Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test  Winter Solution


 Derrick Sullivan
 1 years ago
 Views:
Transcription
1 Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test  Wnter  Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a nonprogrammable calculator and a twosded 8.5'' '' ad sheet. If you do not understand a queston, or are havng some other dffculty, do not hestate to ask your nstructor or T.A for clarfcaton. There are 3 pages ncludng ths page. The last pages are statstcal tables. Please check that you are not mssng any page. Show all your work and answer n the space provded, n nk. Pencl may be used, but then remarks wll not be allowed. Use back of pages for rough work. Total pont: Good luck!!! Queston 3 Total Max 6 3 Score
2 Queston A study was conducted to test the mpact of 3 fertlzers on crop yeld. The 3 fertlzers were appled to 7 plots of land n a random fashon such that each fertlzer was appled to 9 plots. a) ( mark) Name the expermental desgn that was used n plannng ths study. Ths s a completely randomzed desgn. b) ( marks) Were randomzaton and replcaton used n ths experment? If yes, explan how? Randomzaton was used snce the fertlzers (treatments) were randomly assgned to each plot of land (expermental unt). Replcaton was used snce each fertlzer (treatment) was appled to 9 plots of land (expermental unts). c) ( marks) What statstcal model would you use for ths study desgn? The model s onefactor fxed effect model descrbed by the followng equaton: Y = + τ + ε, =,,3, j =,...,9 Where s the overall mean yeld τ s the effect of the th fertlzer ε s the random or expermental error d) (3 marks) What assumptons dd you make n part (c)? We assume that ε are..d. wth dstrbuton that s N(, σ ). e) (5 marks) Set up one set of orthogonal contrasts that mght be used n ths study. Snce there are three treatments a set of orthogonal contrast wll contan two orthogonal contrasts. An example of such a set s:
3 + 3 Ψ = and Ψ = 3 Checkng for orthogonalty 3 Sum c d  c d f) (3 marks) For each contrast n (d), state the null and alternatve hypotheses to whch the contrast corresponds. The frst contrast test whether the mean crop yeld wth the frst fertlzer s the same as the average mean crop yeld wth the other two fertlzers. The hypotheses are: H H a + 3 : + 3 : = The second contrast test whether the mean crop yeld wth the second fertlzer s the same as the mean crop yeld wth the thrd fertlzers. The hypotheses are: H H a : 3 = : 3 g) ( marks) Suppose that the 7 plots were selected at random from a bg feld contanng many more plots of land. How would your answers to parts (a), (c) and (d) change? Explan! If the plots of land were selected at random the desgn wll stll be a completely randomzed desgn and the model wll stll be onefactor fxed effect model. So the answers to parts (a), (c) and (d) wll not change. However, f the fertlzers were selected at random from say all avalable fertlzers n the market. Then the model wll be onefactor random effect model. The equaton of the model wll be the same; but, there wll be two addtonal assumptons: () τ are statstcally ndependent of the ε N, σ τ () the τ are..d ( ) 3
4 Queston Four dfferent desgns for a dgtal computer crcut are beng studed to compare the amount of nose present. The results are shown n the table bellow: Crcut Desgn Nose Observed Mean Std Dev SS Total = 99, SS Treat = a) (5 marks) Explan what knd of expermental desgn was used n ths experment. Are the effects of the factor random or fxed? What s the statstcal model you would use to analyze ths data? Ths s a completely randomzed desgn. The effects of the factor (crcut desgn) are fxed snce they were specfed by the expermenter rather than beng selected at random. The statstcal model we would use to analyze ths data s a onefactor fxed effect model descrbed by the equaton: Y = + τ + ε, =,,3,, j =,...,5 Where s the overall mean yeld τ s the effect of the th crcut desgn ε s the random or expermental error b) (9 marks) Construct the ANOVA table for ths experment. Fnd the Pvalues. The ANOVA table produced by SAS s gven below: Source DF SS MS Frato Pvalue Treatment 3.78 <. Error Total 9 99
5 c) (3 marks) Do the three crcut desgns have the same mean nose observed? Use α = %. The hypotheses of nterests here are: H H a : τ = τ = τ 3 = τ = : at least oneτ The test statstc obtaned from the ANOVA table produced n part (b)s: F obs =. 78 whch has an F(3,6) dstrbuton. Snce the Pvalue <. < α =. we reject the null hypothess and conclude that we have sgnfcant evdence that the three crcut desgns do not have the same mean nose observed. d) (5 marks) It was suspected before the experment that crcut desgns and are smlar n the nose present. Test ths hypothess usng a ttest and α = 5%. The hypotheses to test here are: H H a : τ = τ : τ τ or H H a : τ τ = : τ τ Further, we know that an unbased estmate of the dfference between two treatment effects s Y Y j and that Y + Y j ~ N τ τ j, σ. r rj Therefore, the test statstcs s: t = Y MS Y j E + r rj whch has a t(na) dstrbuton Substtutng all the values we get t obs = =. wth df = The Pvalue can be estmated as follows: ( t( 6) > t ) = P( t( 6) >.). P value = > P obs Snce Pvalue s very large we cannot reject H and we able to conclude that that crcut desgns and are not dfferent n the nose present. 5
