Talk on Bayesian Optimization

Size: px
Start display at page:

Download "Talk on Bayesian Optimization"

Transcription

1 Talk on Bayesian Optimization Jungtaek Kim Machine Learning Group, Department of Computer Science and Engineering, POSTECH, 77-Cheongam-ro, Nam-gu, Pohang-si 37673, Gyungsangbuk-do, Republic of Korea Jan 13, /23

2 Table of Contents Bayesian Optimization Bayesian Optimization for Expensive Black-box Function Algorithm of Bayesian Optimization Supplement: Gaussian Process Supplement: Gaussian Process Regression Acquisition Functions for Bayesian Optimization Traditional Acquisition Functions Probability of Improvement Expected Improvement GP-Upper Confidence Bound Reference 2/23

3 Bayesian Optimization 3/23

4 Bayesian Optimization for Expensive Black-box Function A powerful strategy for finding the extrema of objective functions that are expensive to evaluate, where one does not have a closed-form expression for the objective function, but where one can obtain observations at sampled values. The prior represents our belief about the space of possible objective functions. The posterior distribution is P(f D 1:t ) P(D 1:t f )P(f ), where D 1:t = {x 1:t, f (x 1:t )}, f (x i ) is the observation of the objective function at x i, P(f ) is the prior distribution, and P(D 1:t f ) is the likelihood. [Brochu, et al., 2009] 4/23

5 5/23

6 6/23

7 7/23

8 8/23

9 Algorithm of Bayesian Optimization Algorithm 1 Bayesian Optimization Require: Initial data D 1:I = {(x i, y i ) 1:I }. 1: for t = 1, 2,..., do 2: Predict a function f (x D 1:I +t 1 ) considered as an objective function. 3: Find x I +t by optimizing the acquisition function, x I +t = arg max xi +t a(x D 1:I +t 1 ). 4: Sample the objective function, y I +t = f (x I +t ) + ɛ I +t. 5: Update on D 1:I +t = {D 1:I +t 1, (x t, y t )}. 6: end for 9/23

10 Supplement: Gaussian Process A Gaussian Process (GP) is a collection of random variables, any finite number of which have a joint Gaussian distribution. Generally, GP is expressed as where m(x) = E[f (x)] f GP(m(x), k(x, x )) k(x, x ) = E[(f (x) m(x))(f (x ) m(x ))]. [Rasmussen and Williams, 2006] 10/23

11 Supplement: Gaussian Process Regression The squared-exponential covariance functions in one dimension has the following form, k(x, x ) = σ 2 f exp( 1 2l 2 (x x ) 2 ) + σ 2 n δ xx, where σ f is the signal standard deviation, l is the length scale and σ n is the noise standard deviation. The mean and covariance of the predictive distribution are Mean = K (X test,x training )(K (X training,x training )+σ 2 n I ) 1 y, Covariance = K (X test,x test ) K (X test,x training )(K (X training,x training )+σ 2 n I ) 1 K (X training,x test ). [Rasmussen and Williams, 2006] 11/23

12 Acquisition Functions for Bayesian Optimization Acquisition function is a function that acquires a next point to evaluate for a black-box expensive function. Traditionally, the Probability of Improvement (PI) [Kushner, 1964], the Expected Improvement (EI) [Mockus et al., 1978], and GP-Upper Confidence Bound (GP-UCB) [N. Srinivas et al., 2010] are used for Bayesian optimization. Several functions like Predictive Entropy Search (PES) [Hernandez-Lobato et al., 2014] and a combination of existing functions are suggested recently. 12/23

13 Traditional Acquisition Functions PI EI a EI (x;{x n,y n },θ)= a PI (x;{x n,y n },θ)=φ(z ), (µ(x) f (x + ))Φ(Z )+σ(x)φ(z ) if σ(x)>0 0 if σ(x)=0, GP-UCB a UCB (x;{x n,y n },θ)=µ(x,{x n,y n },θ)+βσ(x;{x n,y n },θ), where Z = µ(x) f (x + ) σ(x) if σ(x)>0 0 if σ(x)=0. 13/23

