Kernel adaptive Sequential Monte Carlo

Size: px
Start display at page:

Download "Kernel adaptive Sequential Monte Carlo"

Transcription

1 Kernel adaptive Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) December 7, / 36

2 Section 1 Outline 2 / 36

3 1 Introduction 2 Kernel Adaptive SMC (KASS) 3 Implementation Details 4 Evaluation 5 Conclusion 3 / 36

4 Section 2 Introduction 4 / 36

5 Sequential Monte Carlo Samplers Approximate integrals with respect to target distribution π T Build upon Importance Sampling: approximate integral of h wrt density π T using samples following density q (under certain conditions): h(x)dπ T (x) = h(x) π T (x) q(x) dq(x) Given prior π 0, build sequence π 0,..., π i,... π T such that π i+1 is closer to π T than π i (δ(π i+1, π T ) < δ(π i, π T ) for some divergence δ) sample from π i can approximate π i+1 well using importance weight function w( ) = π i+1 ( )/π i ( ) 5 / 36

6 Sequential Monte Carlo Samplers At i = 0 Using proposal density q 0, generate particles {(w 0,j, X 0,j )} N j=1 where w 0,j = π 0 (X 0,j )/q 0 (X 0,j ) importance resampling, resulting in N equally weighted particles {(1/N, X 0,j )} N j=1 rejuvenation move for each X 0,j by Markov Kernel leaving π 0 invariant At i > 0 approximate π i by {(π i (X i 1,j )/π i 1 (X i 1,j ), X i 1,j )} N j=1 resampling rejuvenation leaving π i invariant if π i π T, repeat 6 / 36

7 Sequential Monte Carlo Samplers estimate evidence Z T of π T by Z T Z 0 T i=1 1 N j w i,j (aka normalizing constant, marginal likelihood) Can be adaptive in rejuvenation steps without diminishing adaptation as required in adaptive MCMC Will construct rejuvenation using RKHS-embedding of particles 7 / 36

8 Intractable Likelihoods and Evidence in nonconjugate latent variable models, intractable likelihoods arise when likelihood can be estimated unbiasedly, SMC still valid simple case: estimate likelihood using IS or SMC, leads to IS 2 (Tran et al., 2013) and SMC 2 (Chopin et al., 2011) results in noisy Importance Weights, but evidence approximation is still valid (Tran et al., 2013, Lemma 3) 8 / 36

9 Nonlinear proposals based on positive definite Kernels Kernel Adaptive Metropolis Hastings (KAMH) was introduced in Sejdinovic et al. (2014) Given previous samples from target distribution π, draw new ones more efficiently Each sample mapped to functional in Reproducing Kernel Hilbert Space (RKHS) H k using pd kernel k(, ) Fit Gaussian q k in H k with µ = Σ = k(, x)dπ(x) 1 n n k(, X i ) i=1 k(, x) k(, x)dπ(x) µ µ 9 / 36

10 Nonlinear proposals based on positive definite Kernels Draw sample from q k and project back into original space, use as proposal in MH KAMH set in adaptive MCMC, using vanishing adaptation (e.g. vanishing probability to use new samples for computing adaptive proposal) Depending on used positive definite kernel, can adapt to nonlinear targets 10 / 36

11 Section 3 Kernel Adaptive SMC (KASS) 11 / 36

12 Adaptive SMC Sampler SMC works on a sequence of targets, so we use an artificial sequence of distributions leading from prior π 0 to posterior π T parameters of rejuvenation kernel can be adapted before rejuvenation Fearnhead and Taylor (2013) used global Gaussian approximation as proposal in Metropolis Hastings rejuvenation resulting in adaptive SMC sampler (ASMC) 12 / 36

13 Kernel adaptive rejuvenation instead, we use RKHS-proposal projected into input space (in closed form) given unweighted particles { X i } N i=1, proposal at X j is q KAMH ( X j ) = N ( X j, ν 2 M X, X j CM X, X j + γ 2 I )) where C = I 1 n 11 is centering matrix and M X, Xj = 2[ x k(x, X 1 ) x= Xj,..., x k(x, X N ) x= Xj ] results in ASMC using linear kernel k(x, X ) = X X locally adaptive fit using Gaussian RBF k(x, X ) = exp ( X X 2 ) 2σ 2 13 / 36