6 e) (5 marks) How many dfferent orthogonal contrasts you can create smultaneously n ths experment? Create two contrasts, one to test the queston n part (d), the other to test whether the mean response for crcut desgn 3 s the same as for the average for crcut desgn and. Are these contrasts orthogonal? Snce the factor (crcut desgn) has a = levels, a  = 3 dfferent orthogonal contrasts can be created smultaneously. The contrast to test the queston n part (d) s: Ψ =. The contrast to test whether the mean response for crcut desgn 3 s the same as for + the average for crcut desgn and s: Ψ = 3. Checkng for orthogonalty 3 Sum c  d c d So yes, these contrasts are orthogonal. f) (8 marks) Calculate SS for both contrasts n part (e). Test the hypothess regardng these two contrasts usng Ftest. How do they compare wth part (c)? Contrast : the hypotheses are H = vs H :. The sum of square of the contrast s: : a SS contrast a ( cy ) ( ) = = a c / = r = ( / 5) + ( / 5) SSContrast /. The test statstcs s: F obs = = =. 37 wth df = (, 6) MS 8.35 The Pvalue can then be estmated as follow: E ( F(,6) > F ) = P( F(,6) >.37). P value = P obs >. So cannot reject H. =. Note, the F statstcs n ths case s smply the square of the t statstcs from part (d). Contrast : the hypotheses are: ( + )/ = vs H : ( + )/ The sum of square of the contrast s: SS = H. : 3 a 3 contrast The test statstcs s: F obs = = wth df = (, 6) 8.35 P value = P F,6 > 6.53 <.. The Pvalue can then be estmated as follow: ( ( ) ) So we reject H. Combnaton of these two results s n agreement wth (c), meanng that not all means are equal (two may be). 6
7 g) (3 marks) How can you calculate the SS for the contrast comparng crcut desgn wth the average of the other three wthout usng the formula for SS contrast? Do t! The contrast comparng crcut desgn wth the average of the other three s orthogonal to the two contrasts n part (e), therefore formng a set of orthogonal contrasts. For any set of orthogonal contrasts we have that SS. Treat = SScontrast + SScontrast + + SScontrast a Therefore, the SS of ths contrast s SS 3 SS SS = = 69.7 contrast = Treat contrast SScontrast Below are plot of the resduals versus the ftted values and a normal quantle plot of the resduals for the model used to analyze the data above. z ftted z Normal Percent l es 7
8 h) (5 marks) What are the assumptons of the model used to construct the ANOVA table n part (c)? Comment on the valdty of these assumptons. The assumptons are: The model form s as specfed n part (a), that s E(Y ) = + τ. The resduals, ε, are..d. N(, σ ). Based on the resdual plots above, t looks lke all of these assumptons are vald for ths data. ) (3 marks) Based on the plots above are there any outlers n ths data? Explan. Yes, t looks lke there s one outler n ths data. It appears n the plot of the resduals versus ftted value as the rghtmost and lowest pont (.e., large negatve resdual). In addton, t appears on the normal quantle plot as the lowst pont on the left. Lookng at the data we see that the value of 5 th observaton taken on crcut desgn s 8 whch s much smaller than the rest of the observatons, suggestng agan that ths may be an outler. Queston 3 An experment was conducted to study the lfe (n hours) of two dfferent brands of batteres (brand A and B) n three dfferent devces (rado, camera and portable DVD player). A completely randomzed twofactor factoral experment was conducted. Some SAS outputs used to analyze the data from ths experment are gven below: 8
9 a) (5 marks) What statstcal model was used to analyze ths data? Wrte the model and descrbe each term n the model n the context of ths study. Lst all assumptons requred for the model. Ths s a twofactor fxedeffect model. Its equaton s: Y k = + α + β j + γ + ε k where: Overall mean α Battery effect (factor A) of level =, β j Devce effect (factor B) of level j =,, 3 γ Interacton effect of batter (factor A) level and devce (factor B) level j Expermental error ε The assumptons of the model are: ε k are..d. N(, σ ) In order to obtan unbased estmators, we requre that: a = b j= a = α = β = j b γ = γ j= = 9
10 b) ( marks) Create the ANOVA table that was used n the analyss of ths data usng the results from the SAS output above, ncludng Pvalues. The ANOVA table s: Source DF SS MS Frato Pvalue Factor A Factor B Interacton A B <..63 Error Total 3.85 c) (5 marks) Plot an nteracton plot usng the cell means as gven n the output above. Use dfferent symbols/colors for the dfferent battery brand. What do you learn from ths plot? Here s an nteracton plot produced by MINITAB Interacton Plot (data means) Battery A B 8. Mean Camera DVD Devce Rado From the plots, t appears that there s no nteracton between battery type and devce. Further, for every devce the mean lfetme for battery B appears to be larger than that of batter A suggestng that there mght be a battery effect. Fnally, t looks lke batteres used n DVDs have the smallest lfetme whle batteres used n Rados last the longest. Ths, n turn, suggests that there mght be a devce effect.