14 Probability of Improvement PI is given with a trade-off parameter ξ 0, a PI (x) = E(I 0 ) = P(µ(x) f (x + ) + ξ) = Φ( µ(x) f (x+ ) ξ ), σ(x) where I = max{0, µ(x) f (x + ) ξ}. 14/23

15 Example of PI Figure 1: Objective function is red and acquisition function is blue. Green point is the last acquired point and x point is a training data. 15/23

16 Exploration-exploitation trade-off of PI 16/23

17 Expected Improvement EI is given with a trade-off parameter ξ 0, a EI (x) = E(I 1 ) { (µ(x) f (x = + ) ξ)φ(z ) + σ(x)φ(z ) if σ(x) > 0 0 if σ(x) = 0, where and Z = I = max{0, µ(x) f (x + ) ξ} { µ(x) f (x + ) ξ σ(x) if σ(x) > 0 0 if σ(x) = 0. 17/23

18 Example of EI Figure 2: Objective function is red and acquisition function is blue. Green point is the last acquired point and x point is a training data. 18/23

19 Exploration-exploitation trade-off of EI 19/23

20 GP-Upper Confidence Bound GP-Upper Confidence Bound is where β is given. a UCB (x) = µ(x) + βσ(x), 20/23

21 Example of GP-UCB Figure 3: Objective function is red and acquisition function is blue. Green point is the last acquired point and x point is a training data. β is /23

22 Exploration-exploitation trade-off of GP-UCB 22/23

23 Reference [1] Z. Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521: , [2] E. Brochu, V. M. Cora, N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Technical Report UBC TR and arxiv: v1, [3] C. E. Rasmussen and C. K.I. Williams. Gaussian Processes for Machine Learning. MIT Press, [4] H. J. Kushner. A new method of locating the maximum of an arbitrary multipeak curve in the presence of noise. Journal of Basic Engineering, 86:97-106, [5] J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods for seeking the extremum. Towards Global Optimization, 2: , [6] N. Srinivas, A. Krause, S. M. Kakade and M. Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. ICML, /23

Quantifying mismatch in Bayesian optimization

Quantifying mismatch in Bayesian optimization Quantifying mismatch in Bayesian optimization Eric Schulz University College London e.schulz@cs.ucl.ac.uk Maarten Speekenbrink University College London m.speekenbrink@ucl.ac.uk José Miguel Hernández-Lobato

More information

Nonparameteric Regression:

Nonparameteric Regression: Nonparameteric Regression: Nadaraya-Watson Kernel Regression & Gaussian Process Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

Predictive Variance Reduction Search

Predictive Variance Reduction Search Predictive Variance Reduction Search Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, Svetha Venkatesh Centre of Pattern Recognition and Data Analytics (PRaDA), Deakin University Email: v.nguyen@deakin.edu.au

More information

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan Background: Global Optimization and Gaussian Processes The Geometry of Gaussian Processes and the Chaining Trick Algorithm

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

Bayesian optimization for automatic machine learning

Bayesian optimization for automatic machine learning Bayesian optimization for automatic machine learning Matthew W. Ho man based o work with J. M. Hernández-Lobato, M. Gelbart, B. Shahriari, and others! University of Cambridge July 11, 2015 Black-bo optimization

More information

Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration

Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration Emile Contal David Buffoni Alexandre Robicquet Nicolas Vayatis CMLA, ENS Cachan, France September 25, 2013 Motivating

More information

Context-Dependent Bayesian Optimization in Real-Time Optimal Control: A Case Study in Airborne Wind Energy Systems

Context-Dependent Bayesian Optimization in Real-Time Optimal Control: A Case Study in Airborne Wind Energy Systems Context-Dependent Bayesian Optimization in Real-Time Optimal Control: A Case Study in Airborne Wind Energy Systems Ali Baheri Department of Mechanical Engineering University of North Carolina at Charlotte

More information

Multi-Attribute Bayesian Optimization under Utility Uncertainty

Multi-Attribute Bayesian Optimization under Utility Uncertainty Multi-Attribute Bayesian Optimization under Utility Uncertainty Raul Astudillo Cornell University Ithaca, NY 14853 ra598@cornell.edu Peter I. Frazier Cornell University Ithaca, NY 14853 pf98@cornell.edu

