Normalized kernel-weighted random measures

Size: px
Start display at page:

Download "Normalized kernel-weighted random measures"

Transcription

1 Normalized kernel-weighted random measures Jim Griffin University of Kent 1 August 27

2 Outline 1 Introduction 2 Ornstein-Uhlenbeck DP 3 Generalisations

3 Bayesian Density Regression We observe data (x 1, y 1 ),..., (x n, y n ) and we assume that y i F xi. We want to estimate F x for x X.

4 Bayesian Density Regression We observe data (x 1, y 1 ),..., (x n, y n ) and we assume that y i F xi. We want to estimate F x for x X. We could build the hierarchical model y i υ(ψ i, φ) and θ 1, θ 2, θ 3, i.i.d. H. G xi ψ i G xi d = p i (x i )δ θi i=1

5 Bayesian Density Regression We observe data (x 1, y 1 ),..., (x n, y n ) and we assume that y i F xi. We want to estimate F x for x X. We could build the hierarchical model y i υ(ψ i, φ) and θ 1, θ 2, θ 3, i.i.d. H. G xi ψ i G xi d = p i (x i )δ θi i=1 Then F x can be estimated by E G,φ y [ k(y i ψ, φ) dg x (ψ)].

6 Bayesian Density Regression We would like G x to be stationary.

7 Bayesian Density Regression We would like G x to be stationary.... and to have a way of controlling the dependence between G x and G y.

8 Possible approaches Usually we generalize standard construction of priors for exchangeable sequences:

9 Possible approaches Usually we generalize standard construction of priors for exchangeable sequences: Dirichlet process - DDP (MacEachern 1999)

10 Possible approaches Usually we generalize standard construction of priors for exchangeable sequences: Dirichlet process - DDP (MacEachern 1999) Stick-breaking - πddp (Griffin and Steel, 26), Kernel-weighted stick-breaking (Dunson and Park, 26)

11 Possible approaches Usually we generalize standard construction of priors for exchangeable sequences: Dirichlet process - DDP (MacEachern 1999) Stick-breaking - πddp (Griffin and Steel, 26), Kernel-weighted stick-breaking (Dunson and Park, 26) Pólya urn scheme (Caron et al, 27)

12 Normalized random measures We could extend the class of normalized random measures (Regazzini et al 23, James et al 25)).

13 Normalized random measures We could extend the class of normalized random measures (Regazzini et al 23, James et al 25)). Let (J, θ) follow an homogeneous Poisson process on R + Θ with intensity κ(j)h(θ) and define i=1 G = J iδ θi i=1 J i

14 Normalized random measures We could extend the class of normalized random measures (Regazzini et al 23, James et al 25)). Let (J, θ) follow an homogeneous Poisson process on R + Θ with intensity κ(j)h(θ) and define i=1 G = J iδ θi i=1 J i then G follows a (homogeneous) NRM under suitable conditions for κ we have a random probability measure (infinite activity) and h is the density of the centring distribution.

15 Examples of NRMs Dirichlet process - Normalized gamma process κ(j) = M exp{ J} J Normalized Generalized Gamma process κ(j) = γ Γ(1 γ) J γ exp{ rj

16 Normalized kernel-weighted measures Let (τ, J, θ) follow an homogeneous Poisson process on X R + Θ with intensity κ(j)h(θ) and define i=1 G x = k(x, τ i)j i δ θi i=1 k(x, τ i)j i for some kernel function k(x, τ i ) centred at τ i

17 Normalized kernel-weighted measures Let (τ, J, θ) follow an homogeneous Poisson process on X R + Θ with intensity κ(j)h(θ) and define i=1 G x = k(x, τ i)j i δ θi i=1 k(x, τ i)j i for some kernel function k(x, τ i ) centred at τ i For modelling, we wish to control Dependence between G x and G y. In these process, for a measureable set B, we can measure correlation through Corr(G x (B), G y (B)) which usually won t depend on B. The marginal prior of G x for all x.

18 Normalized kernel-weighted measures Dependence The correlation of the unnormalized random measures is k(x, τ)k(y, τ) dτ k(x, τ) 2 dτ This correlation will typically carry over to the normalized version unless we have a marginal processs that gives distributions with a few large jumps.

19 Normalized kernel-weighted measures Dependence The correlation of the unnormalized random measures is k(x, τ)k(y, τ) dτ k(x, τ) 2 dτ This correlation will typically carry over to the normalized version unless we have a marginal processs that gives distributions with a few large jumps. Stationarity The form of κ can be derived to give particular marginal processes.

20 Ornstein-Uhlenbeck Dirichlet Process With a 1D regressor, typically time, we fix the kernel function to be k(x, τ) = exp{ λ(x τ)}i(x > τ). and assume a marginal Dirichlet process.