11 d) (9 marks) Do battery brand and devce type nteract? Is there any dfference n lfe tme of the two battery brands? Does devce type have any effect on battery lfe tme? Answer these three questons, f approprate, usng sgnfcant level 5%. State each queston n terms of the model and state your conclusons n plan language n the context of ths experment. Frst we need to test for nteracton. The hypotheses of nterest are: H : γ =, for all, j vs H a : at least one γ. From the ANOVA table we get the test statstcs F obs =.8, wth Pvalue =.63, therefore we cannot reject the null hypothess and we conclude that there s no sgnfcant nteracton between battery type and devce type. Snce there s no nteracton we can proceed to test for man effects of battery and devce. Man effect of battery: The hypotheses f nterest are: H : α =, for =, vs H a : at least one α. From the ANOVA table we get the test statstcs F obs = 9.33, wth Pvalue =.. Hence, we can reject the null hypothess at α = 5% and we conclude that there s a sgnfcant effect of battery type on lfetme. Note, that ths s moderate evdence of sgnfcance as we would not be able to reject the null hypothess at α = %. Man effect of devce: The hypotheses f nterest are: H : β =, for =,, 3 vs H a : at least one β. From the ANOVA table we get the test statstcs F obs = 3.75, wth Pvalue<.. Hence, we have strong evdence to reject the null hypothess and we conclude that there s a sgnfcant effect of devce type on lfetme. e) ( marks) If the researchers assumed (from experence) before the experment that battery brand and devce type don t nteract, how would ths affect the model used to analyze ths data? Wrte the model and descrbe each term n the context of ths study. In ths case the model wll not nclude an nteracton effect term, that s, the model equaton wll be: Y k = + α + β j + ε k (addtve model) where: s the overall mean, α are effects of battery, β j are effects of devce and ε are expermental errors.
12 f) (5 marks) Create the ANOVA table that would be used n part (e), ncludng Pvalue, and test the man effects. Are the results consstent wth the orgnal model used n the study? Snce we omt the nteracton term from the model, both the degrees of freedom and sums of squares of the nteracton term n the ANOVA table go to the error. The ANOVA table s then: Source DF SS MS Frato Pvalue Factor A Factor B < P <.5 <. Error Total 3.85 END!
# c i. INFERENCE FOR CONTRASTS (Chapter 4) It's unbiased: Recall: A contrast is a linear combination of effects with coefficients summing to zero:
1 INFERENCE FOR CONTRASTS (Chapter 4 Recall: A contrast s a lnear combnaton of effects wth coeffcents summng to zero: " where " = 0. Specfc types of contrasts of nterest nclude: Dfferences n effects Dfferences
More informationTopic 11 The Analysis of Variance
Topc 11 The Analyss of Varance Expermental Desgn The samplng plan or expermental desgn determnes the way that a sample s selected. In an observatonal study, the expermenter observes data that already
More informationANOVA. The Observations y ij
ANOVA Stands for ANalyss Of VArance But t s a test of dfferences n means The dea: The Observatons y j Treatment group = 1 = 2 = k y 11 y 21 y k,1 y 12 y 22 y k,2 y 1, n1 y 2, n2 y k, nk means: m 1 m 2
More informationChapter 11: I = 2 samples independent samples paired samples Chapter 12: I 3 samples of equal size J oneway layout twoway layout
Serk Sagtov, Chalmers and GU, February 0, 018 Chapter 1. Analyss of varance Chapter 11: I = samples ndependent samples pared samples Chapter 1: I 3 samples of equal sze oneway layout twoway layout 1
More informationx = , so that calculated
Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to
More informationEconomics 130. Lecture 4 Simple Linear Regression Continued
Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do
More informationSTATISTICS QUESTIONS. Step by Step Solutions.