14 KASS versus ASMC green: ASMC / KASS with linear kernel red: KASS with Gaussian RBF kernel 14 / 36

15 Related Work Most direct relation to ASMC (which is a special case) All SMC samplers related to Annealed Importance Sampling which however does not use resampling (Neal, 1998) Local Adaptive Importance Sampling (Givens and Raferty, 1996, LAIS) has similar locally adaptive effect at each iteration compute pairwise distances between Importance Samples use k nearest neighbors for fitting local Gaussian proposal no resampling steps mean decrease in sampling efficiency which is exponential in dimensionality of problem 15 / 36

16 Section 4 Implementation Details 16 / 36

17 Construction of Target Sequence For artificial distribution sequence we used geometric bridge π i π 1 ρ i 0 π ρ i T where (ρ i ) T i=1 is an increasing sequence satisfying ρ T = 1 another standard choice in Bayesian Inference is adding datapoints one after another π i (X ) = π(x d 1,..., d ρi D ) resulting in Iterated Batch Importance Sampling (Chopin, 2002, IBIS) 17 / 36

18 Stochastic approximation tuning of ν 2 KASS free scaling parameter ν 2 can be tuned for optimal scaling Fearnhead and Taylor (2013) use auxiliary variable approach with ESJD criterion We used stochastic approximation framework of Andrieu and Thoms (2008) instead asymptotically optimal acceptance rate for Random Walk proposals is α opt = (Rosenthal, 2011) after rejuvenation, Rao-Blackwellized estimator ˆα i available by averaging MH acceptance probabilities tune ν 2 by ν 2 i+1 = ν 2 i + λ i (ˆα i α opt ) for non-increasing λ 1,..., λ T 18 / 36

19 Section 5 Evaluation 19 / 36

20 Synthetic nonlinear target (Banana) Synthetic target: Banana distribution in 8 dimensions, i.e. Gaussian with twisted second dimension / 36

21 Synthetic nonlinear target (Banana) Compare performance of Random-Walk rejuvenation with asymptotically optimal scaling (ν = 2.38/ d), ASMC and KASS with Gaussian RBF kernel Fixed learning rate of λ = 0.1 to adapt scale parameter using stochastic approximation Geometric bridge of length Monte Carlo runs Report Maximum Mean Discrepancy (MMD) using polynomial kernel of order 3: distance of moments up to order 3 between ground truth samples and samples produced by each method 21 / 36

22 Synthetic nonlinear target (Banana) MMD to benchmark sample Population size KASS RWSMC ASMC Figure: Improved convergence of all mixed moments up to order 3 of KASS compared to ASMC and RW-SMC. 22 / 36

23 Sensor network localization Applied problem: infer locations of S = 3 sensors in a sensor network measuring distance to each other Known position for B = 2 base sensors Measurements successful with probability decaying exponentially in squared distance (otherwise unobserved) ( ( Z i,j Binom 1, exp x i x j 2 )) Measurements corrupted by Gaussian noise { N ( x i x j, 0.02) if Z i,j = 1 Y i,j Y i,j = 0 else 23 / 36

24 Sensor network localization run KASS and ASMC with geometric bridge of length 50 and 10, 000 particles, fixed learning rate λ i = 1 run KAMH for 50 10, 000 iterations, discard first half as burn-in, diminishing adaptation λ i = 1/ i initialize both algorithms with samples from prior qualitative comparison of KASS and closest adaptive MCMC algorithm KAMH 24 / 36

25 Sensor network localization: KAMH adaptive MCMC 1.0 MCMC (KAMH) Figure: Posterior samples of unknown sensor locations (in color) by KAMH. Set-up of the true sensor locations (black dots) and base sensors (black stars) causes uncertainty in posterior. 25 / 36

26 Sensor network localization: KASS adaptive SMC 1.0 SMC (KASS) Figure: Posterior samples of unknown sensor locations (in color) by KASS. Set-up of the true sensor locations (black dots) and base sensors (black stars) causes uncertainty in posterior. 26 / 36

27 Sensor network localization MCMC algorithm not able to traverse all the modes without special care (e.g. Wormhole HMC by Lan et al., 2014) KASS and ASMC perform similarly in this setup with S = 2 (higher uncertainty), 1000 particles MMD of 0.76 ± 0.4 for KASS 0.94 ± 0.7 for ASMC 27 / 36