21 Ornstein-Uhlenbeck Dirichlet Process With a 1D regressor, typically time, we fix the kernel function to be k(x, τ) = exp{ λ(x τ)}i(x > τ). and assume a marginal Dirichlet process. The unnormalized process must be a Gamma process.

22 Ornstein-Uhlenbeck Dirichlet Process With a 1D regressor, typically time, we fix the kernel function to be k(x, τ) = exp{ λ(x τ)}i(x > τ). and assume a marginal Dirichlet process. The unnormalized process must be a Gamma process. The ideas of Barndorff-Nielsen and Shephard are useful to define this process. Let φ 1, φ 2, φ 3,... are i.i.d. exponential (1) and τ 1, τ 2, τ 3,... follow a Poisson process with intensity Mλ then γ t = I(τ i < t) exp{ λ i τ i }φ i i=1 is Ga(M, 1) distributed for all t.

23 Definition of OUDP This is a construction when the covariate x is time. Define i=1 G x = I(τ i < x) exp{ λ(x τ i )}J i δ θi i=1 I(τ i < x) exp{ λ(x τ i )}J i or τ follows a Poisson process with intensity λm. J 1, J 2, J 3, i.i.d. Ex(1) θ 1, θ 2, θ 3, i.i.d. H (τ, J, θ) follows a Poisson process with intensity.5 λm exp{ J}h x

24 The autocorrelation at lag k is approximately exp{ λk} [1 + 1M ] (1 exp{ λk} λ =.25 λ = 1 = 1 = 4

25 Dynamics of moments The dynamics of the mean are µ t = w t µ t 1 + (1 w t )µ G λ =.125 λ =.5 λ = 2 M = 1 M = 16

26 Computation The stationarity of the process makes inference possible using fairly standard methods exp{ λt}γ G t = exp{ λt}γ + m i=1 exp{ λ(t τ G i)}j i m i=1 + exp{ λ(t τ i)}j i exp{ λt}γ + m i=1 exp{ λ(t τ i)}j i where G follows a Dirichlet process and γ follows a gamma distribution with shape parameter M. Inference using: Gibbs sampling Particle filtering

27 Example - Brazilian stock index return We observe r 1, r 2,..., r T which are daily log returns and let r t σ 2 t N(, σ 2 t ) σ 2 t F t where {F t } T follows an OUDP, centred on an inverse Gaussian distribution, whose parameters are estimated from the marginal distribution of the data.

28 Example Brazilian stock index.25 Data.25 Smoothed Predictive return

29 Generalizing to other marginal processes For other marginal processes, let w(a) be the Lévy density of the unnormalized marginal process.

30 Generalizing to other marginal processes For other marginal processes, let w(a) be the Lévy density of the unnormalized marginal process. The intensity of the Poisson process of the unnormalized process with the kernel will be w (J)h(θ) where w (J) = λjw(j).

31 Generalizing to other marginal processes For other marginal processes, let w(a) be the Lévy density of the unnormalized marginal process. The intensity of the Poisson process of the unnormalized process with the kernel will be w (J)h(θ) where w (J) = λjw(j). A marginal NGG process arising from assuming the intensity κ(j) = γλ Γ(1 γ) J1 γ exp{ rj which is a finite activity Poisson process.

32 In general, if we define a kernel K (x, τ) then the two measures are linked by the integral equation a w(j) dj = where ν is Lesbesgue measure. a w (J)ν({τ K (, τ) > a/j}) dj This is a Volterra integral equation and can be solved using standard methods (in principle).

33 Generalizing to other kernels In 2D, if the kernel k(x, τ) = exp{ λ x t 2 } and we want a marginal Dirichlet process then the intensity function is λ π exp{ J}h(θ) (which is proportional to the intensity function for the OUDP) M = 1 M =

34 Discussion Normalized Kernel-Weighted Random Measures offer a way to model dependent nonparametric processes: Flexible kernels and marginal processes allow a large range of models to be defined. Computation is helped by representations through finite activity Poisson processes for some elements. and include continuous process on the space of measures.

