Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution"

Transcription

1 Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable calculator and a two-sded 8.5'' '' ad sheet. If you do not understand a queston, or are havng some other dffculty, do not hestate to ask your nstructor or T.A for clarfcaton. There are 3 pages ncludng ths page. The last pages are statstcal tables. Please check that you are not mssng any page. Show all your work and answer n the space provded, n nk. Pencl may be used, but then remarks wll not be allowed. Use back of pages for rough work. Total pont: Good luck!!! Queston 3 Total Max 6 3 Score

2 Queston A study was conducted to test the mpact of 3 fertlzers on crop yeld. The 3 fertlzers were appled to 7 plots of land n a random fashon such that each fertlzer was appled to 9 plots. a) ( mark) Name the expermental desgn that was used n plannng ths study. Ths s a completely randomzed desgn. b) ( marks) Were randomzaton and replcaton used n ths experment? If yes, explan how? Randomzaton was used snce the fertlzers (treatments) were randomly assgned to each plot of land (expermental unt). Replcaton was used snce each fertlzer (treatment) was appled to 9 plots of land (expermental unts). c) ( marks) What statstcal model would you use for ths study desgn? The model s one-factor fxed effect model descrbed by the followng equaton: Y = + τ + ε, =,,3, j =,...,9 Where s the overall mean yeld τ s the effect of the th fertlzer ε s the random or expermental error d) (3 marks) What assumptons dd you make n part (c)? We assume that ε are..d. wth dstrbuton that s N(, σ ). e) (5 marks) Set up one set of orthogonal contrasts that mght be used n ths study. Snce there are three treatments a set of orthogonal contrast wll contan two orthogonal contrasts. An example of such a set s:

3 + 3 Ψ = and Ψ = 3 Checkng for orthogonalty 3 Sum c d - c d f) (3 marks) For each contrast n (d), state the null and alternatve hypotheses to whch the contrast corresponds. The frst contrast test whether the mean crop yeld wth the frst fertlzer s the same as the average mean crop yeld wth the other two fertlzers. The hypotheses are: H H a + 3 : + 3 : = The second contrast test whether the mean crop yeld wth the second fertlzer s the same as the mean crop yeld wth the thrd fertlzers. The hypotheses are: H H a : 3 = : 3 g) ( marks) Suppose that the 7 plots were selected at random from a bg feld contanng many more plots of land. How would your answers to parts (a), (c) and (d) change? Explan! If the plots of land were selected at random the desgn wll stll be a completely randomzed desgn and the model wll stll be one-factor fxed effect model. So the answers to parts (a), (c) and (d) wll not change. However, f the fertlzers were selected at random from say all avalable fertlzers n the market. Then the model wll be one-factor random effect model. The equaton of the model wll be the same; but, there wll be two addtonal assumptons: () τ are statstcally ndependent of the ε N, σ τ () the τ are..d ( ) 3

4 Queston Four dfferent desgns for a dgtal computer crcut are beng studed to compare the amount of nose present. The results are shown n the table bellow: Crcut Desgn Nose Observed Mean Std Dev SS Total = 99, SS Treat = a) (5 marks) Explan what knd of expermental desgn was used n ths experment. Are the effects of the factor random or fxed? What s the statstcal model you would use to analyze ths data? Ths s a completely randomzed desgn. The effects of the factor (crcut desgn) are fxed snce they were specfed by the expermenter rather than beng selected at random. The statstcal model we would use to analyze ths data s a one-factor fxed effect model descrbed by the equaton: Y = + τ + ε, =,,3,, j =,...,5 Where s the overall mean yeld τ s the effect of the th crcut desgn ε s the random or expermental error b) (9 marks) Construct the ANOVA table for ths experment. Fnd the P-values. The ANOVA table produced by SAS s gven below: Source DF SS MS F-rato P-value Treatment 3.78 <. Error Total 9 99

5 c) (3 marks) Do the three crcut desgns have the same mean nose observed? Use α = %. The hypotheses of nterests here are: H H a : τ = τ = τ 3 = τ = : at least oneτ The test statstc obtaned from the ANOVA table produced n part (b)s: F obs =. 78 whch has an F(3,6) dstrbuton. Snce the P-value <. < α =. we reject the null hypothess and conclude that we have sgnfcant evdence that the three crcut desgns do not have the same mean nose observed. d) (5 marks) It was suspected before the experment that crcut desgns and are smlar n the nose present. Test ths hypothess usng a t-test and α = 5%. The hypotheses to test here are: H H a : τ = τ : τ τ or H H a : τ τ = : τ τ Further, we know that an unbased estmate of the dfference between two treatment effects s Y Y j and that Y + Y j ~ N τ τ j, σ. r rj Therefore, the test statstcs s: t = Y MS Y j E + r rj whch has a t(n-a) dstrbuton Substtutng all the values we get t obs = =. wth df = The P-value can be estmated as follows: ( t( 6) > t ) = P( t( 6) >.). P value = > P obs Snce P-value s very large we cannot reject H and we able to conclude that that crcut desgns and are not dfferent n the nose present. 5