More information

Dynamic Batch Bayesian Optimization

Dynamic Batch Bayesian Optimization Dynamic Batch Bayesian Optimization Javad Azimi EECS, Oregon State University azimi@eecs.oregonstate.edu Ali Jalali ECE, University of Texas at Austin alij@mail.utexas.edu Xiaoli Fern EECS, Oregon State

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model (& discussion on the GPLVM tech. report by Prof. N. Lawrence, 06) Andreas Damianou Department of Neuro- and Computer Science,

More information

Optimisation séquentielle et application au design

Optimisation séquentielle et application au design Optimisation séquentielle et application au design d expériences Nicolas Vayatis Séminaire Aristote, Ecole Polytechnique - 23 octobre 2014 Joint work with Emile Contal (computer scientist, PhD student)

More information

Neutron inverse kinetics via Gaussian Processes

Neutron inverse kinetics via Gaussian Processes Neutron inverse kinetics via Gaussian Processes P. Picca Politecnico di Torino, Torino, Italy R. Furfaro University of Arizona, Tucson, Arizona Outline Introduction Review of inverse kinetics techniques

More information

A parametric approach to Bayesian optimization with pairwise comparisons

A parametric approach to Bayesian optimization with pairwise comparisons A parametric approach to Bayesian optimization with pairwise comparisons Marco Co Eindhoven University of Technology m.g.h.co@tue.nl Bert de Vries Eindhoven University of Technology and GN Hearing bdevries@ieee.org

More information

Learning Gaussian Process Models from Uncertain Data

Learning Gaussian Process Models from Uncertain Data Learning Gaussian Process Models from Uncertain Data Patrick Dallaire, Camille Besse, and Brahim Chaib-draa DAMAS Laboratory, Computer Science & Software Engineering Department, Laval University, Canada

More information

arxiv: v2 [stat.ml] 16 Oct 2017

arxiv: v2 [stat.ml] 16 Oct 2017 Correcting boundary over-exploration deficiencies in Bayesian optimization with virtual derivative sign observations arxiv:7.96v [stat.ml] 6 Oct 7 Eero Siivola, Aki Vehtari, Jarno Vanhatalo, Javier González,

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

Predictive Entropy Search for Efficient Global Optimization of Black-box Functions

Predictive Entropy Search for Efficient Global Optimization of Black-box Functions Predictive Entropy Search for Efficient Global Optimization of Black-bo Functions José Miguel Hernández-Lobato jmh233@cam.ac.uk University of Cambridge Matthew W. Hoffman mwh3@cam.ac.uk University of Cambridge

More information

Reliability Monitoring Using Log Gaussian Process Regression

Reliability Monitoring Using Log Gaussian Process Regression COPYRIGHT 013, M. Modarres Reliability Monitoring Using Log Gaussian Process Regression Martin Wayne Mohammad Modarres PSA 013 Center for Risk and Reliability University of Maryland Department of Mechanical

More information

Information-Based Multi-Fidelity Bayesian Optimization

Information-Based Multi-Fidelity Bayesian Optimization Information-Based Multi-Fidelity Bayesian Optimization Yehong Zhang, Trong Nghia Hoang, Bryan Kian Hsiang Low and Mohan Kankanhalli Department of Computer Science, National University of Singapore, Republic

More information

A Nonparametric Conjugate Prior Distribution for the Maximizing Argument of a Noisy Function

A Nonparametric Conjugate Prior Distribution for the Maximizing Argument of a Noisy Function A Nonparametric Conjugate Prior Distribution for the Maximizing Argument of a Noisy Function Pedro A. Ortega Max Planck Institute for Biolog. Cybernetics pedro.ortega@tuebingen.mpg.de Jordi Grau-Moya Max

More information

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart Machine Learning Bayesian Regression & Classification learning as inference, Bayesian Kernel Ridge regression & Gaussian Processes, Bayesian Kernel Logistic Regression & GP classification, Bayesian Neural