The Ornstein-Uhlenbeck Dirichlet Process and other time-varying processes for Bayesian nonparametric inference

The Ornstein-Uhlenbeck Dirichlet Process and other time-varying processes for Bayesian nonparametric inference The Ornstein-Uhlenbeck Dirichlet Process and other time-varying processes for Bayesian nonparametric inference J.E. Griffin Department of Statistics, University of Warwick, Coventry, CV4 7AL, U.K. Abstract

More information

Bayesian Nonparametric Modelling with the Dirichlet Process Regression Smoother

Bayesian Nonparametric Modelling with the Dirichlet Process Regression Smoother Bayesian Nonparametric Modelling with the Dirichlet Process Regression Smoother J. E. Griffin and M. F. J. Steel University of Warwick Bayesian Nonparametric Modelling with the Dirichlet Process Regression

More information

Bayesian nonparametric models of sparse and exchangeable random graphs

Bayesian nonparametric models of sparse and exchangeable random graphs Bayesian nonparametric models of sparse and exchangeable random graphs F. Caron & E. Fox Technical Report Discussion led by Esther Salazar Duke University May 16, 2014 (Reading group) May 16, 2014 1 /

More information

BAYESIAN NONPARAMETRIC MODELLING WITH THE DIRICHLET PROCESS REGRESSION SMOOTHER

BAYESIAN NONPARAMETRIC MODELLING WITH THE DIRICHLET PROCESS REGRESSION SMOOTHER Statistica Sinica 20 (2010), 1507-1527 BAYESIAN NONPARAMETRIC MODELLING WITH THE DIRICHLET PROCESS REGRESSION SMOOTHER J. E. Griffin and M. F. J. Steel University of Kent and University of Warwick Abstract:

More information

arxiv: v1 [stat.ml] 20 Nov 2012

arxiv: v1 [stat.ml] 20 Nov 2012 A survey of non-exchangeable priors for Bayesian nonparametric models arxiv:1211.4798v1 [stat.ml] 20 Nov 2012 Nicholas J. Foti 1 and Sinead Williamson 2 1 Department of Computer Science, Dartmouth College

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

Bayesian Nonparametric Modelling with the Dirichlet Process Regression Smoother

Bayesian Nonparametric Modelling with the Dirichlet Process Regression Smoother Bayesian Nonparametric Modelling with the Dirichlet Process Regression Smoother J.E. Griffin and M. F. J. Steel University of Kent and University of Warwick Abstract In this paper we discuss implementing

More information

Compound Random Measures

Compound Random Measures Compound Random Measures Jim Griffin (joint work with Fabrizio Leisen) University of Kent Introduction: Two clinical studies 3 CALGB8881 3 CALGB916 2 2 β 1 1 β 1 1 1 5 5 β 1 5 5 β Infinite mixture models

More information

On the posterior structure of NRMI

On the posterior structure of NRMI On the posterior structure of NRMI Igor Prünster University of Turin, Collegio Carlo Alberto and ICER Joint work with L.F. James and A. Lijoi Isaac Newton Institute, BNR Programme, 8th August 2007 Outline

More information

Slice Sampling Mixture Models

Slice Sampling Mixture Models Slice Sampling Mixture Models Maria Kalli, Jim E. Griffin & Stephen G. Walker Centre for Health Services Studies, University of Kent Institute of Mathematics, Statistics & Actuarial Science, University

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Bayesian non-parametric model to longitudinally predict churn

Bayesian non-parametric model to longitudinally predict churn Bayesian non-parametric model to longitudinally predict churn Bruno Scarpa Università di Padova Conference of European Statistics Stakeholders Methodologists, Producers and Users of European Statistics

More information

On the Support of MacEachern s Dependent Dirichlet Processes and Extensions

On the Support of MacEachern s Dependent Dirichlet Processes and Extensions Bayesian Analysis (2012) 7, Number 2, pp. 277 310 On the Support of MacEachern s Dependent Dirichlet Processes and Extensions Andrés F. Barrientos, Alejandro Jara and Fernando A. Quintana Abstract. We

More information

A Process over all Stationary Covariance Kernels

A Process over all Stationary Covariance Kernels A Process over all Stationary Covariance Kernels Andrew Gordon Wilson June 9, 0 Abstract I define a process over all stationary covariance kernels. I show how one might be able to perform inference that

More information

Asymptotics for posterior hazards

Asymptotics for posterior hazards Asymptotics for posterior hazards Pierpaolo De Blasi University of Turin 10th August 2007, BNR Workshop, Isaac Newton Intitute, Cambridge, UK Joint work with Giovanni Peccati (Université Paris VI) and

More information

Nonparametric Bayesian Methods - Lecture I

Nonparametric Bayesian Methods - Lecture I Nonparametric Bayesian Methods - Lecture I Harry van Zanten Korteweg-de Vries Institute for Mathematics CRiSM Masterclass, April 4-6, 2016 Overview of the lectures I Intro to nonparametric Bayesian statistics

More information

Construction of Dependent Dirichlet Processes based on Poisson Processes

Construction of Dependent Dirichlet Processes based on Poisson Processes Construction of Dependent Dirichlet Processes based on Poisson Processes Dahua Lin CSAIL, MIT dhlin@mit.edu Eric Grimson CSAIL, MIT welg@csail.mit.edu John Fisher CSAIL, MIT fisher@csail.mit.edu Abstract