6 e) (5 marks) How many dfferent orthogonal contrasts you can create smultaneously n ths experment? Create two contrasts, one to test the queston n part (d), the other to test whether the mean response for crcut desgn 3 s the same as for the average for crcut desgn and. Are these contrasts orthogonal? Snce the factor (crcut desgn) has a = levels, a - = 3 dfferent orthogonal contrasts can be created smultaneously. The contrast to test the queston n part (d) s: Ψ =. The contrast to test whether the mean response for crcut desgn 3 s the same as for + the average for crcut desgn and s: Ψ = 3. Checkng for orthogonalty 3 Sum c - d c d So yes, these contrasts are orthogonal. f) (8 marks) Calculate SS for both contrasts n part (e). Test the hypothess regardng these two contrasts usng F-test. How do they compare wth part (c)? Contrast : the hypotheses are H = vs H :. The sum of square of the contrast s: : a SS contrast a ( cy ) ( ) = = a c / = r = ( / 5) + ( / 5) SSContrast /. The test statstcs s: F obs = = =. 37 wth df = (, 6) MS 8.35 The P-value can then be estmated as follow: E ( F(,6) > F ) = P( F(,6) >.37). P value = P obs >. So cannot reject H. =. Note, the F statstcs n ths case s smply the square of the t statstcs from part (d). Contrast : the hypotheses are: ( + )/ = vs H : ( + )/ The sum of square of the contrast s: SS = H. : 3 a 3 contrast The test statstcs s: F obs = = wth df = (, 6) 8.35 P value = P F,6 > 6.53 <.. The P-value can then be estmated as follow: ( ( ) ) So we reject H. Combnaton of these two results s n agreement wth (c), meanng that not all means are equal (two may be). 6

7 g) (3 marks) How can you calculate the SS for the contrast comparng crcut desgn wth the average of the other three wthout usng the formula for SS contrast? Do t! The contrast comparng crcut desgn wth the average of the other three s orthogonal to the two contrasts n part (e), therefore formng a set of orthogonal contrasts. For any set of orthogonal contrasts we have that SS. Treat = SScontrast + SScontrast + + SScontrast a- Therefore, the SS of ths contrast s SS 3 SS SS = = 69.7 contrast = Treat contrast SScontrast Below are plot of the resduals versus the ftted values and a normal quantle plot of the resduals for the model used to analyze the data above. z ftted z Normal Percent l es 7

8 h) (5 marks) What are the assumptons of the model used to construct the ANOVA table n part (c)? Comment on the valdty of these assumptons. The assumptons are: The model form s as specfed n part (a), that s E(Y ) = + τ. The resduals, ε, are..d. N(, σ ). Based on the resdual plots above, t looks lke all of these assumptons are vald for ths data. ) (3 marks) Based on the plots above are there any outlers n ths data? Explan. Yes, t looks lke there s one outler n ths data. It appears n the plot of the resduals versus ftted value as the rght-most and lowest pont (.e., large negatve resdual). In addton, t appears on the normal quantle plot as the lowst pont on the left. Lookng at the data we see that the value of 5 th observaton taken on crcut desgn s 8 whch s much smaller than the rest of the observatons, suggestng agan that ths may be an outler. Queston 3 An experment was conducted to study the lfe (n hours) of two dfferent brands of batteres (brand A and B) n three dfferent devces (rado, camera and portable DVD player). A completely randomzed two-factor factoral experment was conducted. Some SAS outputs used to analyze the data from ths experment are gven below: 8

9 a) (5 marks) What statstcal model was used to analyze ths data? Wrte the model and descrbe each term n the model n the context of ths study. Lst all assumptons requred for the model. Ths s a two-factor fxed-effect model. Its equaton s: Y k = + α + β j + γ + ε k where: Overall mean α Battery effect (factor A) of level =, β j Devce effect (factor B) of level j =,, 3 γ Interacton effect of batter (factor A) level and devce (factor B) level j Expermental error ε The assumptons of the model are: ε k are..d. N(, σ ) In order to obtan unbased estmators, we requre that: a = b j= a = α = β = j b γ = γ j= = 9

10 b) ( marks) Create the ANOVA table that was used n the analyss of ths data usng the results from the SAS output above, ncludng P-values. The ANOVA table s: Source DF SS MS F-rato P-value Factor A Factor B Interacton A B <..63 Error Total 3.85 c) (5 marks) Plot an nteracton plot usng the cell means as gven n the output above. Use dfferent symbols/colors for the dfferent battery brand. What do you learn from ths plot? Here s an nteracton plot produced by MINITAB Interacton Plot (data means) Battery A B 8. Mean Camera DVD Devce Rado From the plots, t appears that there s no nteracton between battery type and devce. Further, for every devce the mean lfetme for battery B appears to be larger than that of batter A suggestng that there mght be a battery effect. Fnally, t looks lke batteres used n DVDs have the smallest lfetme whle batteres used n Rados last the longest. Ths, n turn, suggests that there mght be a devce effect.

