 Basc Busness Statstcs (9 th Edton) Chapter 15 Multple Regresson Model Buldng 004 Prentce-Hall, Inc. Chap 15-1 Chapter Topcs The Quadratc Regresson Model Usng Transformatons

More information

Which estimator of the dispersion parameter for the Gamma family generalized linear models is to be chosen?

Which estimator of the dispersion parameter for the Gamma family generalized linear models is to be chosen? STATISTICS Dalarna Unversty D-level Master s Thess 007 Whch estmator of the dsperson parameter for the Gamma famly generalzed lnear models s to be chosen? Submtted by: Juan Du Regstraton Number: 8096-T084

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

[ ] λ λ λ. Multicollinearity. multicollinearity Ragnar Frisch (1934) perfect exact. collinearity. multicollinearity. exact

[ ] λ λ λ. Multicollinearity. multicollinearity Ragnar Frisch (1934) perfect exact. collinearity. multicollinearity. exact Multcollnearty multcollnearty Ragnar Frsch (934 perfect exact collnearty multcollnearty K exact λ λ λ K K x+ x+ + x 0 0.. λ, λ, λk 0 0.. x perfect ntercorrelated λ λ λ x+ x+ + KxK + v 0 0.. v 3 y β + β

More information

Chap 10: Diagnostics, p384

Chap 10: Diagnostics, p384 Chap 10: Dagnostcs, p384 Multcollnearty 10.5 p406 Defnton Multcollnearty exsts when two or more ndependent varables used n regresson are moderately or hghly correlated. - when multcollnearty exsts, regresson

More information

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors Multple Lnear and Polynomal Regresson wth Statstcal Analyss Gven a set of data of measured (or observed) values of a dependent varable: y versus n ndependent varables x 1, x, x n, multple lnear regresson

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

Now we relax this assumption and allow that the error variance depends on the independent variables, i.e., heteroskedasticity

Now we relax this assumption and allow that the error variance depends on the independent variables, i.e., heteroskedasticity ECON 48 / WH Hong Heteroskedastcty. Consequences of Heteroskedastcty for OLS Assumpton MLR. 5: Homoskedastcty var ( u x ) = σ Now we relax ths assumpton and allow that the error varance depends on the

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

since [1-( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation

since [1-( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation Econ 388 R. Butler 204 revsons Lecture 4 Dummy Dependent Varables I. Lnear Probablty Model: the Regresson model wth a dummy varables as the dependent varable assumpton, mplcaton regular multple regresson

More information

A Comparative Study for Estimation Parameters in Panel Data Model

A Comparative Study for Estimation Parameters in Panel Data Model A Comparatve Study for Estmaton Parameters n Panel Data Model Ahmed H. Youssef and Mohamed R. Abonazel hs paper examnes the panel data models when the regresson coeffcents are fxed random and mxed and

More information

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS Darusz Bskup 1. Introducton The paper presents a nonparaetrc procedure for estaton of an unknown functon f n the regresson odel y = f x + ε = N. (1) (

More information

QUASI-LIKELIHOOD APPROACH TO RATER AGREEMENT PLUS LINEAR BY LINEAR ASSOCIATION MODEL FOR ORDINAL CONTINGENCY TABLES

QUASI-LIKELIHOOD APPROACH TO RATER AGREEMENT PLUS LINEAR BY LINEAR ASSOCIATION MODEL FOR ORDINAL CONTINGENCY TABLES Journal of Statstcs: Advances n Theory and Applcatons Volume 6, Number, 26, Pages -5 Avalable at http://scentfcadvances.co.n DOI: http://dx.do.org/.8642/jsata_72683 QUASI-LIKELIHOOD APPROACH TO RATER AGREEMENT

More information

Motion Perception Under Uncertainty. Hongjing Lu Department of Psychology University of Hong Kong

Motion Perception Under Uncertainty. Hongjing Lu Department of Psychology University of Hong Kong Moton Percepton Under Uncertanty Hongjng Lu Department of Psychology Unversty of Hong Kong Outlne Uncertanty n moton stmulus Correspondence problem Qualtatve fttng usng deal observer models Based on sgnal

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis SK48/98 Survval and event hstory analyss Lecture 7: Regresson modellng Relatve rsk regresson Regresson models Assume that we have a sample of n ndvduals, and let N (t) count the observed occurrences of

More information

ANOVA. The Observations y ij

ANOVA. The Observations y ij ANOVA Stands for ANalyss Of VArance But t s a test of dfferences n means The dea: The Observatons y j Treatment group = 1 = 2 = k y 11 y 21 y k,1 y 12 y 22 y k,2 y 1, n1 y 2, n2 y k, nk means: m 1 m 2

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 Prentce-Hall, Inc. Chap. 13-1 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear

More information

Assignment 5. Simulation for Logistics. Monti, N.E. Yunita, T.