More information

Ornstein-Uhlenbeck processes for geophysical data analysis

Ornstein-Uhlenbeck processes for geophysical data analysis Ornstein-Uhlenbeck processes for geophysical data analysis Semere Habtemicael Department of Mathematics North Dakota State University May 19, 2014 Outline 1 Introduction 2 Model 3 Characteristic function

More information

An adaptive truncation method for inference in Bayesian nonparametric models

An adaptive truncation method for inference in Bayesian nonparametric models An adaptive truncation method for inference in Bayesian nonparametric models arxiv:1308.045v [stat.co] 1 May 014 J.E. Griffin School of Mathematics, Statistics and Actuarial Science, University of Kent,

More information

Foundations of Nonparametric Bayesian Methods

Foundations of Nonparametric Bayesian Methods 1 / 27 Foundations of Nonparametric Bayesian Methods Part II: Models on the Simplex Peter Orbanz http://mlg.eng.cam.ac.uk/porbanz/npb-tutorial.html 2 / 27 Tutorial Overview Part I: Basics Part II: Models

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

CS Lecture 19. Exponential Families & Expectation Propagation

CS Lecture 19. Exponential Families & Expectation Propagation CS 6347 Lecture 19 Exponential Families & Expectation Propagation Discrete State Spaces We have been focusing on the case of MRFs over discrete state spaces Probability distributions over discrete spaces

More information

Bayesian Nonparametric Regression through Mixture Models

Bayesian Nonparametric Regression through Mixture Models Bayesian Nonparametric Regression through Mixture Models Sara Wade Bocconi University Advisor: Sonia Petrone October 7, 2013 Outline 1 Introduction 2 Enriched Dirichlet Process 3 EDP Mixtures for Regression

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

Bayesian Modeling of Conditional Distributions

Bayesian Modeling of Conditional Distributions Bayesian Modeling of Conditional Distributions John Geweke University of Iowa Indiana University Department of Economics February 27, 2007 Outline Motivation Model description Methods of inference Earnings

More information

Generalized Spatial Dirichlet Process Models

Generalized Spatial Dirichlet Process Models Generalized Spatial Dirichlet Process Models By JASON A. DUAN Institute of Statistics and Decision Sciences at Duke University, Durham, North Carolina, 27708-0251, U.S.A. jason@stat.duke.edu MICHELE GUINDANI

More information

Bayesian Nonparametric Autoregressive Models via Latent Variable Representation

Bayesian Nonparametric Autoregressive Models via Latent Variable Representation Bayesian Nonparametric Autoregressive Models via Latent Variable Representation Maria De Iorio Yale-NUS College Dept of Statistical Science, University College London Collaborators: Lifeng Ye (UCL, London,

More information

A Nonparametric Model for Stationary Time Series

A Nonparametric Model for Stationary Time Series A Nonparametric Model for Stationary Time Series Isadora Antoniano-Villalobos Bocconi University, Milan, Italy. isadora.antoniano@unibocconi.it Stephen G. Walker University of Texas at Austin, USA. s.g.walker@math.utexas.edu

More information

Bayesian Statistics. Debdeep Pati Florida State University. April 3, 2017

Bayesian Statistics. Debdeep Pati Florida State University. April 3, 2017 Bayesian Statistics Debdeep Pati Florida State University April 3, 2017 Finite mixture model The finite mixture of normals can be equivalently expressed as y i N(µ Si ; τ 1 S i ), S i k π h δ h h=1 δ h

More information

Nonparametric Bayesian modeling for dynamic ordinal regression relationships

Nonparametric Bayesian modeling for dynamic ordinal regression relationships Nonparametric Bayesian modeling for dynamic ordinal regression relationships Athanasios Kottas Department of Applied Mathematics and Statistics, University of California, Santa Cruz Joint work with Maria

More information

Bayesian nonparametric models for bipartite graphs

Bayesian nonparametric models for bipartite graphs Bayesian nonparametric models for bipartite graphs François Caron Department of Statistics, Oxford Statistics Colloquium, Harvard University November 11, 2013 F. Caron 1 / 27 Bipartite networks Readers/Customers

More information

Spatial Normalized Gamma Process

Spatial Normalized Gamma Process Spatial Normalized Gamma Process Vinayak Rao Yee Whye Teh Presented at NIPS 2009 Discussion and Slides by Eric Wang June 23, 2010 Outline Introduction Motivation The Gamma Process Spatial Normalized Gamma

More information

GARCH processes continuous counterparts (Part 2)

GARCH processes continuous counterparts (Part 2) GARCH processes continuous counterparts (Part 2) Alexander Lindner Centre of Mathematical Sciences Technical University of Munich D 85747 Garching Germany lindner@ma.tum.de http://www-m1.ma.tum.de/m4/pers/lindner/