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes Lecturer: Drew Bagnell Scribe: Venkatraman Narayanan 1, M. Koval and P. Parashar 1 Applications of Gaussian

More information

Variable sigma Gaussian processes: An expectation propagation perspective

Variable sigma Gaussian processes: An expectation propagation perspective Variable sigma Gaussian processes: An expectation propagation perspective Yuan (Alan) Qi Ahmed H. Abdel-Gawad CS & Statistics Departments, Purdue University ECE Department, Purdue University alanqi@cs.purdue.edu

More information

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008 Gaussian processes Chuong B Do (updated by Honglak Lee) November 22, 2008 Many of the classical machine learning algorithms that we talked about during the first half of this course fit the following pattern:

More information

Linear Models for Regression

Linear Models for Regression Linear Models for Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Gaussian Processes Barnabás Póczos http://www.gaussianprocess.org/ 2 Some of these slides in the intro are taken from D. Lizotte, R. Parr, C. Guesterin

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#20 (Monday November 12) Gaussian Processes

Statistical Techniques in Robotics (16-831, F12) Lecture#20 (Monday November 12) Gaussian Processes Statistical Techniques in Robotics (6-83, F) Lecture# (Monday November ) Gaussian Processes Lecturer: Drew Bagnell Scribe: Venkatraman Narayanan Applications of Gaussian Processes (a) Inverse Kinematics

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

Gaussian Processes (10/16/13)

Gaussian Processes (10/16/13) STA561: Probabilistic machine learning Gaussian Processes (10/16/13) Lecturer: Barbara Engelhardt Scribes: Changwei Hu, Di Jin, Mengdi Wang 1 Introduction In supervised learning, we observe some inputs

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Neil D. Lawrence GPSS 10th June 2013 Book Rasmussen and Williams (2006) Outline The Gaussian Density Covariance from Basis Functions Basis Function Representations Constructing

More information

Gaussian Processes. 1 What problems can be solved by Gaussian Processes?

Gaussian Processes. 1 What problems can be solved by Gaussian Processes? Statistical Techniques in Robotics (16-831, F1) Lecture#19 (Wednesday November 16) Gaussian Processes Lecturer: Drew Bagnell Scribe:Yamuna Krishnamurthy 1 1 What problems can be solved by Gaussian Processes?

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu Lecture: Gaussian Process Regression STAT 6474 Instructor: Hongxiao Zhu Motivation Reference: Marc Deisenroth s tutorial on Robot Learning. 2 Fast Learning for Autonomous Robots with Gaussian Processes

More information

Lecture 5: GPs and Streaming regression

Lecture 5: GPs and Streaming regression Lecture 5: GPs and Streaming regression Gaussian Processes Information gain Confidence intervals COMP-652 and ECSE-608, Lecture 5 - September 19, 2017 1 Recall: Non-parametric regression Input space X

More information

Gaussian Processes for Machine Learning

Gaussian Processes for Machine Learning Gaussian Processes for Machine Learning Carl Edward Rasmussen Max Planck Institute for Biological Cybernetics Tübingen, Germany carl@tuebingen.mpg.de Carlos III, Madrid, May 2006 The actual science of

More information

Parallelised Bayesian Optimisation via Thompson Sampling

Parallelised Bayesian Optimisation via Thompson Sampling Parallelised Bayesian Optimisation via Thompson Sampling Kirthevasan Kandasamy Carnegie Mellon University Google Research, Mountain View, CA Sep 27, 2017 Slides: www.cs.cmu.edu/~kkandasa/talks/google-ts-slides.pdf

More information

Model Selection for Gaussian Processes

Model Selection for Gaussian Processes Institute for Adaptive and Neural Computation School of Informatics,, UK December 26 Outline GP basics Model selection: covariance functions and parameterizations Criteria for model selection Marginal

More information

EM-based Reinforcement Learning

EM-based Reinforcement Learning EM-based Reinforcement Learning Gerhard Neumann 1 1 TU Darmstadt, Intelligent Autonomous Systems December 21, 2011 Outline Expectation Maximization (EM)-based Reinforcement Learning Recap : Modelling data