11 d) (9 marks) Do battery brand and devce type nteract? Is there any dfference n lfe tme of the two battery brands? Does devce type have any effect on battery lfe tme? Answer these three questons, f approprate, usng sgnfcant level 5%. State each queston n terms of the model and state your conclusons n plan language n the context of ths experment. Frst we need to test for nteracton. The hypotheses of nterest are: H : γ =, for all, j vs H a : at least one γ. From the ANOVA table we get the test statstcs F obs =.8, wth P-value =.63, therefore we cannot reject the null hypothess and we conclude that there s no sgnfcant nteracton between battery type and devce type. Snce there s no nteracton we can proceed to test for man effects of battery and devce. Man effect of battery: The hypotheses f nterest are: H : α =, for =, vs H a : at least one α. From the ANOVA table we get the test statstcs F obs = 9.33, wth P-value =.. Hence, we can reject the null hypothess at α = 5% and we conclude that there s a sgnfcant effect of battery type on lfetme. Note, that ths s moderate evdence of sgnfcance as we would not be able to reject the null hypothess at α = %. Man effect of devce: The hypotheses f nterest are: H : β =, for =,, 3 vs H a : at least one β. From the ANOVA table we get the test statstcs F obs = 3.75, wth P-value<.. Hence, we have strong evdence to reject the null hypothess and we conclude that there s a sgnfcant effect of devce type on lfetme. e) ( marks) If the researchers assumed (from experence) before the experment that battery brand and devce type don t nteract, how would ths affect the model used to analyze ths data? Wrte the model and descrbe each term n the context of ths study. In ths case the model wll not nclude an nteracton effect term, that s, the model equaton wll be: Y k = + α + β j + ε k (addtve model) where: s the overall mean, α are effects of battery, β j are effects of devce and ε are expermental errors.

12 f) (5 marks) Create the ANOVA table that would be used n part (e), ncludng P-value, and test the man effects. Are the results consstent wth the orgnal model used n the study? Snce we omt the nteracton term from the model, both the degrees of freedom and sums of squares of the nteracton term n the ANOVA table go to the error. The ANOVA table s then: Source DF SS MS F-rato P-value Factor A Factor B < P <.5 <. Error Total 3.85 END!

STATISTICS QUESTIONS. Step by Step Solutions.

STATISTICS QUESTIONS. Step by Step Solutions. STATISTICS QUESTIONS Step by Step Solutons www.mathcracker.com 9//016 Problem 1: A researcher s nterested n the effects of famly sze on delnquency for a group of offenders and examnes famles wth one to

More information

Topic 23 - Randomized Complete Block Designs (RCBD)

Topic 23 - Randomized Complete Block Designs (RCBD) Topc 3 ANOVA (III) 3-1 Topc 3 - Randomzed Complete Block Desgns (RCBD) Defn: A Randomzed Complete Block Desgn s a varant of the completely randomzed desgn (CRD) that we recently learned. In ths desgn,

More information

F statistic = s2 1 s 2 ( F for Fisher )

F statistic = s2 1 s 2 ( F for Fisher ) Stat 4 ANOVA Analyss of Varance /6/04 Comparng Two varances: F dstrbuton Typcal Data Sets One way analyss of varance : example Notaton for one way ANOVA Comparng Two varances: F dstrbuton We saw that the

More information

Two-factor model. Statistical Models. Least Squares estimation in LM two-factor model. Rats

Two-factor model. Statistical Models. Least Squares estimation in LM two-factor model. Rats tatstcal Models Lecture nalyss of Varance wo-factor model Overall mean Man effect of factor at level Man effect of factor at level Y µ + α + β + γ + ε Eε f (, ( l, Cov( ε, ε ) lmr f (, nteracton effect

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

18. SIMPLE LINEAR REGRESSION III

18. SIMPLE LINEAR REGRESSION III 8. SIMPLE LINEAR REGRESSION III US Domestc Beers: Calores vs. % Alcohol Ftted Values and Resduals To each observed x, there corresponds a y-value on the ftted lne, y ˆ ˆ = α + x. The are called ftted values.

More information

x i1 =1 for all i (the constant ).

x i1 =1 for all i (the constant ). Chapter 5 The Multple Regresson Model Consder an economc model where the dependent varable s a functon of K explanatory varables. The economc model has the form: y = f ( x,x,..., ) xk Approxmate ths by

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.

More information

Testing for seasonal unit roots in heterogeneous panels

Testing for seasonal unit roots in heterogeneous panels Testng for seasonal unt roots n heterogeneous panels Jesus Otero * Facultad de Economía Unversdad del Rosaro, Colomba Jeremy Smth Department of Economcs Unversty of arwck Monca Gulett Aston Busness School

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

Chapter 8 Indicator Variables

Chapter 8 Indicator Variables Chapter 8 Indcator Varables In general, e explanatory varables n any regresson analyss are assumed to be quanttatve n nature. For example, e varables lke temperature, dstance, age etc. are quanttatve n

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrcs of Panel Data Jakub Mućk Meetng # 8 Jakub Mućk Econometrcs of Panel Data Meetng # 8 1 / 17 Outlne 1 Heterogenety n the slope coeffcents 2 Seemngly Unrelated Regresson (SUR) 3 Swamy s random

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 Prentce-Hall, Inc. Chap. 13-1 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

Analytical Chemistry Calibration Curve Handout

Analytical Chemistry Calibration Curve Handout I. Quck-and Drty Excel Tutoral Analytcal Chemstry Calbraton Curve Handout For those of you wth lttle experence wth Excel, I ve provded some key technques that should help you use the program both for problem

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

STAT 3340 Assignment 1 solutions. 1. Find the equation of the line which passes through the points (1,1) and (4,5).