28 Evidence approximation for intractable likelihoods in classification using Gaussian Processes (GP), logistic transformation renders likelihood intractable likelihood can be unbiasedly estimated using Importance Sampling from EP approximation estimate model evidence when using ARD kernel in the GP particularly hard because noisy likelihoods means noisy importance weights ground truth by averaging evidence estimate over 20 long running SMC algorithms 28 / 36

29 Evidence approximation for intractable likelihoods Figure: Ground truth in red, KASS in blue, ASMC in green. 29 / 36

30 Section 6 Conclusion 30 / 36

31 Conclusion (1) Developed Kernel Adaptive SMC sampler for static models KASS exploits local covariance of target through RKHS-informed rejuvenation proposals combines these with general SMC advantages for multimodal targets and evidence estimation especially attractive when likelihoods are intractable 31 / 36

32 Conclusion (2) evaluated on a strongly twisted Banana where it was clearly better than ASMC KASS enables exploring multiple modes in nonlinear sensor KASS exhibits less variance than ASMC in evidence estimation for GP classification evidence approximation even in case of intractable likelihoods 32 / 36

33 Thanks! 33 / 36

34 Literature I Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive MCMC. Statistics and Computing, 18(November): Chopin, N. (2002). A sequential particle filter method for static models. Biometrika, 89(3): Chopin, N., Jacob, P. E., and Papaspiliopoulos, O. (2011). SMCˆ2: an efficient algorithm for sequential analysis of state-space models. 0(1):1 27. Fearnhead, P. and Taylor, B. M. (2013). An Adaptive Sequential Monte Carlo Sampler. Bayesian Analysis, (2): Givens, G. H. and Raferty, A. E. (1996). Local Adaptive Importance Sampling for Multivariate Densities with Strong Nonlinear Relationships. Journal of the American Statistical Association, 91(433): / 36

35 Literature II Lan, S., Streets, J., and Shahbaba, B. (2014). Wormhole hamiltonian monte carlo. In Twenty-Eighth AAAI Conference on Artificial Intelligence. Neal, R. (1998). Annealed Importance Sampling. Technical report, University of Toronto. Rosenthal, J. S. (2011). Optimal Proposal Distributions and Adaptive MCMC. In Handbook of Markov Chain Monte Carlo, chapter 4, pages Chapman & Hall. Sejdinovic, D., Strathmann, H., Lomeli, M. G., Andrieu, C., and Gretton, A. (2014). Kernel Adaptive Metropolis-Hastings. In International Conference on Machine Learning (ICML), pages / 36

36 Literature III Tran, M.-N., Scharth, M., Pitt, M. K., and Kohn, R. (2013). Importance sampling squared for Bayesian inference in latent variable models. pages / 36

Kernel Sequential Monte Carlo

Kernel Sequential Monte Carlo Kernel Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) * equal contribution April 25, 2016 1 / 37 Section

More information

Adaptive HMC via the Infinite Exponential Family

Adaptive HMC via the Infinite Exponential Family Adaptive HMC via the Infinite Exponential Family Arthur Gretton Gatsby Unit, CSML, University College London RegML, 2017 Arthur Gretton (Gatsby Unit, UCL) Adaptive HMC via the Infinite Exponential Family

More information

Kernel Adaptive Metropolis-Hastings

Kernel Adaptive Metropolis-Hastings Kernel Adaptive Metropolis-Hastings Arthur Gretton,?? Gatsby Unit, CSML, University College London NIPS, December 2015 Arthur Gretton (Gatsby Unit, UCL) Kernel Adaptive Metropolis-Hastings 12/12/2015 1

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Markov Chain Monte Carlo Lecture 4

Markov Chain Monte Carlo Lecture 4 The local-trap problem refers to that in simulations of a complex system whose energy landscape is rugged, the sampler gets trapped in a local energy minimum indefinitely, rendering the simulation ineffective.

More information

Inference in state-space models with multiple paths from conditional SMC

Inference in state-space models with multiple paths from conditional SMC Inference in state-space models with multiple paths from conditional SMC Sinan Yıldırım (Sabancı) joint work with Christophe Andrieu (Bristol), Arnaud Doucet (Oxford) and Nicolas Chopin (ENSAE) September

More information

Afternoon Meeting on Bayesian Computation 2018 University of Reading

Afternoon Meeting on Bayesian Computation 2018 University of Reading Gabriele Abbati 1, Alessra Tosi 2, Seth Flaxman 3, Michael A Osborne 1 1 University of Oxford, 2 Mind Foundry Ltd, 3 Imperial College London Afternoon Meeting on Bayesian Computation 2018 University of