STATISTICS QUESTIONS Step by Step Solutons www.mathcracker.com 9//016 Problem 1: A researcher s nterested n the effects of famly sze on delnquency for a group of offenders and examnes famles wth one to
More informationTopic 23  Randomized Complete Block Designs (RCBD)
Topc 3 ANOVA (III) 31 Topc 3  Randomzed Complete Block Desgns (RCBD) Defn: A Randomzed Complete Block Desgn s a varant of the completely randomzed desgn (CRD) that we recently learned. In ths desgn,
More informationSTAT 511 FINAL EXAM NAME Spring 2001
STAT 5 FINAL EXAM NAME Sprng Instructons: Ths s a closed book exam. No notes or books are allowed. ou may use a calculator but you are not allowed to store notes or formulas n the calculator. Please wrte
More informationDr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur
Analyss of Varance and Desgn of ExpermentI MODULE VIII LECTURE  34 ANALYSIS OF VARIANCE IN RANDOMEFFECTS MODEL AND MIXEDEFFECTS EFFECTS MODEL Dr Shalabh Department of Mathematcs and Statstcs Indan
More informationBOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS. M. Krishna Reddy, B. Naveen Kumar and Y. Ramu
BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS M. Krshna Reddy, B. Naveen Kumar and Y. Ramu Department of Statstcs, Osmana Unversty, Hyderabad 500 007, Inda. nanbyrozu@gmal.com, ramu0@gmal.com
More informationComparison of Regression Lines
STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence
More information[The following data appear in Wooldridge Q2.3.] The table below contains the ACT score and college GPA for eight college students.
PPOL 593 Problem Set Exercses n Smple Regresson Due n class /8/7 In ths problem set, you are asked to compute varous statstcs by hand to gve you a better sense of the mechancs of the Pearson correlaton
More informationChapter 13: Multiple Regression
Chapter 13: Multple Regresson 13.1 Developng the multpleregresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to
More information4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA
4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth oneway ANOVA If the populatons ncluded n the study are selected
More informationChapter 11: Simple Linear Regression and Correlation
Chapter 11: Smple Lnear Regresson and Correlaton 111 Emprcal Models 112 Smple Lnear Regresson 113 Propertes of the Least Squares Estmators 114 Hypothess Test n Smple Lnear Regresson 114.1 Use of ttests
More informationDepartment of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6
Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.
More informationFirst Year Examination Department of Statistics, University of Florida
Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am  1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve
More information/ n ) are compared. The logic is: if the two
STAT C141, Sprng 2005 Lecture 13 Two sample tests One sample tests: examples of goodness of ft tests, where we are testng whether our data supports predctons. Two sample tests: called as tests of ndependence
More informationLecture 6 More on Complete Randomized Block Design (RBD)
Lecture 6 More on Complete Randomzed Block Desgn (RBD) Multple test Multple test The multple comparsons or multple testng problem occurs when one consders a set of statstcal nferences smultaneously. For
More informationStatistics for Economics & Business
Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable
More information17 Nested and Higher Order Designs
54 17 Nested and Hgher Order Desgns 17.1 TwoWay Analyss of Varance Consder an experment n whch the treatments are combnatons of two or more nfluences on the response. The ndvdual nfluences wll be called
More informationF statistic = s2 1 s 2 ( F for Fisher )
Stat 4 ANOVA Analyss of Varance /6/04 Comparng Two varances: F dstrbuton Typcal Data Sets One way analyss of varance : example Notaton for one way ANOVA Comparng Two varances: F dstrbuton We saw that the
More informationAnswers Problem Set 2 Chem 314A Williamsen Spring 2000
Answers Problem Set Chem 314A Wllamsen Sprng 000 1) Gve me the followng crtcal values from the statstcal tables. a) zstatstc,sded test, 99.7% confdence lmt ±3 b) tstatstc (Case I), 1sded test, 95%
More informationLecture 4 Hypothesis Testing
Lecture 4 Hypothess Testng We may wsh to test pror hypotheses about the coeffcents we estmate. We can use the estmates to test whether the data rejects our hypothess. An example mght be that we wsh to
More informationDurban Watson for Testing the LackofFit of Polynomial Regression Models without Replications
Durban Watson for Testng the LackofFt of Polynomal Regresson Models wthout Replcatons Ruba A. Alyaf, Maha A. Omar, Abdullah A. AlShha ralyaf@ksu.edu.sa, maomar@ksu.edu.sa, aalshha@ksu.edu.sa Department
More informationChapter 14 Simple Linear Regression
Chapter 4 Smple Lnear Regresson Chapter 4  Smple Lnear Regresson Manageral decsons often are based on the relatonshp between two or more varables. Regresson analss can be used to develop an equaton showng
More informationANSWERS CHAPTER 9. TIO 9.2: If the values are the same, the difference is 0, therefore the null hypothesis cannot be rejected.