More information

Hybrid Dirichlet processes for functional data

Hybrid Dirichlet processes for functional data Hybrid Dirichlet processes for functional data Sonia Petrone Università Bocconi, Milano Joint work with Michele Guindani - U.T. MD Anderson Cancer Center, Houston and Alan Gelfand - Duke University, USA

More information

A marginal sampler for σ-stable Poisson-Kingman mixture models

A marginal sampler for σ-stable Poisson-Kingman mixture models A marginal sampler for σ-stable Poisson-Kingman mixture models joint work with Yee Whye Teh and Stefano Favaro María Lomelí Gatsby Unit, University College London Talk at the BNP 10 Raleigh, North Carolina

More information

Lecture 16-17: Bayesian Nonparametrics I. STAT 6474 Instructor: Hongxiao Zhu

Lecture 16-17: Bayesian Nonparametrics I. STAT 6474 Instructor: Hongxiao Zhu Lecture 16-17: Bayesian Nonparametrics I STAT 6474 Instructor: Hongxiao Zhu Plan for today Why Bayesian Nonparametrics? Dirichlet Distribution and Dirichlet Processes. 2 Parameter and Patterns Reference:

More information

Bayesian Point Process Modeling for Extreme Value Analysis, with an Application to Systemic Risk Assessment in Correlated Financial Markets

Bayesian Point Process Modeling for Extreme Value Analysis, with an Application to Systemic Risk Assessment in Correlated Financial Markets Bayesian Point Process Modeling for Extreme Value Analysis, with an Application to Systemic Risk Assessment in Correlated Financial Markets Athanasios Kottas Department of Applied Mathematics and Statistics,

More information

STAT Advanced Bayesian Inference

STAT Advanced Bayesian Inference 1 / 32 STAT 625 - Advanced Bayesian Inference Meng Li Department of Statistics Jan 23, 218 The Dirichlet distribution 2 / 32 θ Dirichlet(a 1,...,a k ) with density p(θ 1,θ 2,...,θ k ) = k j=1 Γ(a j) Γ(

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information

Bayesian inference with stochastic volatility models using continuous superpositions of non-gaussian Ornstein-Uhlenbeck processes

Bayesian inference with stochastic volatility models using continuous superpositions of non-gaussian Ornstein-Uhlenbeck processes MPRA Munich Personal RePEc Archive Bayesian inference with stochastic volatility models using continuous superpositions of non-gaussian Ornstein-Uhlenbeck processes Jim Griffin and Mark F.J. Steel University

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

Bayesian Nonparametrics: Dirichlet Process

Bayesian Nonparametrics: Dirichlet Process Bayesian Nonparametrics: Dirichlet Process Yee Whye Teh Gatsby Computational Neuroscience Unit, UCL http://www.gatsby.ucl.ac.uk/~ywteh/teaching/npbayes2012 Dirichlet Process Cornerstone of modern Bayesian

More information

Lecture 3a: Dirichlet processes

Lecture 3a: Dirichlet processes Lecture 3a: Dirichlet processes Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London c.archambeau@cs.ucl.ac.uk Advanced Topics

More information

Flexible Regression Modeling using Bayesian Nonparametric Mixtures

Flexible Regression Modeling using Bayesian Nonparametric Mixtures Flexible Regression Modeling using Bayesian Nonparametric Mixtures Athanasios Kottas Department of Applied Mathematics and Statistics University of California, Santa Cruz Department of Statistics Brigham

More information

Asymptotics for posterior hazards

Asymptotics for posterior hazards Asymptotics for posterior hazards Igor Prünster University of Turin, Collegio Carlo Alberto and ICER Joint work with P. Di Biasi and G. Peccati Workshop on Limit Theorems and Applications Paris, 16th January

More information

Dynamic models. Dependent data The AR(p) model The MA(q) model Hidden Markov models. 6 Dynamic models

Dynamic models. Dependent data The AR(p) model The MA(q) model Hidden Markov models. 6 Dynamic models 6 Dependent data The AR(p) model The MA(q) model Hidden Markov models Dependent data Dependent data Huge portion of real-life data involving dependent datapoints Example (Capture-recapture) capture histories

More information

Construction of Dependent Dirichlet Processes based on Poisson Processes

Construction of Dependent Dirichlet Processes based on Poisson Processes 1 / 31 Construction of Dependent Dirichlet Processes based on Poisson Processes Dahua Lin Eric Grimson John Fisher CSAIL MIT NIPS 2010 Outstanding Student Paper Award Presented by Shouyuan Chen Outline

More information

Bayesian Nonparametrics: some contributions to construction and properties of prior distributions