More information

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters Exercises Tutorial at ICASSP 216 Learning Nonlinear Dynamical Models Using Particle Filters Andreas Svensson, Johan Dahlin and Thomas B. Schön March 18, 216 Good luck! 1 [Bootstrap particle filter for

More information

Paul Karapanagiotidis ECO4060

Paul Karapanagiotidis ECO4060 Paul Karapanagiotidis ECO4060 The way forward 1) Motivate why Markov-Chain Monte Carlo (MCMC) is useful for econometric modeling 2) Introduce Markov-Chain Monte Carlo (MCMC) - Metropolis-Hastings (MH)

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

A Review of Pseudo-Marginal Markov Chain Monte Carlo

A Review of Pseudo-Marginal Markov Chain Monte Carlo A Review of Pseudo-Marginal Markov Chain Monte Carlo Discussed by: Yizhe Zhang October 21, 2016 Outline 1 Overview 2 Paper review 3 experiment 4 conclusion Motivation & overview Notation: θ denotes the

More information

Controlled sequential Monte Carlo

Controlled sequential Monte Carlo Controlled sequential Monte Carlo Jeremy Heng, Department of Statistics, Harvard University Joint work with Adrian Bishop (UTS, CSIRO), George Deligiannidis & Arnaud Doucet (Oxford) Bayesian Computation

More information

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 18, 2015 1 / 45 Resources and Attribution Image credits,

More information

Sequential Monte Carlo Samplers for Applications in High Dimensions

Sequential Monte Carlo Samplers for Applications in High Dimensions Sequential Monte Carlo Samplers for Applications in High Dimensions Alexandros Beskos National University of Singapore KAUST, 26th February 2014 Joint work with: Dan Crisan, Ajay Jasra, Nik Kantas, Alex

More information

Computer Practical: Metropolis-Hastings-based MCMC

Computer Practical: Metropolis-Hastings-based MCMC Computer Practical: Metropolis-Hastings-based MCMC Andrea Arnold and Franz Hamilton North Carolina State University July 30, 2016 A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, 2016 1 / 19 Markov

More information

Pseudo-marginal MCMC methods for inference in latent variable models

Pseudo-marginal MCMC methods for inference in latent variable models Pseudo-marginal MCMC methods for inference in latent variable models Arnaud Doucet Department of Statistics, Oxford University Joint work with George Deligiannidis (Oxford) & Mike Pitt (Kings) MCQMC, 19/08/2016

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

An Adaptive Sequential Monte Carlo Sampler

An Adaptive Sequential Monte Carlo Sampler Bayesian Analysis (2013) 8, Number 2, pp. 411 438 An Adaptive Sequential Monte Carlo Sampler Paul Fearnhead * and Benjamin M. Taylor Abstract. Sequential Monte Carlo (SMC) methods are not only a popular

More information

Brief introduction to Markov Chain Monte Carlo

Brief introduction to Markov Chain Monte Carlo Brief introduction to Department of Probability and Mathematical Statistics seminar Stochastic modeling in economics and finance November 7, 2011 Brief introduction to Content 1 and motivation Classical

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

Markov chain Monte Carlo methods for visual tracking

Markov chain Monte Carlo methods for visual tracking Markov chain Monte Carlo methods for visual tracking Ray Luo rluo@cory.eecs.berkeley.edu Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Contents in latter part Linear Dynamical Systems What is different from HMM? Kalman filter Its strength and limitation Particle Filter

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Adaptive Monte Carlo methods

Adaptive Monte Carlo methods Adaptive Monte Carlo methods Jean-Michel Marin Projet Select, INRIA Futurs, Université Paris-Sud joint with Randal Douc (École Polytechnique), Arnaud Guillin (Université de Marseille) and Christian Robert

More information

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling 10-708: Probabilistic Graphical Models 10-708, Spring 2014 27 : Distributed Monte Carlo Markov Chain Lecturer: Eric P. Xing Scribes: Pengtao Xie, Khoa Luu In this scribe, we are going to review the Parallel

More information

New Insights into History Matching via Sequential Monte Carlo

New Insights into History Matching via Sequential Monte Carlo New Insights into History Matching via Sequential Monte Carlo Associate Professor Chris Drovandi School of Mathematical Sciences ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS)