ANSWERS CHAPTER 9 THINK IT OVER thnk t over TIO 9.: χ 2 k = ( f e ) = 0 e Breakng the equaton down: the test statstc for the chsquared dstrbuton s equal to the sum over all categores of the expected frequency
More informationUNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration  3 hours
UNIVERSITY OF TORONTO Faculty of Arts and Scence December 005 Examnatons STA47HF/STA005HF Duraton  hours AIDS ALLOWED: (to be suppled by the student) Nonprogrammable calculator One handwrtten 8.5'' x
More information28. SIMPLE LINEAR REGRESSION III
8. SIMPLE LINEAR REGRESSION III Ftted Values and Resduals US Domestc Beers: Calores vs. % Alcohol To each observed x, there corresponds a yvalue on the ftted lne, y ˆ = βˆ + βˆ x. The are called ftted
More informationMidterm Examination. Regression and Forecasting Models
IOMS Department Regresson and Forecastng Models Professor Wllam Greene Phone: 22.998.0876 Offce: KMC 790 Home page: people.stern.nyu.edu/wgreene Emal: wgreene@stern.nyu.edu Course web page: people.stern.nyu.edu/wgreene/regresson/outlne.htm
More information18. SIMPLE LINEAR REGRESSION III
8. SIMPLE LINEAR REGRESSION III US Domestc Beers: Calores vs. % Alcohol Ftted Values and Resduals To each observed x, there corresponds a yvalue on the ftted lne, y ˆ ˆ = α + x. The are called ftted values.
More informationTwofactor model. Statistical Models. Least Squares estimation in LM twofactor model. Rats
tatstcal Models Lecture nalyss of Varance wofactor model Overall mean Man effect of factor at level Man effect of factor at level Y µ + α + β + γ + ε Eε f (, ( l, Cov( ε, ε ) lmr f (, nteracton effect
More informationSTAT 3008 Applied Regression Analysis
STAT 3008 Appled Regresson Analyss Tutoral : Smple Lnear Regresson LAI Chun He Department of Statstcs, The Chnese Unversty of Hong Kong 1 Model Assumpton To quantfy the relatonshp between two factors,
More informationPolynomial Regression Models
LINEAR REGRESSION ANALYSIS MODULE XII Lecture  6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance
More informationStatistics II Final Exam 26/6/18
Statstcs II Fnal Exam 26/6/18 Academc Year 2017/18 Solutons Exam duraton: 2 h 30 mn 1. (3 ponts) A town hall s conductng a study to determne the amount of leftover food produced by the restaurants n the
More informationLINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables
LINEAR REGRESSION ANALYSIS MODULE VIII Lecture  7 Indcator Varables Dr. Shalabh Department of Maematcs and Statstcs Indan Insttute of Technology Kanpur Indcator varables versus quanttatve explanatory
More informationNANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION MTH352/MH3510 Regression Analysis
NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION 014015 MTH35/MH3510 Regresson Analyss December 014 TIME ALLOWED: HOURS INSTRUCTIONS TO CANDIDATES 1. Ths examnaton paper contans FOUR (4) questons
More informationMAE140  Linear Circuits  Winter 16 Midterm, February 5
Instructons ME140  Lnear Crcuts  Wnter 16 Mdterm, February 5 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator
More informationEcon107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)
I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes
More informationDO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR. Introductory Econometrics 1 hour 30 minutes
25/6 Canddates Only January Examnatons 26 Student Number: Desk Number:...... DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR Department Module Code Module Ttle Exam Duraton
More informationChapter 13 Analysis of Variance and Experimental Design
Chapter 3 Analyss of Varance and Expermental Desgn Learnng Obectves. Understand how the analyss of varance procedure can be used to determne f the means of more than two populatons are equal.. Know the
More informationx i1 =1 for all i (the constant ).
Chapter 5 The Multple Regresson Model Consder an economc model where the dependent varable s a functon of K explanatory varables. The economc model has the form: y = f ( x,x,..., ) xk Approxmate ths by
More informationChapter 15  Multiple Regression
Chapter  Multple Regresson Chapter  Multple Regresson Multple Regresson Model The equaton that descrbes how the dependent varable y s related to the ndependent varables x, x,... x p and an error term
More informationJanuary Examinations 2015
24/5 Canddates Only January Examnatons 25 DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR STUDENT CANDIDATE NO.. Department Module Code Module Ttle Exam Duraton (n words)
More informationNegative Binomial Regression
STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...