Bayesian Nonparametrics: some contributions to construction and properties of prior distributions Bayesian Nonparametrics: some contributions to construction and properties of prior distributions Annalisa Cerquetti Collegio Nuovo, University of Pavia, Italy Interview Day, CETL Lectureship in Statistics,

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

A short introduction to INLA and R-INLA

A short introduction to INLA and R-INLA A short introduction to INLA and R-INLA Integrated Nested Laplace Approximation Thomas Opitz, BioSP, INRA Avignon Workshop: Theory and practice of INLA and SPDE November 7, 2018 2/21 Plan for this talk

More information

Kernel Stick-Breaking Processes

Kernel Stick-Breaking Processes Kernel Stick-Breaking Processes David B. Dunson 1 and Ju-Hyun Park 1,2 1 Biostatistics Branch, National Institute of Environmental Health Sciences U.S. National Institute of Health P.O. Box 12233, RTP,

More information

The Laplace driven moving average a non-gaussian stationary process

The Laplace driven moving average a non-gaussian stationary process The Laplace driven moving average a non-gaussian stationary process 1, Krzysztof Podgórski 2, Igor Rychlik 1 1 Mathematical Sciences, Mathematical Statistics, Chalmers 2 Centre for Mathematical Sciences,

More information

Physician Performance Assessment / Spatial Inference of Pollutant Concentrations

Physician Performance Assessment / Spatial Inference of Pollutant Concentrations Physician Performance Assessment / Spatial Inference of Pollutant Concentrations Dawn Woodard Operations Research & Information Engineering Cornell University Johns Hopkins Dept. of Biostatistics, April

More information

Modeling conditional distributions with mixture models: Applications in finance and financial decision-making

Modeling conditional distributions with mixture models: Applications in finance and financial decision-making Modeling conditional distributions with mixture models: Applications in finance and financial decision-making John Geweke University of Iowa, USA Journal of Applied Econometrics Invited Lecture Università

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

A Brief Overview of Nonparametric Bayesian Models

A Brief Overview of Nonparametric Bayesian Models A Brief Overview of Nonparametric Bayesian Models Eurandom Zoubin Ghahramani Department of Engineering University of Cambridge, UK zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin Also at Machine

More information

Order-q stochastic processes. Bayesian nonparametric applications

Order-q stochastic processes. Bayesian nonparametric applications Order-q dependent stochastic processes in Bayesian nonparametric applications Department of Statistics, ITAM, Mexico BNP 2015, Raleigh, NC, USA 25 June, 2015 Contents Order-1 process Application in survival

More information

Spatial Statistics with Image Analysis. Lecture L08. Computer exercise 3. Lecture 8. Johan Lindström. November 25, 2016

Spatial Statistics with Image Analysis. Lecture L08. Computer exercise 3. Lecture 8. Johan Lindström. November 25, 2016 C3 Repetition Creating Q Spectral Non-grid Spatial Statistics with Image Analysis Lecture 8 Johan Lindström November 25, 216 Johan Lindström - johanl@maths.lth.se FMSN2/MASM25L8 1/39 Lecture L8 C3 Repetition

More information

Partial factor modeling: predictor-dependent shrinkage for linear regression

Partial factor modeling: predictor-dependent shrinkage for linear regression modeling: predictor-dependent shrinkage for linear Richard Hahn, Carlos Carvalho and Sayan Mukherjee JASA 2013 Review by Esther Salazar Duke University December, 2013 Factor framework The factor framework

More information

New Dirichlet Mean Identities

New Dirichlet Mean Identities Hong Kong University of Science and Technology Isaac Newton Institute, August 10, 2007 Origins CIFARELLI, D. M. and REGAZZINI, E. (1979). Considerazioni generali sull impostazione bayesiana di problemi

More information

A Simple Proof of the Stick-Breaking Construction of the Dirichlet Process

A Simple Proof of the Stick-Breaking Construction of the Dirichlet Process A Simple Proof of the Stick-Breaking Construction of the Dirichlet Process John Paisley Department of Computer Science Princeton University, Princeton, NJ jpaisley@princeton.edu Abstract We give a simple

More information

Modeling conditional distributions with mixture models: Theory and Inference

Modeling conditional distributions with mixture models: Theory and Inference Modeling conditional distributions with mixture models: Theory and Inference John Geweke University of Iowa, USA Journal of Applied Econometrics Invited Lecture Università di Venezia Italia June 2, 2005

More information

MA6451 PROBABILITY AND RANDOM PROCESSES

MA6451 PROBABILITY AND RANDOM PROCESSES MA6451 PROBABILITY AND RANDOM PROCESSES UNIT I RANDOM VARIABLES 1.1 Discrete and continuous random variables 1. Show that the function is a probability density function of a random variable X. (Apr/May