More information

arxiv: v1 [stat.ml] 10 Jun 2014

arxiv: v1 [stat.ml] 10 Jun 2014 Predictive Entropy Search for Efficient Global Optimization of Black-bo Functions arxiv:46.254v [stat.ml] Jun 24 José Miguel Hernández-Lobato jmh233@cam.ac.uk University of Cambridge Matthew W. Hoffman

More information

Kernels for Automatic Pattern Discovery and Extrapolation

Kernels for Automatic Pattern Discovery and Extrapolation Kernels for Automatic Pattern Discovery and Extrapolation Andrew Gordon Wilson agw38@cam.ac.uk mlg.eng.cam.ac.uk/andrew University of Cambridge Joint work with Ryan Adams (Harvard) 1 / 21 Pattern Recognition

More information

Gaussian Process Regression

Gaussian Process Regression Gaussian Process Regression 4F1 Pattern Recognition, 21 Carl Edward Rasmussen Department of Engineering, University of Cambridge November 11th - 16th, 21 Rasmussen (Engineering, Cambridge) Gaussian Process

More information

Input Switched Affine Networks: An RNN Architecture Designed for Interpretability(ICML 2017) Nayeong Kim

Input Switched Affine Networks: An RNN Architecture Designed for Interpretability(ICML 2017) Nayeong Kim Input Switched Affine Networks: An RNN Architecture Designed for Interpretability(ICML 2017) Jakob N.Foerster, Justin Gilmer, Jascha Sohl-Dickstein, Jan Chorowski, David Sussillo Nayeong Kim Machine Learning

More information

How to build an automatic statistician

How to build an automatic statistician How to build an automatic statistician James Robert Lloyd 1, David Duvenaud 1, Roger Grosse 2, Joshua Tenenbaum 2, Zoubin Ghahramani 1 1: Department of Engineering, University of Cambridge, UK 2: Massachusetts

More information

Ch 4. Linear Models for Classification

Ch 4. Linear Models for Classification Ch 4. Linear Models for Classification Pattern Recognition and Machine Learning, C. M. Bishop, 2006. Department of Computer Science and Engineering Pohang University of Science and echnology 77 Cheongam-ro,

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Gaussian Processes Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College London

More information

Prediction of double gene knockout measurements

Prediction of double gene knockout measurements Prediction of double gene knockout measurements Sofia Kyriazopoulou-Panagiotopoulou sofiakp@stanford.edu December 12, 2008 Abstract One way to get an insight into the potential interaction between a pair

More information

High Dimensional Bayesian Optimization via Restricted Projection Pursuit Models

High Dimensional Bayesian Optimization via Restricted Projection Pursuit Models High Dimensional Bayesian Optimization via Restricted Projection Pursuit Models Chun-Liang Li Kirthevasan Kandasamy Barnabás Póczos Jeff Schneider {chunlial, kandasamy, bapoczos, schneide}@cs.cmu.edu Carnegie

More information

Constrained Bayesian Optimization and Applications

Constrained Bayesian Optimization and Applications Constrained Bayesian Optimization and Applications The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Gelbart, Michael

More information

arxiv: v1 [cs.lg] 10 Oct 2018

arxiv: v1 [cs.lg] 10 Oct 2018 Combining Bayesian Optimization and Lipschitz Optimization Mohamed Osama Ahmed Sharan Vaswani Mark Schmidt moahmed@cs.ubc.ca sharanv@cs.ubc.ca schmidtm@cs.ubc.ca University of British Columbia arxiv:1810.04336v1

More information

Probabilistic Graphical Models Lecture 20: Gaussian Processes

Probabilistic Graphical Models Lecture 20: Gaussian Processes Probabilistic Graphical Models Lecture 20: Gaussian Processes Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 30, 2015 1 / 53 What is Machine Learning? Machine learning algorithms

More information

Gaussian Process Planning with Lipschitz Continuous Reward Functions: Towards Unifying Bayesian Optimization, Active Learning, and Beyond