STAT 3340 Assignment 1 solutions. 1. Find the equation of the line which passes through the points (1,1) and (4,5). (out of 15 ponts) STAT 3340 Assgnment 1 solutons (10) (10) 1. Fnd the equaton of the lne whch passes through the ponts (1,1) and (4,5). β 1 = (5 1)/(4 1) = 4/3 equaton for the lne s y y 0 = β 1 (x x 0

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Recall: man dea of lnear regresson Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 8 Lnear regresson can be used to study an

More information

experimenteel en correlationeel onderzoek

experimenteel en correlationeel onderzoek expermenteel en correlatoneel onderzoek lecture 6: one-way analyss of varance Leary. Introducton to Behavoral Research Methods. pages 246 271 (chapters 10 and 11): conceptual statstcs Moore, McCabe, and

More information

since [1-( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation

since [1-( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation Econ 388 R. Butler 204 revsons Lecture 4 Dummy Dependent Varables I. Lnear Probablty Model: the Regresson model wth a dummy varables as the dependent varable assumpton, mplcaton regular multple regresson

More information

Chapter 12 Analysis of Covariance

Chapter 12 Analysis of Covariance Chapter Analyss of Covarance Any scentfc experment s performed to know somethng that s unknown about a group of treatments and to test certan hypothess about the correspondng treatment effect When varablty

More information

Now we relax this assumption and allow that the error variance depends on the independent variables, i.e., heteroskedasticity

Now we relax this assumption and allow that the error variance depends on the independent variables, i.e., heteroskedasticity ECON 48 / WH Hong Heteroskedastcty. Consequences of Heteroskedastcty for OLS Assumpton MLR. 5: Homoskedastcty var ( u x ) = σ Now we relax ths assumpton and allow that the error varance depends on the

More information

EXAMINATION. N0028N Econometrics. Luleå University of Technology. Date: (A1016) Time: Aid: Calculator and dictionary

EXAMINATION. N0028N Econometrics. Luleå University of Technology. Date: (A1016) Time: Aid: Calculator and dictionary EXAMINATION Luleå Unversty of Technology N008N Econometrcs Date: 011-05-16 (A1016) Tme: 09.00-13.00 Ad: Calculator and dctonary Teacher on duty (complete telephone number) Robert Lundmark (070-1735788)

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

AS-Level Maths: Statistics 1 for Edexcel

AS-Level Maths: Statistics 1 for Edexcel 1 of 6 AS-Level Maths: Statstcs 1 for Edecel S1. Calculatng means and standard devatons Ths con ndcates the slde contans actvtes created n Flash. These actvtes are not edtable. For more detaled nstructons,

More information

Assignment 5. Simulation for Logistics. Monti, N.E. Yunita, T.

Assignment 5. Simulation for Logistics. Monti, N.E. Yunita, T. Assgnment 5 Smulaton for Logstcs Mont, N.E. Yunta, T. November 26, 2007 1. Smulaton Desgn The frst objectve of ths assgnment s to derve a 90% two-sded Confdence Interval (CI) for the average watng tme

More information

Lecture 3 Stat102, Spring 2007

Lecture 3 Stat102, Spring 2007 Lecture 3 Stat0, Sprng 007 Chapter 3. 3.: Introducton to regresson analyss Lnear regresson as a descrptve technque The least-squares equatons Chapter 3.3 Samplng dstrbuton of b 0, b. Contnued n net lecture

More information

Stat 642, Lecture notes for 01/27/ d i = 1 t. n i t nj. n j

Stat 642, Lecture notes for 01/27/ d i = 1 t. n i t nj. n j Stat 642, Lecture notes for 01/27/05 18 Rate Standardzaton Contnued: Note that f T n t where T s the cumulatve follow-up tme and n s the number of subjects at rsk at the mdpont or nterval, and d s the

More information

Statistical Evaluation of WATFLOOD

Statistical Evaluation of WATFLOOD tatstcal Evaluaton of WATFLD By: Angela MacLean, Dept. of Cvl & Envronmental Engneerng, Unversty of Waterloo, n. ctober, 005 The statstcs program assocated wth WATFLD uses spl.csv fle that s produced wth

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

17 - LINEAR REGRESSION II

17 - LINEAR REGRESSION II Topc 7 Lnear Regresson II 7- Topc 7 - LINEAR REGRESSION II Testng and Estmaton Inferences about β Recall that we estmate Yˆ ˆ β + ˆ βx. 0 μ Y X x β0 + βx usng To estmate σ σ squared error Y X x ε s ε we

More information

8.6 The Complex Number System

8.6 The Complex Number System 8.6 The Complex Number System Earler n the chapter, we mentoned that we cannot have a negatve under a square root, snce the square of any postve or negatve number s always postve. In ths secton we want

More information

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for P Charts. Dr. Wayne A. Taylor

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for P Charts. Dr. Wayne A. Taylor Taylor Enterprses, Inc. Control Lmts for P Charts Copyrght 2017 by Taylor Enterprses, Inc., All Rghts Reserved. Control Lmts for P Charts Dr. Wayne A. Taylor Abstract: P charts are used for count data

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for U Charts. Dr. Wayne A. Taylor

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for U Charts. Dr. Wayne A. Taylor Taylor Enterprses, Inc. Adjusted Control Lmts for U Charts Copyrght 207 by Taylor Enterprses, Inc., All Rghts Reserved. Adjusted Control Lmts for U Charts Dr. Wayne A. Taylor Abstract: U charts are used