More information

MCMC and Gibbs Sampling. Kayhan Batmanghelich

MCMC and Gibbs Sampling. Kayhan Batmanghelich MCMC and Gibbs Sampling Kayhan Batmanghelich 1 Approaches to inference l Exact inference algorithms l l l The elimination algorithm Message-passing algorithm (sum-product, belief propagation) The junction

More information

An ABC interpretation of the multiple auxiliary variable method

An ABC interpretation of the multiple auxiliary variable method School of Mathematical and Physical Sciences Department of Mathematics and Statistics Preprint MPS-2016-07 27 April 2016 An ABC interpretation of the multiple auxiliary variable method by Dennis Prangle

More information

SMC 2 : an efficient algorithm for sequential analysis of state-space models

SMC 2 : an efficient algorithm for sequential analysis of state-space models SMC 2 : an efficient algorithm for sequential analysis of state-space models N. CHOPIN 1, P.E. JACOB 2, & O. PAPASPILIOPOULOS 3 1 ENSAE-CREST 2 CREST & Université Paris Dauphine, 3 Universitat Pompeu Fabra

More information

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu Lecture: Gaussian Process Regression STAT 6474 Instructor: Hongxiao Zhu Motivation Reference: Marc Deisenroth s tutorial on Robot Learning. 2 Fast Learning for Autonomous Robots with Gaussian Processes

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning for for Advanced Topics in California Institute of Technology April 20th, 2017 1 / 50 Table of Contents for 1 2 3 4 2 / 50 History of methods for Enrico Fermi used to calculate incredibly accurate predictions

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Learning the hyper-parameters. Luca Martino

Learning the hyper-parameters. Luca Martino Learning the hyper-parameters Luca Martino 2017 2017 1 / 28 Parameters and hyper-parameters 1. All the described methods depend on some choice of hyper-parameters... 2. For instance, do you recall λ (bandwidth

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Convergence Rates of Kernel Quadrature Rules

Convergence Rates of Kernel Quadrature Rules Convergence Rates of Kernel Quadrature Rules Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE NIPS workshop on probabilistic integration - Dec. 2015 Outline Introduction

More information

MCMC Sampling for Bayesian Inference using L1-type Priors

MCMC Sampling for Bayesian Inference using L1-type Priors MÜNSTER MCMC Sampling for Bayesian Inference using L1-type Priors (what I do whenever the ill-posedness of EEG/MEG is just not frustrating enough!) AG Imaging Seminar Felix Lucka 26.06.2012 , MÜNSTER Sampling

More information

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling Professor Erik Sudderth Brown University Computer Science October 27, 2016 Some figures and materials courtesy

More information

A Repelling-Attracting Metropolis Algorithm for Multimodality

A Repelling-Attracting Metropolis Algorithm for Multimodality A Repelling-Attracting Metropolis Algorithm for Multimodality arxiv:1601.05633v5 [stat.me] 20 Oct 2017 Hyungsuk Tak Statistical and Applied Mathematical Sciences Institute Xiao-Li Meng Department of Statistics,

More information

An introduction to Sequential Monte Carlo

An introduction to Sequential Monte Carlo An introduction to Sequential Monte Carlo Thang Bui Jes Frellsen Department of Engineering University of Cambridge Research and Communication Club 6 February 2014 1 Sequential Monte Carlo (SMC) methods

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

Bagging During Markov Chain Monte Carlo for Smoother Predictions

Bagging During Markov Chain Monte Carlo for Smoother Predictions Bagging During Markov Chain Monte Carlo for Smoother Predictions Herbert K. H. Lee University of California, Santa Cruz Abstract: Making good predictions from noisy data is a challenging problem. Methods

More information

Slice Sampling with Adaptive Multivariate Steps: The Shrinking-Rank Method

Slice Sampling with Adaptive Multivariate Steps: The Shrinking-Rank Method Slice Sampling with Adaptive Multivariate Steps: The Shrinking-Rank Method Madeleine B. Thompson Radford M. Neal Abstract The shrinking rank method is a variation of slice sampling that is efficient at

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods Prof. Daniel Cremers 11. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Deblurring Jupiter (sampling in GLIP faster than regularized inversion) Colin Fox Richard A. Norton, J.