Gaussian Process Planning with Lipschitz Continuous Reward Functions: Towards Unifying Bayesian Optimization, Active Learning, and Beyond Gaussian Process Planning with Lipschitz Continuous Reward Functions: Towards Unifying Bayesian Optimization, Active Learning, and Beyond Chun Kai Ling and Kian Hsiang Low and Patrick Jaillet Department

More information

Large-scale Collaborative Prediction Using a Nonparametric Random Effects Model

Large-scale Collaborative Prediction Using a Nonparametric Random Effects Model Large-scale Collaborative Prediction Using a Nonparametric Random Effects Model Kai Yu Joint work with John Lafferty and Shenghuo Zhu NEC Laboratories America, Carnegie Mellon University First Prev Page

More information

Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation

Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation Ilija Bogunovic, Jonathan Scarlett, Andreas Krause, Volkan Cevher Laboratory for Information and Inference

More information

GWAS V: Gaussian processes

GWAS V: Gaussian processes GWAS V: Gaussian processes Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS V: Gaussian processes Summer 2011

More information

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms *

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms * Proceedings of the 8 th International Conference on Applied Informatics Eger, Hungary, January 27 30, 2010. Vol. 1. pp. 87 94. Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms

More information

Linear Models for Regression

Linear Models for Regression Linear Models for Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

arxiv: v1 [stat.ml] 16 Jun 2014

arxiv: v1 [stat.ml] 16 Jun 2014 FREEZE-THAW BAYESIAN OPTIMIZATION BY KEVIN SWERSKY, JASPER SNOEK AND RYAN P. ADAMS Harvard University and University of Toronto 1. Introduction arxiv:1406.3896v1 [stat.ml] 16 Jun 2014 In machine learning,

More information

COMP 551 Applied Machine Learning Lecture 21: Bayesian optimisation

COMP 551 Applied Machine Learning Lecture 21: Bayesian optimisation COMP 55 Applied Machine Learning Lecture 2: Bayesian optimisation Associate Instructor: (herke.vanhoof@mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp55 Unless otherwise noted, all material posted

More information

Fast Likelihood-Free Inference via Bayesian Optimization

Fast Likelihood-Free Inference via Bayesian Optimization Fast Likelihood-Free Inference via Bayesian Optimization Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology

More information

Adaptive Bayesian Optimization for Dynamic Problems

Adaptive Bayesian Optimization for Dynamic Problems Adaptive Bayesian Optimization for Dynamic Problems Favour Mandanji Nyikosa Linacre College University of Oxford A thesis submitted for the degree of Doctor of Philosophy Hilary 2018 To the memory of

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression Group Prof. Daniel Cremers 4. Gaussian Processes - Regression Definition (Rep.) Definition: A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

More information

Active and Semi-supervised Kernel Classification

Active and Semi-supervised Kernel Classification Active and Semi-supervised Kernel Classification Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London Work done in collaboration with Xiaojin Zhu (CMU), John Lafferty (CMU),

More information

Multivariate Bayesian Linear Regression MLAI Lecture 11

Multivariate Bayesian Linear Regression MLAI Lecture 11 Multivariate Bayesian Linear Regression MLAI Lecture 11 Neil D. Lawrence Department of Computer Science Sheffield University 21st October 2012 Outline Univariate Bayesian Linear Regression Multivariate

More information

Gaussian with mean ( µ ) and standard deviation ( σ)

Gaussian with mean ( µ ) and standard deviation ( σ) Slide from Pieter Abbeel Gaussian with mean ( µ ) and standard deviation ( σ) 10/6/16 CSE-571: Robotics X ~ N( µ, σ ) Y ~ N( aµ + b, a σ ) Y = ax + b + + + + 1 1 1 1 1 1 1 1 1 1, ~ ) ( ) ( ), ( ~ ), (

More information

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University FEATURE EXPANSIONS FEATURE EXPANSIONS

More information

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io Machine Learning Lecture 4: Regularization and Bayesian Statistics Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 207 Overfitting Problem