More information

F8: Heteroscedasticity

F8: Heteroscedasticity F8: Heteroscedastcty Feng L Department of Statstcs, Stockholm Unversty What s so-called heteroscedastcty In a lnear regresson model, we assume the error term has a normal dstrbuton wth mean zero and varance

More information

Chapter 4 Experimental Design and Their Analysis

Chapter 4 Experimental Design and Their Analysis Chapter 4 Expermental Desgn and her Analyss Desgn of experment means how to desgn an experment n the sense that how the obseratons or measurements should be obtaned to answer a query n a ald, effcent and

More information

Properties of Least Squares

Properties of Least Squares Week 3 3.1 Smple Lnear Regresson Model 3. Propertes of Least Squares Estmators Y Y β 1 + β X + u weekly famly expendtures X weekly famly ncome For a gven level of x, the expected level of food expendtures

More information

III. Econometric Methodology Regression Analysis

III. Econometric Methodology Regression Analysis Page Econ07 Appled Econometrcs Topc : An Overvew of Regresson Analyss (Studenmund, Chapter ) I. The Nature and Scope of Econometrcs. Lot s of defntons of econometrcs. Nobel Prze Commttee Paul Samuelson,

More information

Systematic Error Illustration of Bias. Sources of Systematic Errors. Effects of Systematic Errors 9/23/2009. Instrument Errors Method Errors Personal

Systematic Error Illustration of Bias. Sources of Systematic Errors. Effects of Systematic Errors 9/23/2009. Instrument Errors Method Errors Personal 9/3/009 Sstematc Error Illustraton of Bas Sources of Sstematc Errors Instrument Errors Method Errors Personal Prejudce Preconceved noton of true value umber bas Prefer 0/5 Small over large Even over odd

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS

PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS V.K. Sharma I.A.S.R.I., Lbrary Avenue, New Delh-00. Introducton Balanced ncomplete block desgns, though have many optmal propertes, do not ft well to many expermental

More information

x yi In chapter 14, we want to perform inference (i.e. calculate confidence intervals and perform tests of significance) in this setting.

x yi In chapter 14, we want to perform inference (i.e. calculate confidence intervals and perform tests of significance) in this setting. The Practce of Statstcs, nd ed. Chapter 14 Inference for Regresson Introducton In chapter 3 we used a least-squares regresson lne (LSRL) to represent a lnear relatonshp etween two quanttatve explanator

More information

Meta-Analysis of Correlated Proportions

Meta-Analysis of Correlated Proportions NCSS Statstcal Softare Chapter 457 Meta-Analyss of Correlated Proportons Introducton Ths module performs a meta-analyss of a set of correlated, bnary-event studes. These studes usually come from a desgn

More information

REGRESSION ANALYSIS II- MULTICOLLINEARITY

REGRESSION ANALYSIS II- MULTICOLLINEARITY REGRESSION ANALYSIS II- MULTICOLLINEARITY QUESTION 1 Departments of Open Unversty of Cyprus A and B consst of na = 35 and nb = 30 students respectvely. The students of department A acheved an average test

More information

Bayesian predictive Configural Frequency Analysis

Bayesian predictive Configural Frequency Analysis Psychologcal Test and Assessment Modelng, Volume 54, 2012 (3), 285-292 Bayesan predctve Confgural Frequency Analyss Eduardo Gutérrez-Peña 1 Abstract Confgural Frequency Analyss s a method for cell-wse

More information

PASS Sample Size Software

PASS Sample Size Software Chapter 57 Introducton Ths procedure power analyzes random effects desgns n whch the outcome (response) s contnuous. Thus, as wth the analyss of varance (ANOVA), the procedure s used to test hypotheses

More information

Introduction to Econometrics (3 rd Updated Edition, Global Edition) Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 13

Introduction to Econometrics (3 rd Updated Edition, Global Edition) Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 13 Introducton to Econometrcs (3 rd Updated Edton, Global Edton by James H. Stock and Mark W. Watson Solutons to Odd-Numbered End-of-Chapter Exercses: Chapter 13 (Ths verson August 17, 014 Stock/Watson -

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

Chapter 8 Multivariate Regression Analysis

Chapter 8 Multivariate Regression Analysis Chapter 8 Multvarate Regresson Analyss 8.3 Multple Regresson wth K Independent Varables 8.4 Sgnfcance tests of Parameters Populaton Regresson Model For K ndependent varables, the populaton regresson and

More information

CHAPER 11: HETEROSCEDASTICITY: WHAT HAPPENS WHEN ERROR VARIANCE IS NONCONSTANT?

CHAPER 11: HETEROSCEDASTICITY: WHAT HAPPENS WHEN ERROR VARIANCE IS NONCONSTANT? Basc Econometrcs, Gujarat and Porter CHAPER 11: HETEROSCEDASTICITY: WHAT HAPPENS WHEN ERROR VARIANCE IS NONCONSTANT? 11.1 (a) False. The estmators are unbased but are neffcent. (b) True. See Sec. 11.4

More information

Electrical double layer: revisit based on boundary conditions

Electrical double layer: revisit based on boundary conditions Electrcal double layer: revst based on boundary condtons Jong U. Km Department of Electrcal and Computer Engneerng, Texas A&M Unversty College Staton, TX 77843-318, USA Abstract The electrcal double layer

More information

CHAPTER 8. Exercise Solutions

CHAPTER 8. Exercise Solutions CHAPTER 8 Exercse Solutons 77 Chapter 8, Exercse Solutons, Prncples of Econometrcs, 3e 78 EXERCISE 8. When = N N N ( x x) ( x x) ( x x) = = = N = = = N N N ( x ) ( ) ( ) ( x x ) x x x x x = = = = Chapter

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE II LECTURE - GENERAL LINEAR HYPOTHESIS AND ANALYSIS OF VARIANCE Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 3.