Deblurring Jupiter (sampling in GLIP faster than regularized inversion) Colin Fox Richard A. Norton, J. Deblurring Jupiter (sampling in GLIP faster than regularized inversion) Colin Fox fox@physics.otago.ac.nz Richard A. Norton, J. Andrés Christen Topics... Backstory (?) Sampling in linear-gaussian hierarchical

More information

17 : Optimization and Monte Carlo Methods

17 : Optimization and Monte Carlo Methods 10-708: Probabilistic Graphical Models Spring 2017 17 : Optimization and Monte Carlo Methods Lecturer: Avinava Dubey Scribes: Neil Spencer, YJ Choe 1 Recap 1.1 Monte Carlo Monte Carlo methods such as rejection

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

Bayesian Computations for DSGE Models

Bayesian Computations for DSGE Models Bayesian Computations for DSGE Models Frank Schorfheide University of Pennsylvania, PIER, CEPR, and NBER October 23, 2017 This Lecture is Based on Bayesian Estimation of DSGE Models Edward P. Herbst &

More information

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17 MCMC for big data Geir Storvik BigInsight lunch - May 2 2018 Geir Storvik MCMC for big data BigInsight lunch - May 2 2018 1 / 17 Outline Why ordinary MCMC is not scalable Different approaches for making

More information

Evidence estimation for Markov random fields: a triply intractable problem

Evidence estimation for Markov random fields: a triply intractable problem Evidence estimation for Markov random fields: a triply intractable problem January 7th, 2014 Markov random fields Interacting objects Markov random fields (MRFs) are used for modelling (often large numbers

More information

Monte Carlo Approximation of Monte Carlo Filters

Monte Carlo Approximation of Monte Carlo Filters Monte Carlo Approximation of Monte Carlo Filters Adam M. Johansen et al. Collaborators Include: Arnaud Doucet, Axel Finke, Anthony Lee, Nick Whiteley 7th January 2014 Context & Outline Filtering in State-Space

More information

Large Scale Bayesian Inference

Large Scale Bayesian Inference Large Scale Bayesian I in Cosmology Jens Jasche Garching, 11 September 2012 Introduction Cosmography 3D density and velocity fields Power-spectra, bi-spectra Dark Energy, Dark Matter, Gravity Cosmological

More information

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods Pattern Recognition and Machine Learning Chapter 11: Sampling Methods Elise Arnaud Jakob Verbeek May 22, 2008 Outline of the chapter 11.1 Basic Sampling Algorithms 11.2 Markov Chain Monte Carlo 11.3 Gibbs

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) School of Computer Science 10-708 Probabilistic Graphical Models Markov Chain Monte Carlo (MCMC) Readings: MacKay Ch. 29 Jordan Ch. 21 Matt Gormley Lecture 16 March 14, 2016 1 Homework 2 Housekeeping Due

More information

17 : Markov Chain Monte Carlo

17 : Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models, Spring 2015 17 : Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Heran Lin, Bin Deng, Yun Huang 1 Review of Monte Carlo Methods 1.1 Overview Monte Carlo

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

Session 3A: Markov chain Monte Carlo (MCMC)

Session 3A: Markov chain Monte Carlo (MCMC) Session 3A: Markov chain Monte Carlo (MCMC) John Geweke Bayesian Econometrics and its Applications August 15, 2012 ohn Geweke Bayesian Econometrics and its Session Applications 3A: Markov () chain Monte

More information

A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling. Christopher Jennison. Adriana Ibrahim. Seminar at University of Kuwait

A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling. Christopher Jennison. Adriana Ibrahim. Seminar at University of Kuwait A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj Adriana Ibrahim Institute

More information

Particle Metropolis-adjusted Langevin algorithms

Particle Metropolis-adjusted Langevin algorithms Particle Metropolis-adjusted Langevin algorithms Christopher Nemeth, Chris Sherlock and Paul Fearnhead arxiv:1412.7299v3 [stat.me] 27 May 2016 Department of Mathematics and Statistics, Lancaster University,

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

Approximate Inference Part 1 of 2

Approximate Inference Part 1 of 2 Approximate Inference Part 1 of 2 Tom Minka Microsoft Research, Cambridge, UK Machine Learning Summer School 2009 http://mlg.eng.cam.ac.uk/mlss09/ Bayesian paradigm Consistent use of probability theory

More information

Approximate Inference Part 1 of 2

Approximate Inference Part 1 of 2 Approximate Inference Part 1 of 2 Tom Minka Microsoft Research, Cambridge, UK Machine Learning Summer School 2009 http://mlg.eng.cam.ac.uk/mlss09/ 1 Bayesian paradigm Consistent use of probability theory