More informationECON 351*  Note 23: Tests for Coefficient Differences: Examples Introduction. Sample data: A random sample of 534 paid employees.
Model and Data ECON 35*  NOTE 3 Tests for Coeffcent Dfferences: Examples. Introducton Sample data: A random sample of 534 pad employees. Varable defntons: W hourly wage rate of employee ; lnw the natural
More informationISQS 6348 Final Open notes, no books. Points out of 100 in parentheses. Y 1 ε 2
ISQS 6348 Fnal Open notes, no books. Ponts out of 100 n parentheses. 1. The followng path dagram s gven: ε 1 Y 1 ε F Y 1.A. (10) Wrte down the usual model and assumptons that are mpled by ths dagram. Soluton:
More informationChapter 5 Multilevel Models
Chapter 5 Multlevel Models 5.1 Crosssectonal multlevel models 5.1.1 Twolevel models 5.1.2 Multple level models 5.1.3 Multple level modelng n other felds 5.2 Longtudnal multlevel models 5.2.1 Twolevel
More informationChapter 15 Student Lecture Notes 151
Chapter 15 Student Lecture Notes 151 Basc Busness Statstcs (9 th Edton) Chapter 15 Multple Regresson Model Buldng 004 PrentceHall, Inc. Chap 151 Chapter Topcs The Quadratc Regresson Model Usng Transformatons
More informationTesting for seasonal unit roots in heterogeneous panels
Testng for seasonal unt roots n heterogeneous panels Jesus Otero * Facultad de Economía Unversdad del Rosaro, Colomba Jeremy Smth Department of Economcs Unversty of arwck Monca Gulett Aston Busness School
More informationECONOMICS 351*A MidTerm Exam  Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics
ECOOMICS 35*A MdTerm Exam  Fall Term 000 Page of 3 pages QUEE'S UIVERSITY AT KIGSTO Department of Economcs ECOOMICS 35*  Secton A Introductory Econometrcs Fall Term 000 MIDTERM EAM ASWERS MG Abbott
More informationPsychology 282 Lecture #24 Outline Regression Diagnostics: Outliers
Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.
More information7.1. Single classification analysis of variance (ANOVA) Why not use multiple 2sample 2. When to use ANOVA
Sngle classfcaton analyss of varance (ANOVA) When to use ANOVA ANOVA models and parttonng sums of squares ANOVA: hypothess testng ANOVA: assumptons A nonparametrc alternatve: KruskalWalls ANOVA Power
More informationDr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur
Analyss of Varance and Desgn of ExpermentI MODULE VII LECTURE  3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed
More informationStatistics Chapter 4
Statstcs Chapter 4 "There are three knds of les: les, damned les, and statstcs." Benjamn Dsrael, 1895 (Brtsh statesman) Gaussan Dstrbuton, 41 If a measurement s repeated many tmes a statstcal treatment
More informationUCLA STAT 13 Introduction to Statistical Methods for the Life and Health Sciences. Chapter 11 Analysis of Variance  ANOVA. Instructor: Ivo Dinov,
UCLA STAT 3 ntroducton to Statstcal Methods for the Lfe and Health Scences nstructor: vo Dnov, Asst. Prof. of Statstcs and Neurology Chapter Analyss of Varance  ANOVA Teachng Assstants: Fred Phoa, Anwer
More informationIntroduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:
CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and
More informationChapter 8 Indicator Variables
Chapter 8 Indcator Varables In general, e explanatory varables n any regresson analyss are assumed to be quanttatve n nature. For example, e varables lke temperature, dstance, age etc. are quanttatve n
More informationLecture 6: Introduction to Linear Regression
Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6
More informationCorrelation and Regression. Correlation 9.1. Correlation. Chapter 9
Chapter 9 Correlaton and Regresson 9. Correlaton Correlaton A correlaton s a relatonshp between two varables. The data can be represented b the ordered pars (, ) where s the ndependent (or eplanator) varable,
More informationa. (All your answers should be in the letter!