More information

Goodness of fit and Wilks theorem

Goodness of fit and Wilks theorem DRAFT 0.0 Glen Cowan 3 June, 2013 Goodness of ft and Wlks theorem Suppose we model data y wth a lkelhood L(µ) that depends on a set of N parameters µ = (µ 1,...,µ N ). Defne the statstc t µ ln L(µ) L(ˆµ),

More information

Assessing Studies Based on Multiple Regression

Assessing Studies Based on Multiple Regression Assessng Studes Based on Multple Regresson (SW Chapter 9) Outlne 1. Internal and External Valdty 2. Threats to Internal Valdty a. Omtted varable bas b. Functonal form msspecfcaton c. Errors-n-varables

More information

Chemometrics. Unit 2: Regression Analysis

Chemometrics. Unit 2: Regression Analysis Chemometrcs Unt : Regresson Analyss The problem of predctng the average value of one varable n terms of the known values of other varables s the problem of regresson. In carryng out a regresson analyss

More information

Uncertainty in measurements of power and energy on power networks

Uncertainty in measurements of power and energy on power networks Uncertanty n measurements of power and energy on power networks E. Manov, N. Kolev Department of Measurement and Instrumentaton, Techncal Unversty Sofa, bul. Klment Ohrdsk No8, bl., 000 Sofa, Bulgara Tel./fax:

More information

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger JAB Chan Long-tal clams development ASTIN - September 2005 B.Verder A. Klnger Outlne Chan Ladder : comments A frst soluton: Munch Chan Ladder JAB Chan Chan Ladder: Comments Black lne: average pad to ncurred

More information

Econ Statistical Properties of the OLS estimator. Sanjaya DeSilva

Econ Statistical Properties of the OLS estimator. Sanjaya DeSilva Econ 39 - Statstcal Propertes of the OLS estmator Sanjaya DeSlva September, 008 1 Overvew Recall that the true regresson model s Y = β 0 + β 1 X + u (1) Applyng the OLS method to a sample of data, we estmate

More information

A LINEAR PROGRAM TO COMPARE MULTIPLE GROSS CREDIT LOSS FORECASTS. Dr. Derald E. Wentzien, Wesley College, (302) ,

A LINEAR PROGRAM TO COMPARE MULTIPLE GROSS CREDIT LOSS FORECASTS. Dr. Derald E. Wentzien, Wesley College, (302) , A LINEAR PROGRAM TO COMPARE MULTIPLE GROSS CREDIT LOSS FORECASTS Dr. Derald E. Wentzen, Wesley College, (302) 736-2574, wentzde@wesley.edu ABSTRACT A lnear programmng model s developed and used to compare

More information

I have not received unauthorized aid in the completion of this exam.

I have not received unauthorized aid in the completion of this exam. ME 270 Sprng 2013 Fnal Examnaton Please read and respond to the followng statement, I have not receved unauthorzed ad n the completon of ths exam. Agree Dsagree Sgnature INSTRUCTIONS Begn each problem

More information

Unit 5: Quadratic Equations & Functions

Unit 5: Quadratic Equations & Functions Date Perod Unt 5: Quadratc Equatons & Functons DAY TOPIC 1 Modelng Data wth Quadratc Functons Factorng Quadratc Epressons 3 Solvng Quadratc Equatons 4 Comple Numbers Smplfcaton, Addton/Subtracton & Multplcaton

More information

Entropy generation in a chemical reaction

Entropy generation in a chemical reaction Entropy generaton n a chemcal reacton E Mranda Área de Cencas Exactas COICET CCT Mendoza 5500 Mendoza, rgentna and Departamento de Físca Unversdad aconal de San Lus 5700 San Lus, rgentna bstract: Entropy

More information

Anti-van der Waerden numbers of 3-term arithmetic progressions.

Anti-van der Waerden numbers of 3-term arithmetic progressions. Ant-van der Waerden numbers of 3-term arthmetc progressons. Zhanar Berkkyzy, Alex Schulte, and Mchael Young Aprl 24, 2016 Abstract The ant-van der Waerden number, denoted by aw([n], k), s the smallest

More information

Time-Varying Systems and Computations Lecture 6

Time-Varying Systems and Computations Lecture 6 Tme-Varyng Systems and Computatons Lecture 6 Klaus Depold 14. Januar 2014 The Kalman Flter The Kalman estmaton flter attempts to estmate the actual state of an unknown dscrete dynamcal system, gven nosy

More information

Dr. Ing. J. H. (Jo) Walling Consultant Cables Standards Machinery

Dr. Ing. J. H. (Jo) Walling Consultant Cables Standards Machinery The common mode crcut resstance unbalance (CMCU) calculaton based on mn. / max. conductor resstance values and par to par resstance unbalance measurements ncludng loop resstance evsed and extended verson

More information

The topics in this section concern with the second course objective. Correlation is a linear relation between two random variables.