More information

Learning Static Parameters in Stochastic Processes

Learning Static Parameters in Stochastic Processes Learning Static Parameters in Stochastic Processes Bharath Ramsundar December 14, 2012 1 Introduction Consider a Markovian stochastic process X T evolving (perhaps nonlinearly) over time variable T. We

More information

Part 1: Expectation Propagation

Part 1: Expectation Propagation Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 1: Expectation Propagation Tom Heskes Machine Learning Group, Institute for Computing and Information Sciences Radboud

More information

Surveying the Characteristics of Population Monte Carlo

Surveying the Characteristics of Population Monte Carlo International Research Journal of Applied and Basic Sciences 2013 Available online at www.irjabs.com ISSN 2251-838X / Vol, 7 (9): 522-527 Science Explorer Publications Surveying the Characteristics of

More information

An Brief Overview of Particle Filtering

An Brief Overview of Particle Filtering 1 An Brief Overview of Particle Filtering Adam M. Johansen a.m.johansen@warwick.ac.uk www2.warwick.ac.uk/fac/sci/statistics/staff/academic/johansen/talks/ May 11th, 2010 Warwick University Centre for Systems

More information

Inexact approximations for doubly and triply intractable problems

Inexact approximations for doubly and triply intractable problems Inexact approximations for doubly and triply intractable problems March 27th, 2014 Markov random fields Interacting objects Markov random fields (MRFs) are used for modelling (often large numbers of) interacting

More information

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016 Log Gaussian Cox Processes Chi Group Meeting February 23, 2016 Outline Typical motivating application Introduction to LGCP model Brief overview of inference Applications in my work just getting started

More information

Kobe University Repository : Kernel

Kobe University Repository : Kernel Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI URL Note on the Sampling Distribution for the Metropolis-

More information

Lecture 8: The Metropolis-Hastings Algorithm

Lecture 8: The Metropolis-Hastings Algorithm 30.10.2008 What we have seen last time: Gibbs sampler Key idea: Generate a Markov chain by updating the component of (X 1,..., X p ) in turn by drawing from the full conditionals: X (t) j Two drawbacks:

More information

EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER

EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER Zhen Zhen 1, Jun Young Lee 2, and Abdus Saboor 3 1 Mingde College, Guizhou University, China zhenz2000@21cn.com 2 Department

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Markov chain Monte Carlo

Markov chain Monte Carlo Markov chain Monte Carlo Karl Oskar Ekvall Galin L. Jones University of Minnesota March 12, 2019 Abstract Practically relevant statistical models often give rise to probability distributions that are analytically

More information

arxiv: v1 [stat.co] 1 Jun 2015

arxiv: v1 [stat.co] 1 Jun 2015 arxiv:1506.00570v1 [stat.co] 1 Jun 2015 Towards automatic calibration of the number of state particles within the SMC 2 algorithm N. Chopin J. Ridgway M. Gerber O. Papaspiliopoulos CREST-ENSAE, Malakoff,

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Likelihood-free MCMC

Likelihood-free MCMC Bayesian inference for stable distributions with applications in finance Department of Mathematics University of Leicester September 2, 2011 MSc project final presentation Outline 1 2 3 4 Classical Monte

More information

6 Markov Chain Monte Carlo (MCMC)

6 Markov Chain Monte Carlo (MCMC) 6 Markov Chain Monte Carlo (MCMC) The underlying idea in MCMC is to replace the iid samples of basic MC methods, with dependent samples from an ergodic Markov chain, whose limiting (stationary) distribution

More information

Sequential Monte Carlo Methods (for DSGE Models)

Sequential Monte Carlo Methods (for DSGE Models) Sequential Monte Carlo Methods (for DSGE Models) Frank Schorfheide University of Pennsylvania, PIER, CEPR, and NBER October 23, 2017 Some References These lectures use material from our joint work: Tempered

More information

Approximate Slice Sampling for Bayesian Posterior Inference

Approximate Slice Sampling for Bayesian Posterior Inference Approximate Slice Sampling for Bayesian Posterior Inference Anonymous Author 1 Anonymous Author 2 Anonymous Author 3 Unknown Institution 1 Unknown Institution 2 Unknown Institution 3 Abstract In this paper,