Econ 301 Blkent Unversty Taskn Econometrcs Department of Economcs Md Term Exam I November 8, 015 Name For each hypothess testng n the exam complete the followng steps: Indcate the test statstc, ts crtcal
More informationReminder: Nested models. Lecture 9: Interactions, Quadratic terms and Splines. Effect Modification. Model 1
Lecture 9: Interactons, Quadratc terms and Splnes An Manchakul amancha@jhsph.edu 3 Aprl 7 Remnder: Nested models Parent model contans one set of varables Extended model adds one or more new varables to
More information1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands
Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of
More informationInterval Estimation in the Classical Normal Linear Regression Model. 1. Introduction
ECONOMICS 35*  NOTE 7 ECON 35*  NOTE 7 Interval Estmaton n the Classcal Normal Lnear Regresson Model Ths note outlnes the basc elements of nterval estmaton n the Classcal Normal Lnear Regresson Model
More informationDiagnostics in Poisson Regression. Models  Residual Analysis
Dagnostcs n Posson Regresson Models  Resdual Analyss 1 Outlne Dagnostcs n Posson Regresson Models  Resdual Analyss Example 3: Recall of Stressful Events contnued 2 Resdual Analyss Resduals represent
More informationResource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis
Resource Allocaton and Decson Analss (ECON 800) Sprng 04 Foundatons of Regresson Analss Readng: Regresson Analss (ECON 800 Coursepak, Page 3) Defntons and Concepts: Regresson Analss statstcal technques
More informationEconometrics of Panel Data
Econometrcs of Panel Data Jakub Mućk Meetng # 8 Jakub Mućk Econometrcs of Panel Data Meetng # 8 1 / 17 Outlne 1 Heterogenety n the slope coeffcents 2 Seemngly Unrelated Regresson (SUR) 3 Swamy s random
More informationStatistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation
Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 PrentceHall, Inc. Chap. 131 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear
More informationTopic 10: ANOVA models for random and mixed effects Fixed and Random Models in Oneway Classification Experiments
Topc 10: ANOVA models for random and mxed effects eferences: ST&D Topc 7.5 (15153), Topc 9.9 (57), Topc 15.5 (379384); rules for expected on ST&D page 381 replaced by Chapter 8 from Montgomery, 1991.
More informationStatistics for Business and Economics
Statstcs for Busness and Economcs Chapter 11 Smple Regresson Copyrght 010 Pearson Educaton, Inc. Publshng as Prentce Hall Ch. 111 11.1 Overvew of Lnear Models n An equaton can be ft to show the best lnear
More informationChapter 6. Supplemental Text Material
Chapter 6. Supplemental Text Materal S6. actor Effect Estmates are Least Squares Estmates We have gven heurstc or ntutve explanatons of how the estmates of the factor effects are obtaned n the textboo.
More informationChapter 2  The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.
Chapter  The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the
More informationExam. Econometrics  Exam 1
Econometrcs  Exam 1 Exam Problem 1: (15 ponts) Suppose that the classcal regresson model apples but that the true value of the constant s zero. In order to answer the followng questons assume just one
More informationStatistical tables are provided Two Hours UNIVERSITY OF MANCHESTER. Date: Wednesday 4 th June 2008 Time: 1400 to 1600
Statstcal tables are provded Two Hours UNIVERSITY OF MNCHESTER Medcal Statstcs Date: Wednesday 4 th June 008 Tme: 1400 to 1600 MT3807 Electronc calculators may be used provded that they conform to Unversty
More information2016 Wiley. Study Session 2: Ethical and Professional Standards Application
6 Wley Study Sesson : Ethcal and Professonal Standards Applcaton LESSON : CORRECTION ANALYSIS Readng 9: Correlaton and Regresson LOS 9a: Calculate and nterpret a sample covarance and a sample correlaton
More informationUsing Multivariate Rank Sum Tests to Evaluate Effectiveness of Computer Applications in Teaching Business Statistics
Usng Multvarate Rank Sum Tests to Evaluate Effectveness of Computer Applcatons n Teachng Busness Statstcs by YeongTzay Su, Professor Department of Mathematcs Kaohsung Normal Unversty Kaohsung, TAIWAN
More informatione i is a random error
Chapter  The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown
More informationDr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur
Analyss of Varance and Desgn of Experments MODULE LECTURE  6 EXPERMENTAL DESGN MODELS Dr. Shalabh Department of Mathematcs and Statstcs ndan nsttute of Technology Kanpur Twoway classfcaton wth nteractons
More informationScatter Plot x
Construct a scatter plot usng excel for the gven data. Determne whether there s a postve lnear correlaton, negatve lnear correlaton, or no lnear correlaton. Complete the table and fnd the correlaton coeffcent