The topics in this section concern with the second course objective. Correlation is a linear relation between two random variables. 4.1 Correlaton The topcs n ths secton concern wth the second course objectve. Correlaton s a lnear relaton between two random varables. Note that the term relaton used n ths secton means connecton or relatonshp

More information

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method Appled Mathematcal Scences, Vol. 7, 0, no. 47, 07-0 HIARI Ltd, www.m-hkar.com Comparson of the Populaton Varance Estmators of -Parameter Exponental Dstrbuton Based on Multple Crtera Decson Makng Method

More information

For example, if the drawing pin was tossed 200 times and it landed point up on 140 of these trials,

For example, if the drawing pin was tossed 200 times and it landed point up on 140 of these trials, Probablty In ths actvty you wll use some real data to estmate the probablty of an event happenng. You wll also use a varety of methods to work out theoretcal probabltes. heoretcal and expermental probabltes

More information

Tests of Single Linear Coefficient Restrictions: t-tests and F-tests. 1. Basic Rules. 2. Testing Single Linear Coefficient Restrictions

Tests of Single Linear Coefficient Restrictions: t-tests and F-tests. 1. Basic Rules. 2. Testing Single Linear Coefficient Restrictions ECONOMICS 35* -- NOTE ECON 35* -- NOTE Tests of Sngle Lnear Coeffcent Restrctons: t-tests and -tests Basc Rules Tests of a sngle lnear coeffcent restrcton can be performed usng ether a two-taled t-test

More information

ECE559VV Project Report

ECE559VV Project Report ECE559VV Project Report (Supplementary Notes Loc Xuan Bu I. MAX SUM-RATE SCHEDULING: THE UPLINK CASE We have seen (n the presentaton that, for downlnk (broadcast channels, the strategy maxmzng the sum-rate

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS) FE EIEW OPEATIONAL AMPLIFIES (OPAMPS) 1 The Opamp An opamp has two nputs and one output. Note the opamp below. The termnal labeled wth the () sgn s the nvertng nput and the nput labeled wth the () sgn

More information

Population element: 1 2 N. 1.1 Sampling with Replacement: Hansen-Hurwitz Estimator(HH)

Population element: 1 2 N. 1.1 Sampling with Replacement: Hansen-Hurwitz Estimator(HH) Chapter 1 Samplng wth Unequal Probabltes Notaton: Populaton element: 1 2 N varable of nterest Y : y1 y2 y N Let s be a sample of elements drawn by a gven samplng method. In other words, s s a subset of

More information

DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA. 1. Matrices in Mathematica

DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA. 1. Matrices in Mathematica demo8.nb 1 DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA Obectves: - defne matrces n Mathematca - format the output of matrces - appl lnear algebra to solve a real problem - Use Mathematca to perform

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

Non-Mixture Cure Model for Interval Censored Data: Simulation Study ABSTRACT

Non-Mixture Cure Model for Interval Censored Data: Simulation Study ABSTRACT Malaysan Journal of Mathematcal Scences 8(S): 37-44 (2014) Specal Issue: Internatonal Conference on Mathematcal Scences and Statstcs 2013 (ICMSS2013) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal

More information

Singer & Willett, 2003 October 13, 2003

Singer & Willett, 2003 October 13, 2003 Snger & Wllett, October, Dong Data Analyss n n the the Multlevel Model for for Change Judy Snger & John Wllett Harvard Unversty Graduate School of Educaton What What we we wll wll cover? cover? Composte

More information

Assignment 4 Solutions

Assignment 4 Solutions Assgnment 4 Solutons Tmothy Vs February 3, 2006 3-3-2 We have n 25, 0.04, P MT 100, and we need to fnd F V. F V P MT (1 + )n 1 100 (1 + 0.04)2 5 1 0.04 4164.59 3-3-6 We have F V 8000, n 30, 0.03, and we

More information

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Lossy Compression. Compromise accuracy of reconstruction for increased compression. Lossy Compresson Compromse accuracy of reconstructon for ncreased compresson. The reconstructon s usually vsbly ndstngushable from the orgnal mage. Typcally, one can get up to 0:1 compresson wth almost

More information

16 Reflection and transmission, TE mode

16 Reflection and transmission, TE mode 16 Reflecton transmsson TE mode Last lecture we learned how to represent plane-tem waves propagatng n a drecton ˆ n terms of feld phasors such that η = Ẽ = E o e j r H = ˆ Ẽ η µ ɛ = ˆ = ω µɛ E o =0. Such

More information

Numerical Transient Heat Conduction Experiment

Numerical Transient Heat Conduction Experiment Numercal ransent Heat Conducton Experment OBJECIVE 1. o demonstrate the basc prncples of conducton heat transfer.. o show how the thermal conductvty of a sold can be measured. 3. o demonstrate the use

More information

Chapter 4: Regression With One Regressor

Chapter 4: Regression With One Regressor Chapter 4: Regresson Wth One Regressor Copyrght 2011 Pearson Addson-Wesley. All rghts reserved. 1-1 Outlne 1. Fttng a lne to data 2. The ordnary least squares (OLS) lne/regresson 3. Measures of ft 4. Populaton