More information

Gaussian Process Optimization with Mutual Information

Gaussian Process Optimization with Mutual Information Gaussian Process Optimization with Mutual Information Emile Contal 1 Vianney Perchet 2 Nicolas Vayatis 1 1 CMLA Ecole Normale Suprieure de Cachan & CNRS, France 2 LPMA Université Paris Diderot & CNRS,

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Contextual Gaussian Process Bandit Optimization

Contextual Gaussian Process Bandit Optimization Contextual Gaussian Process Bandit Optimization Andreas Krause Cheng Soon Ong Department of Computer Science, ETH Zurich, 89 Zurich, Switzerland krausea@ethz.ch chengsoon.ong@inf.ethz.ch Abstract How should

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning Tobias Scheffer, Niels Landwehr Remember: Normal Distribution Distribution over x. Density function with parameters

More information

Afternoon Meeting on Bayesian Computation 2018 University of Reading

Afternoon Meeting on Bayesian Computation 2018 University of Reading Gabriele Abbati 1, Alessra Tosi 2, Seth Flaxman 3, Michael A Osborne 1 1 University of Oxford, 2 Mind Foundry Ltd, 3 Imperial College London Afternoon Meeting on Bayesian Computation 2018 University of

More information

MTTTS16 Learning from Multiple Sources

MTTTS16 Learning from Multiple Sources MTTTS16 Learning from Multiple Sources 5 ECTS credits Autumn 2018, University of Tampere Lecturer: Jaakko Peltonen Lecture 6: Multitask learning with kernel methods and nonparametric models On this lecture:

More information

Probabilistic numerics for deep learning

Probabilistic numerics for deep learning Presenter: Shijia Wang Department of Engineering Science, University of Oxford rning (RLSS) Summer School, Montreal 2017 Outline 1 Introduction Probabilistic Numerics 2 Components Probabilistic modeling

More information

Approximate Dynamic Programming Using Bellman Residual Elimination and Gaussian Process Regression

Approximate Dynamic Programming Using Bellman Residual Elimination and Gaussian Process Regression Approximate Dynamic Programming Using Bellman Residual Elimination and Gaussian Process Regression The MIT Faculty has made this article openly available. Please share how this access benefits you. Your

More information

Bayesian Optimization in a Billion Dimensions via Random Embeddings

Bayesian Optimization in a Billion Dimensions via Random Embeddings via Random Embeddings Ziyu Wang University of British Columbia Masrour Zoghi University of Amsterdam David Matheson University of British Columbia Frank Hutter University of British Columbia Nando de Freitas

More information

Batch Bayesian Optimization via Simulation Matching

Batch Bayesian Optimization via Simulation Matching Batch Bayesian Optimization via Simulation Matching Javad Azimi, Alan Fern, Xiaoli Z. Fern School of EECS, Oregon State University {azimi, afern, xfern}@eecs.oregonstate.edu Abstract Bayesian optimization

More information

Sequential Design of Computer Experiments for the Estimation of a Quantile with Application to Numerical Dosimetry

Sequential Design of Computer Experiments for the Estimation of a Quantile with Application to Numerical Dosimetry Sequential Design of Computer Experiments for the Estimation of a Quantile with Application to Numerical Dosimetry M. Jala Orange Labs and Télécom ParisTech jala@telecom-paristech.fr C. Lévy-Leduc, E.

More information

Logistic Regression. Seungjin Choi

Logistic Regression. Seungjin Choi Logistic Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Variational Model Selection for Sparse Gaussian Process Regression

Variational Model Selection for Sparse Gaussian Process Regression Variational Model Selection for Sparse Gaussian Process Regression Michalis K. Titsias School of Computer Science University of Manchester 7 September 2008 Outline Gaussian process regression and sparse

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II 1 Non-linear regression techniques Part - II Regression Algorithms in this Course Support Vector Machine Relevance Vector Machine Support vector regression Boosting random projections Relevance vector

More information

Bayesian Deep Learning

Bayesian Deep Learning Bayesian Deep Learning Mohammad Emtiyaz Khan AIP (RIKEN), Tokyo http://emtiyaz.github.io emtiyaz.khan@riken.jp June 06, 2018 Mohammad Emtiyaz Khan 2018 1 What will you learn? Why is Bayesian inference