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Nonparametric Function Estimation with Infinite-Order Kernels

Nonparametric Function Estimation with Infinite-Order Kernels Nonparametric Function Estimation with Infinite-Order Kernels Arthur Berg Department of Statistics, University of Florida March 15, 2008 Kernel Density Estimation (IID Case) Let X 1,..., X n iid density

More information

Modelling and computation using NCoRM mixtures for. density regression

Modelling and computation using NCoRM mixtures for. density regression Modelling and computation using NCoRM mixtures for density regression arxiv:168.874v3 [stat.me] 31 Aug 217 Jim E. Griffin and Fabrizio Leisen University of Kent Abstract Normalized compound random measures

More information

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016 Log Gaussian Cox Processes Chi Group Meeting February 23, 2016 Outline Typical motivating application Introduction to LGCP model Brief overview of inference Applications in my work just getting started

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Dirichlet Process. Yee Whye Teh, University College London

Dirichlet Process. Yee Whye Teh, University College London Dirichlet Process Yee Whye Teh, University College London Related keywords: Bayesian nonparametrics, stochastic processes, clustering, infinite mixture model, Blackwell-MacQueen urn scheme, Chinese restaurant

More information

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information

Colouring and breaking sticks, pairwise coincidence losses, and clustering expression profiles

Colouring and breaking sticks, pairwise coincidence losses, and clustering expression profiles Colouring and breaking sticks, pairwise coincidence losses, and clustering expression profiles Peter Green and John Lau University of Bristol P.J.Green@bristol.ac.uk Isaac Newton Institute, 11 December

More information

Supplement to A Hierarchical Approach for Fitting Curves to Response Time Measurements

Supplement to A Hierarchical Approach for Fitting Curves to Response Time Measurements Supplement to A Hierarchical Approach for Fitting Curves to Response Time Measurements Jeffrey N. Rouder Francis Tuerlinckx Paul L. Speckman Jun Lu & Pablo Gomez May 4 008 1 The Weibull regression model

More information

Minimax Estimation of Kernel Mean Embeddings

Minimax Estimation of Kernel Mean Embeddings Minimax Estimation of Kernel Mean Embeddings Bharath K. Sriperumbudur Department of Statistics Pennsylvania State University Gatsby Computational Neuroscience Unit May 4, 2016 Collaborators Dr. Ilya Tolstikhin

More information

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University Econ 690 Purdue University In virtually all of the previous lectures, our models have made use of normality assumptions. From a computational point of view, the reason for this assumption is clear: combined

More information

Truncation error of a superposed gamma process in a decreasing order representation

Truncation error of a superposed gamma process in a decreasing order representation Truncation error of a superposed gamma process in a decreasing order representation Julyan Arbel Inria Grenoble, Université Grenoble Alpes julyan.arbel@inria.fr Igor Prünster Bocconi University, Milan

More information

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions Pattern Recognition and Machine Learning Chapter 2: Probability Distributions Cécile Amblard Alex Kläser Jakob Verbeek October 11, 27 Probability Distributions: General Density Estimation: given a finite

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

A Fully Nonparametric Modeling Approach to. BNP Binary Regression

A Fully Nonparametric Modeling Approach to. BNP Binary Regression A Fully Nonparametric Modeling Approach to Binary Regression Maria Department of Applied Mathematics and Statistics University of California, Santa Cruz SBIES, April 27-28, 2012 Outline 1 2 3 Simulation

More information

Dependent mixture models: clustering and borrowing information

Dependent mixture models: clustering and borrowing information ISSN 2279-9362 Dependent mixture models: clustering and borrowing information Antonio Lijoi Bernardo Nipoti Igor Pruenster No. 32 June 213 www.carloalberto.org/research/working-papers 213 by Antonio Lijoi,

More information

Models for models. Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research

Models for models. Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Models for models Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Outline Statistical models and tools Spatial fields (Wavelets) Climate regimes (Regression and clustering)

More information

Nonparmeteric Bayes & Gaussian Processes. Baback Moghaddam Machine Learning Group

Nonparmeteric Bayes & Gaussian Processes. Baback Moghaddam Machine Learning Group Nonparmeteric Bayes & Gaussian Processes Baback Moghaddam baback@jpl.nasa.gov Machine Learning Group Outline Bayesian Inference Hierarchical Models Model Selection Parametric vs. Nonparametric Gaussian

More information

Fitting Narrow Emission Lines in X-ray Spectra

Fitting Narrow Emission Lines in X-ray Spectra Outline Fitting Narrow Emission Lines in X-ray Spectra Taeyoung Park Department of Statistics, University of Pittsburgh October 11, 2007 Outline of Presentation Outline This talk has three components:

More information

CTDL-Positive Stable Frailty Model

CTDL-Positive Stable Frailty Model CTDL-Positive Stable Frailty Model M. Blagojevic 1, G. MacKenzie 2 1 Department of Mathematics, Keele University, Staffordshire ST5 5BG,UK and 2 Centre of Biostatistics, University of Limerick, Ireland

More information

Towards inference for skewed alpha stable Levy processes

Towards inference for skewed alpha stable Levy processes Towards inference for skewed alpha stable Levy processes Simon Godsill and Tatjana Lemke Signal Processing and Communications Lab. University of Cambridge www-sigproc.eng.cam.ac.uk/~sjg Overview Motivation

More information

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation A Framework for Daily Spatio-Temporal Stochastic Weather Simulation, Rick Katz, Balaji Rajagopalan Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric

More information

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 7: Learning Fully Observed BNs Theo Rekatsinas 1 Exponential family: a basic building block For a numeric random variable X p(x ) =h(x)exp T T (x) A( ) = 1

More information

Markov chain Monte Carlo

Markov chain Monte Carlo 1 / 26 Markov chain Monte Carlo Timothy Hanson 1 and Alejandro Jara 2 1 Division of Biostatistics, University of Minnesota, USA 2 Department of Statistics, Universidad de Concepción, Chile IAP-Workshop

More information

A comparative review of variable selection techniques for covariate dependent Dirichlet process mixture models

A comparative review of variable selection techniques for covariate dependent Dirichlet process mixture models A comparative review of variable selection techniques for covariate dependent Dirichlet process mixture models William Barcella 1, Maria De Iorio 1 and Gianluca Baio 1 1 Department of Statistical Science,

More information

Bayesian nonparametric latent feature models

Bayesian nonparametric latent feature models Bayesian nonparametric latent feature models Indian Buffet process, beta process, and related models François Caron Department of Statistics, Oxford Applied Bayesian Statistics Summer School Como, Italy

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

Bayesian Sparse Linear Regression with Unknown Symmetric Error

Bayesian Sparse Linear Regression with Unknown Symmetric Error Bayesian Sparse Linear Regression with Unknown Symmetric Error Minwoo Chae 1 Joint work with Lizhen Lin 2 David B. Dunson 3 1 Department of Mathematics, The University of Texas at Austin 2 Department of

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture 15-7th March Arnaud Doucet

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture 15-7th March Arnaud Doucet Stat 535 C - Statistical Computing & Monte Carlo Methods Lecture 15-7th March 2006 Arnaud Doucet Email: arnaud@cs.ubc.ca 1 1.1 Outline Mixture and composition of kernels. Hybrid algorithms. Examples Overview

More information

Kernel Sequential Monte Carlo

Kernel Sequential Monte Carlo Kernel Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) * equal contribution April 25, 2016 1 / 37 Section

More information

39th Annual ISMS Marketing Science Conference University of Southern California, June 8, 2017

39th Annual ISMS Marketing Science Conference University of Southern California, June 8, 2017 Permuted and IROM Department, McCombs School of Business The University of Texas at Austin 39th Annual ISMS Marketing Science Conference University of Southern California, June 8, 2017 1 / 36 Joint work

More information

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution Outline A short review on Bayesian analysis. Binomial, Multinomial, Normal, Beta, Dirichlet Posterior mean, MAP, credible interval, posterior distribution Gibbs sampling Revisit the Gaussian mixture model

More information

Kernels for Automatic Pattern Discovery and Extrapolation

Kernels for Automatic Pattern Discovery and Extrapolation Kernels for Automatic Pattern Discovery and Extrapolation Andrew Gordon Wilson agw38@cam.ac.uk mlg.eng.cam.ac.uk/andrew University of Cambridge Joint work with Ryan Adams (Harvard) 1 / 21 Pattern Recognition

More information

Bayesian Nonparametric Inference Methods for Mean Residual Life Functions

Bayesian Nonparametric Inference Methods for Mean Residual Life Functions Bayesian Nonparametric Inference Methods for Mean Residual Life Functions Valerie Poynor Department of Applied Mathematics and Statistics, University of California, Santa Cruz April 28, 212 1/3 Outline

More information

Gaussian Process Regression

Gaussian Process Regression Gaussian Process Regression 4F1 Pattern Recognition, 21 Carl Edward Rasmussen Department of Engineering, University of Cambridge November 11th - 16th, 21 Rasmussen (Engineering, Cambridge) Gaussian Process

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods Tomas McKelvey and Lennart Svensson Signal Processing Group Department of Signals and Systems Chalmers University of Technology, Sweden November 26, 2012 Today s learning

More information