More informationJoint Statistical Meetings  Biopharmaceutical Section
Iteratve ChSquare Test for Equvalence of Multple Treatment Groups TeHua Ng*, U.S. Food and Drug Admnstraton 1401 Rockvlle Pke, #200S, HFM217, Rockvlle, MD 208521448 Key Words: Equvalence Testng; Actve
More information1FACTOR ANOVA (MOTIVATION) [DEVORE 10.1]
1FACTOR ANOVA (MOTIVATION) [DEVORE 10.1] Hgh varance between groups Low varance wthn groups s 2 between/s 2 wthn 1 Factor A clearly has a sgnfcant effect!! Low varance between groups Hgh varance wthn
More informationEPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski
EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on
More informationMD. LUTFOR RAHMAN 1 AND KALIPADA SEN 2 Abstract
ISSN 05871 Bangladesh J. Agrl. Res. 34(3) : 395401, September 009 PROBLEMS OF USUAL EIGHTED ANALYSIS OF VARIANCE (ANOVA) IN RANDOMIZED BLOCK DESIGN (RBD) ITH MORE THAN ONE OBSERVATIONS PER CELL HEN ERROR
More informationChapter 5: Hypothesis Tests, Confidence Intervals & GaussMarkov Result
Chapter 5: Hypothess Tests, Confdence Intervals & GaussMarkov Result 11 Outlne 1. The standard error of 2. Hypothess tests concernng β 1 3. Confdence ntervals for β 1 4. Regresson when X s bnary 5. Heteroskedastcty
More informationProfessor Chris Murray. Midterm Exam
Econ 7 Econometrcs Sprng 4 Professor Chrs Murray McElhnney D cjmurray@uh.edu Mdterm Exam Wrte your answers on one sde of the blank whte paper that I have gven you.. Do not wrte your answers on ths exam.
More informationLecture 10 Support Vector Machines II
Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the faketest data; fxed
More informationLecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding
Recall: man dea of lnear regresson Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 8 Lnear regresson can be used to study an
More informationModeling and Simulation NETW 707
Modelng and Smulaton NETW 707 Lecture 5 Tests for Random Numbers Course Instructor: Dr.Ing. Magge Mashaly magge.ezzat@guc.edu.eg C3.220 1 Propertes of Random Numbers Random Number Generators (RNGs) must
More informationOutline. EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Lecture k r Factorial Designs with Replication
EEC 66/75 Modelng & Performance Evaluaton of Computer Systems Lecture 3 Department of Electrcal and Computer Engneerng Cleveland State Unversty wenbng@eee.org (based on Dr. Ra Jan s lecture notes) Outlne
More informationSee Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)
Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of nonnegatve nteger values Examples: number of drver route changes per week, the number of trp departure changes
More informationLecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding
Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 008 Recall: man dea of lnear regresson Lnear regresson can be used to study
More informationFactor models with many assets: strong factors, weak factors, and the twopass procedure
Factor models wth many assets: strong factors, weak factors, and the twopass procedure Stanslav Anatolyev 1 Anna Mkusheva 2 1 CERGEEI and NES 2 MIT December 2017 Stanslav Anatolyev and Anna Mkusheva
More informationAnalytical Chemistry Calibration Curve Handout
I. Quckand Drty Excel Tutoral Analytcal Chemstry Calbraton Curve Handout For those of you wth lttle experence wth Excel, I ve provded some key technques that should help you use the program both for problem
More informationSTAT 3340 Assignment 1 solutions. 1. Find the equation of the line which passes through the points (1,1) and (4,5).
(out of 15 ponts) STAT 3340 Assgnment 1 solutons (10) (10) 1. Fnd the equaton of the lne whch passes through the ponts (1,1) and (4,5). β 1 = (5 1)/(4 1) = 4/3 equaton for the lne s y y 0 = β 1 (x x 0
More informationBiostatistics 360 F&t Tests and Intervals in Regression 1
Bostatstcs 360 F&t Tests and Intervals n Regresson ORIGIN Model: Y = X + Corrected Sums of Squares: X X bar where: s the y ntercept of the regresson lne (translaton) s the slope of the regresson lne (scalng
More informationCHAPTER 6 GOODNESS OF FIT AND CONTINGENCY TABLE PREPARED BY: DR SITI ZANARIAH SATARI & FARAHANIM MISNI
CHAPTER 6 GOODNESS OF FIT AND CONTINGENCY TABLE Expected Outcomes Able to test the goodness of ft for categorcal data. Able to test whether the categorcal data ft to the certan dstrbuton such as Bnomal,
More informationsince [1( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation
Econ 388 R. Butler 204 revsons Lecture 4 Dummy Dependent Varables I. Lnear Probablty Model: the Regresson model wth a dummy varables as the dependent varable assumpton, mplcaton regular multple regresson
More information