More information

Control Variates for Markov Chain Monte Carlo

Control Variates for Markov Chain Monte Carlo Control Variates for Markov Chain Monte Carlo Dellaportas, P., Kontoyiannis, I., and Tsourti, Z. Dept of Statistics, AUEB Dept of Informatics, AUEB 1st Greek Stochastics Meeting Monte Carlo: Probability

More information

Monte Carlo Inference Methods

Monte Carlo Inference Methods Monte Carlo Inference Methods Iain Murray University of Edinburgh http://iainmurray.net Monte Carlo and Insomnia Enrico Fermi (1901 1954) took great delight in astonishing his colleagues with his remarkably

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

Model Selection for Gaussian Processes

Model Selection for Gaussian Processes Institute for Adaptive and Neural Computation School of Informatics,, UK December 26 Outline GP basics Model selection: covariance functions and parameterizations Criteria for model selection Marginal

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Iain Murray murray@cs.toronto.edu CSC255, Introduction to Machine Learning, Fall 28 Dept. Computer Science, University of Toronto The problem Learn scalar function of

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Jonas Hallgren 1 1 Department of Mathematics KTH Royal Institute of Technology Stockholm, Sweden BFS 2012 June

More information

Markov Chain Monte Carlo Algorithms for Gaussian Processes

Markov Chain Monte Carlo Algorithms for Gaussian Processes Markov Chain Monte Carlo Algorithms for Gaussian Processes Michalis K. Titsias, Neil Lawrence and Magnus Rattray School of Computer Science University of Manchester June 8 Outline Gaussian Processes Sampling

More information

Notes on pseudo-marginal methods, variational Bayes and ABC

Notes on pseudo-marginal methods, variational Bayes and ABC Notes on pseudo-marginal methods, variational Bayes and ABC Christian Andersson Naesseth October 3, 2016 The Pseudo-Marginal Framework Assume we are interested in sampling from the posterior distribution

More information

The Recycling Gibbs Sampler for Efficient Learning

The Recycling Gibbs Sampler for Efficient Learning The Recycling Gibbs Sampler for Efficient Learning L. Martino, V. Elvira, G. Camps-Valls Universidade de São Paulo, São Carlos (Brazil). Télécom ParisTech, Université Paris-Saclay. (France), Universidad

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 3 More Markov Chain Monte Carlo Methods The Metropolis algorithm isn t the only way to do MCMC. We ll

More information

Markov Chain Monte Carlo, Numerical Integration

Markov Chain Monte Carlo, Numerical Integration Markov Chain Monte Carlo, Numerical Integration (See Statistics) Trevor Gallen Fall 2015 1 / 1 Agenda Numerical Integration: MCMC methods Estimating Markov Chains Estimating latent variables 2 / 1 Numerical

More information

Monte Carlo methods for sampling-based Stochastic Optimization

Monte Carlo methods for sampling-based Stochastic Optimization Monte Carlo methods for sampling-based Stochastic Optimization Gersende FORT LTCI CNRS & Telecom ParisTech Paris, France Joint works with B. Jourdain, T. Lelièvre, G. Stoltz from ENPC and E. Kuhn from

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

28 : Approximate Inference - Distributed MCMC

28 : Approximate Inference - Distributed MCMC 10-708: Probabilistic Graphical Models, Spring 2015 28 : Approximate Inference - Distributed MCMC Lecturer: Avinava Dubey Scribes: Hakim Sidahmed, Aman Gupta 1 Introduction For many interesting problems,

More information

Gaussian Processes (10/16/13)

Gaussian Processes (10/16/13) STA561: Probabilistic machine learning Gaussian Processes (10/16/13) Lecturer: Barbara Engelhardt Scribes: Changwei Hu, Di Jin, Mengdi Wang 1 Introduction In supervised learning, we observe some inputs

More information

Lecture 7 and 8: Markov Chain Monte Carlo

Lecture 7 and 8: Markov Chain Monte Carlo Lecture 7 and 8: Markov Chain Monte Carlo 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/ Ghahramani

More information

Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US

Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US Gerdie Everaert 1, Lorenzo Pozzi 2, and Ruben Schoonackers 3 1 Ghent University & SHERPPA 2 Erasmus

More information

Sequential Monte Carlo Methods in High Dimensions

Sequential Monte Carlo Methods in High Dimensions Sequential Monte Carlo Methods in High Dimensions Alexandros Beskos Statistical Science, UCL Oxford, 24th September 2012 Joint work with: Dan Crisan, Ajay Jasra, Nik Kantas, Andrew Stuart Imperial College,

More information