More information

Polynomials. 1 More properties of polynomials

Polynomials. 1 More properties of polynomials Polynomals 1 More propertes of polynomals Recall that, for R a commutatve rng wth unty (as wth all rngs n ths course unless otherwse noted), we defne R[x] to be the set of expressons n =0 a x, where a

More information

Supplement to Clustering with Statistical Error Control

Supplement to Clustering with Statistical Error Control Supplement to Clusterng wth Statstcal Error Control Mchael Vogt Unversty of Bonn Matthas Schmd Unversty of Bonn In ths supplement, we provde the proofs that are omtted n the paper. In partcular, we derve

More information

Regression. The Simple Linear Regression Model

Regression. The Simple Linear Regression Model Regresson Smple Lnear Regresson Model Least Squares Method Coeffcent of Determnaton Model Assumptons Testng for Sgnfcance Usng the Estmated Regresson Equaton for Estmaton and Predcton Resdual Analss: Valdatng

More information

Continuous vs. Discrete Goods

Continuous vs. Discrete Goods CE 651 Transportaton Economcs Charsma Choudhury Lecture 3-4 Analyss of Demand Contnuous vs. Dscrete Goods Contnuous Goods Dscrete Goods x auto 1 Indfference u curves 3 u u 1 x 1 0 1 bus Outlne Data Modelng

More information

Andreas C. Drichoutis Agriculural University of Athens. Abstract

Andreas C. Drichoutis Agriculural University of Athens. Abstract Heteroskedastcty, the sngle crossng property and ordered response models Andreas C. Drchouts Agrculural Unversty of Athens Panagots Lazards Agrculural Unversty of Athens Rodolfo M. Nayga, Jr. Texas AMUnversty

More information

Normally, in one phase reservoir simulation we would deal with one of the following fluid systems:

Normally, in one phase reservoir simulation we would deal with one of the following fluid systems: TPG4160 Reservor Smulaton 2017 page 1 of 9 ONE-DIMENSIONAL, ONE-PHASE RESERVOIR SIMULATION Flud systems The term sngle phase apples to any system wth only one phase present n the reservor In some cases

More information

Inductor = (coil of wire)

Inductor = (coil of wire) A student n 1120 emaled me to ask how much extra he should expect to pay on hs electrc bll when he strngs up a standard 1-strand box of ccle holday lghts outsde hs house. (total, cumulatve cost)? Try to

More information

SIMPLE REACTION TIME AS A FUNCTION OF TIME UNCERTAINTY 1

SIMPLE REACTION TIME AS A FUNCTION OF TIME UNCERTAINTY 1 Journal of Expermental Vol. 5, No. 3, 1957 Psychology SIMPLE REACTION TIME AS A FUNCTION OF TIME UNCERTAINTY 1 EDMUND T. KLEMMER Operatonal Applcatons Laboratory, Ar Force Cambrdge Research Center An earler

More information

UNIVERSITY OF TORONTO. Faculty of Arts and Science JUNE EXAMINATIONS STA 302 H1F / STA 1001 H1F Duration - 3 hours Aids Allowed: Calculator

UNIVERSITY OF TORONTO. Faculty of Arts and Science JUNE EXAMINATIONS STA 302 H1F / STA 1001 H1F Duration - 3 hours Aids Allowed: Calculator UNIVERSITY OF TORONTO Faculty of Arts and Scence JUNE EXAMINATIONS 008 STA 30 HF / STA 00 HF Duraton - 3 hours Ads Allowed: Calculator LAST NAME: FIRST NAME: STUDENT NUMBER: Enrolled n (Crcle one): STA30

More information

Weighted Voting Systems

Weighted Voting Systems Weghted Votng Systems Elssa Brown Chrssy Donovan Charles Noneman June 5, 2009 Votng systems can be deceptve. For nstance, a votng system mght consst of four people, n whch three of the people have 2 votes,

More information

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields EJTP 6, No. 0 009) 43 56 Electronc Journal of Theoretcal Physcs Non-nteractng Spn-1/ Partcles n Non-commutng External Magnetc Felds Kunle Adegoke Physcs Department, Obafem Awolowo Unversty, Ile-Ife, Ngera

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

Bit Juggling. Representing Information. representations. - Some other bits. - Representing information using bits - Number. Chapter

Bit Juggling. Representing Information. representations. - Some other bits. - Representing information using bits - Number. Chapter Representng Informaton 1 1 1 1 Bt Jugglng - Representng nformaton usng bts - Number representatons - Some other bts Chapter 3.1-3.3 REMINDER: Problem Set #1 s now posted and s due next Wednesday L3 Encodng

More information

Lecture 19. Endogenous Regressors and Instrumental Variables

Lecture 19. Endogenous Regressors and Instrumental Variables Lecture 19. Endogenous Regressors and Instrumental Varables In the prevous lecture we consder a regresson model (I omt the subscrpts (1) Y β + D + u = 1 β The problem s that the dummy varable D s endogenous,.e.

More information

Lab 4: Two-level Random Intercept Model

Lab 4: Two-level Random Intercept Model BIO 656 Lab4 009 Lab 4: Two-level Random Intercept Model Data: Peak expratory flow rate (pefr) measured twce, usng two dfferent nstruments, for 17 subjects. (from Chapter 1 of Multlevel and Longtudnal

More information