More information

20: Gaussian Processes

20: Gaussian Processes 10-708: Probabilistic Graphical Models 10-708, Spring 2016 20: Gaussian Processes Lecturer: Andrew Gordon Wilson Scribes: Sai Ganesh Bandiatmakuri 1 Discussion about ML Here we discuss an introduction

More information

Relevance Vector Machines

Relevance Vector Machines LUT February 21, 2011 Support Vector Machines Model / Regression Marginal Likelihood Regression Relevance vector machines Exercise Support Vector Machines The relevance vector machine (RVM) is a bayesian

More information

Efficient Likelihood-Free Inference

Efficient Likelihood-Free Inference Efficient Likelihood-Free Inference Michael Gutmann http://homepages.inf.ed.ac.uk/mgutmann Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh 8th November 2017

More information

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Saba Q. Yahyaa, Madalina M. Drugan and Bernard Manderick Vrije Universiteit Brussel, Department of Computer Science, Pleinlaan 2, 1050 Brussels,

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes 1 Objectives to express prior knowledge/beliefs about model outputs using Gaussian process (GP) to sample functions from the probability measure defined by GP to build

More information

arxiv: v3 [stat.ml] 7 Feb 2018

arxiv: v3 [stat.ml] 7 Feb 2018 Bayesian Optimization with Gradients Jian Wu Matthias Poloczek Andrew Gordon Wilson Peter I. Frazier Cornell University, University of Arizona arxiv:703.04389v3 stat.ml 7 Feb 08 Abstract Bayesian optimization

More information

Optimization of Gaussian Process Hyperparameters using Rprop

Optimization of Gaussian Process Hyperparameters using Rprop Optimization of Gaussian Process Hyperparameters using Rprop Manuel Blum and Martin Riedmiller University of Freiburg - Department of Computer Science Freiburg, Germany Abstract. Gaussian processes are

More information

Introduction to Probabilistic Graphical Models: Exercises

Introduction to Probabilistic Graphical Models: Exercises Introduction to Probabilistic Graphical Models: Exercises Cédric Archambeau Xerox Research Centre Europe cedric.archambeau@xrce.xerox.com Pascal Bootcamp Marseille, France, July 2010 Exercise 1: basics

More information

Gaussian Process Regression Networks

Gaussian Process Regression Networks Gaussian Process Regression Networks Andrew Gordon Wilson agw38@camacuk mlgengcamacuk/andrew University of Cambridge Joint work with David A Knowles and Zoubin Ghahramani June 27, 2012 ICML, Edinburgh

More information

Expectation Propagation in Dynamical Systems

Expectation Propagation in Dynamical Systems Expectation Propagation in Dynamical Systems Marc Peter Deisenroth Joint Work with Shakir Mohamed (UBC) August 10, 2012 Marc Deisenroth (TU Darmstadt) EP in Dynamical Systems 1 Motivation Figure : Complex

More information

Nonparmeteric Bayes & Gaussian Processes. Baback Moghaddam Machine Learning Group

Nonparmeteric Bayes & Gaussian Processes. Baback Moghaddam Machine Learning Group Nonparmeteric Bayes & Gaussian Processes Baback Moghaddam baback@jpl.nasa.gov Machine Learning Group Outline Bayesian Inference Hierarchical Models Model Selection Parametric vs. Nonparametric Gaussian

More information

Gaussian Process Vine Copulas for Multivariate Dependence

Gaussian Process Vine Copulas for Multivariate Dependence Gaussian Process Vine Copulas for Multivariate Dependence José Miguel Hernández-Lobato 1,2 joint work with David López-Paz 2,3 and Zoubin Ghahramani 1 1 Department of Engineering, Cambridge University,

More information

Probabilistic Models for Learning Data Representations. Andreas Damianou

Probabilistic Models for Learning Data Representations. Andreas Damianou Probabilistic Models for Learning Data Representations Andreas Damianou Department of Computer Science, University of Sheffield, UK IBM Research, Nairobi, Kenya, 23/06/2015 Sheffield SITraN Outline Part

More information