Assignment 5. Simulation for Logistics. Monti, N.E. Yunita, T. Assgnment 5 Smulaton for Logstcs Mont, N.E. Yunta, T. November 26, 2007 1. Smulaton Desgn The frst objectve of ths assgnment s to derve a 90% two-sded Confdence Interval (CI) for the average watng tme

More information

Figure 12: QQ plots of LS estimates: b β 0 (left), b β 1 (right) Jon Wakefield, Stat/Biostat Jon Wakefield, Stat/Biostat 571

Figure 12: QQ plots of LS estimates: b β 0 (left), b β 1 (right) Jon Wakefield, Stat/Biostat Jon Wakefield, Stat/Biostat 571 Example: Dental Growth Curves Intal Plots We now present some ntal plots for the dental data should not be vewed as comprehensve. Intal plots: QQ plots of LS estmates, both unvarate (Fgure ) and bvarate

More information

Statistics for Business and Economics

Statistics for Business and Economics Statstcs for Busness and Economcs Chapter 11 Smple Regresson Copyrght 010 Pearson Educaton, Inc. Publshng as Prentce Hall Ch. 11-1 11.1 Overvew of Lnear Models n An equaton can be ft to show the best lnear

More information

PASS Sample Size Software

PASS Sample Size Software Chapter 57 Introducton Ths procedure power analyzes random effects desgns n whch the outcome (response) s contnuous. Thus, as wth the analyss of varance (ANOVA), the procedure s used to test hypotheses

More information

ANOMALIES OF THE MAGNITUDE OF THE BIAS OF THE MAXIMUM LIKELIHOOD ESTIMATOR OF THE REGRESSION SLOPE

ANOMALIES OF THE MAGNITUDE OF THE BIAS OF THE MAXIMUM LIKELIHOOD ESTIMATOR OF THE REGRESSION SLOPE P a g e ANOMALIES OF THE MAGNITUDE OF THE BIAS OF THE MAXIMUM LIKELIHOOD ESTIMATOR OF THE REGRESSION SLOPE Darmud O Drscoll ¹, Donald E. Ramrez ² ¹ Head of Department of Mathematcs and Computer Studes

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experments- MODULE LECTURE - 6 EXPERMENTAL DESGN MODELS Dr. Shalabh Department of Mathematcs and Statstcs ndan nsttute of Technology Kanpur Two-way classfcaton wth nteractons

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

Simulation and Random Number Generation

Simulation and Random Number Generation Smulaton and Random Number Generaton Summary Dscrete Tme vs Dscrete Event Smulaton Random number generaton Generatng a random sequence Generatng random varates from a Unform dstrbuton Testng the qualty

More information

Estimation of the Probability of Success Based on Communication History

Estimation of the Probability of Success Based on Communication History Workng paper, presented at 7-th Valenca Meetng n Bayesan Statstcs, June 22 Estmaton of the Probablty of Success Based on Communcaton Hstory Arkady E Shemyakn Unversty of St Thomas, Sant Paul, Mnnesota,

More information

BIOMETRICS - Vol. I - Repeated Measures and Multilevel Modeling - Geert Verbeke, Geert Molenberghs REPEATED MEASURES AND MULTILEVEL MODELING

BIOMETRICS - Vol. I - Repeated Measures and Multilevel Modeling - Geert Verbeke, Geert Molenberghs REPEATED MEASURES AND MULTILEVEL MODELING BIOMETRICS - Vol. I - Repeated Measures and Multlevel Modelng - Geert Verbeke, Geert Molenberghs REPEATED MEASURES AND MULTILEVEL MODELING Geert Verbeke Katholeke Unverstet Leuven, Leuven, Belgum Geert

More information

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction ECONOMICS 35* -- NOTE 7 ECON 35* -- NOTE 7 Interval Estmaton n the Classcal Normal Lnear Regresson Model Ths note outlnes the basc elements of nterval estmaton n the Classcal Normal Lnear Regresson Model

More information

RELIABILITY ASSESSMENT

RELIABILITY ASSESSMENT CHAPTER Rsk Analyss n Engneerng and Economcs RELIABILITY ASSESSMENT A. J. Clark School of Engneerng Department of Cvl and Envronmental Engneerng 4a CHAPMAN HALL/CRC Rsk Analyss for Engneerng Department

More information

Statistical inference for generalized Pareto distribution based on progressive Type-II censored data with random removals

Statistical inference for generalized Pareto distribution based on progressive Type-II censored data with random removals Internatonal Journal of Scentfc World, 2 1) 2014) 1-9 c Scence Publshng Corporaton www.scencepubco.com/ndex.php/ijsw do: 10.14419/jsw.v21.1780 Research Paper Statstcal nference for generalzed Pareto dstrbuton

More information

Introduction to Analysis of Variance (ANOVA) Part 1

Introduction to Analysis of Variance (ANOVA) Part 1 Introducton to Analss of Varance (ANOVA) Part 1 Sngle factor The logc of Analss of Varance Is the varance explaned b the model >> than the resdual varance In regresson models Varance explaned b regresson

More information

Outline. Multivariate Parametric Methods. Multivariate Data. Basic Multivariate Statistics. Steven J Zeil

Outline. Multivariate Parametric Methods. Multivariate Data. Basic Multivariate Statistics. Steven J Zeil Outlne Multvarate Parametrc Methods Steven J Zel Old Domnon Unv. Fall 2010 1 Multvarate Data 2 Multvarate ormal Dstrbuton 3 Multvarate Classfcaton Dscrmnants Tunng Complexty Dscrete Features 4 Multvarate

More information

ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE)

ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE) ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE) June 7, 016 15:30 Frst famly name: Name: DNI/ID: Moble: Second famly Name: GECO/GADE: Instructor: E-mal: Queston 1 A B C Blank Queston A B C Blank Queston

More information