Spatial smoothing using Gaussian processes

Size: px
Start display at page:

Download "Spatial smoothing using Gaussian processes"

Transcription

1 Spatial smoothing using Gaussian processes Chris Paciorek August 5,

2 OUTLINE Spatial smoothing and Gaussian processes Covariance modelling Nonstationary covariance modelling Eamples with simulated and real data 2

3 SPATIAL DATA latgridvals longridvals Colorado annual precipitation monthly PM

4 SPATIAL DATA AND MODELS Features of spatial data highly interactive, comple surfaces high df:n; heterogeneous coverage possible nonstationarity spatial model is often a component of a larger model spatiotemporal model with covariates possibly replicated Some standard models Thin-plate splines Basis function models with penalized coefficients Gaussian processes (kriging or Bayesian) 4

5 GAUSSIAN PROCESS DISTRIBUTION Infinite-dimensional joint distribution for f(), X : Eample: f( ) a spatial process, X = R 2 f( ) GP(µ( ), C(, )) Finite-dimensional marginals are normal Types of covariance functions, C(f( i ), f( j )): stationary, isotropic stationary, anisotropic nonstationary X j j i i 5

6 GAUSSIAN PROCESS DISTRIBUTION Infinite-dimensional joint distribution for f(), X : Eample: f( ) a spatial process, X = R 2 f( ) GP(µ( ), C(, )) Finite-dimensional marginals are normal Types of covariance functions, C(f( i ), f( j )): stationary, isotropic stationary, anisotropic nonstationary X j j i i 6

7 GAUSSIAN PROCESS DISTRIBUTION Infinite-dimensional joint distribution for f(), X : Eample: f( ) a spatial process, X = R 2 f( ) GP(µ( ), C(, )) Finite-dimensional marginals are normal Types of covariance functions, C(f( i ), f( j )): stationary, isotropic stationary, anisotropic nonstationary X j j i i 7

8 CORRELATION MODELLING R(f( i ), f( j )) = R ( ) τij 2 τ 2 ij = ( i j ) T ( i j ) ρ 2 Correlation ρ = 0.2 ρ = Distance Correlation scale Nonstationarity: correlation a function of location

9 NONSTATIONARY COVARIANCE spatial deformation (Sampson, Guttorp & co-workers) mitures of Gaussian processes (Fuentes) or splines (Wood et al.) kernel convolution method (Higdon, Swall, and Kern) R NS (f( i ), f( j )) = c ij R P k i (u)k j (u)du Guaranteed positive definite Gaussian kernels: ( ) k i (u) ep (u i ) T Σ 1 i (u i ) R NS (f( i ), f( j )) = c ij ep f( ) GP(µ, σ 2 R NS (, )) ( ( i j ) T ( Σi +Σ j 2 ) 1 (i j ) 9

10 NONSTATIONARY GPS IN 2D Kernel Structure Sample Function y z y

11 GENERALIZING THE HSK KERNEL METHOD Squared eponential form: ( ( ) ) 2 τij ep c ρ ij ep ( ( ) 1 ( i j ) T Σi +Σ j (i 2 j )) Theorem 1: if R(τ ) is positive definite for R P, P = 1, 2,..., then R NS (f( i ), f( j )) = c ij R ( Q ij ) is positive definite for R P, P = 1, 2,... Theorem 2: Smoothness properties of original stationary correlation retained Specific case of Matérn nonstationary covariance ( ) ν ( ) 1 2 ντij 2 2 ντij K 2 Γ(ν)2 ν 1 ρ ν ρ 1 Γ(ν)2 ν 1 ( 2 νqij ) ν Kν ( 2 νqij ) More fleible form, differentiability not constrained, possible asymptotic advantages 11

12 A BASIC BAYESIAN SPATIAL MODEL Model: Y i N(f( i ), η 2 ), i R 2 f( ) GP(µ, σ 2 R NS (, ; ν, Σ ( ) )) Let R NS be the nonstationary Matérn correlation Kernels (Σ ) constructed based on stationary GP priors Define multiple kernel matrices, Σ, X Smoothly-varying (element-wise) in covariate space Positive definite MCMC sampling of all parameters including those determining Σ ( ) 12

13 1 EMPIRICAL ASSESSMENT - SIMULATED FUNCTIONS z z krige tps GAM sgp nsgp fks nn test MSE krige tps GAM sgp nsgp fks nn test MSE

14 COLORADO PRECIPITATION CHARACTERIZATION

15 COLORADO PRECIPITATION SURFACES stationary form nonstationary form

16 EMPIRICAL ASSESSMENT - COLORADO PRECIPITATION krige krige2 GAM GAM2 sgp nsgp fks nn test MSE Comments surface is comple relative to number of obs; high df:n ratio bias-variance tradeoff simple two-region nonstationary models offer little improvement 16

17 FUTURE WORK Further implementation of nonstationary model: Approaches for constraining hyperparameters for better fits and miing Computationally tractable approaches for multiple realizations Ad hoc approaches for fitting the nonstationary covariance structure criteria for choosing a spatial smoother based on data spacing, df:n, signal to noise ratio Fourier basis representation for spatial processes for fast Bayesian estimation with non-normal data or complicated models 17

18 NONSTATIONARY GPS IN 1D Kernel standard deviation y Some sample functions y Some kernels y y

19 SMOOTHLY-VARYING KERNEL MATRICES Spectral decomposition (R P ): Σ = Γ T Λ Γ in R 2, stationary GP priors on unnormalized eigenvector coordinates (a, b ) and on logarithm of second eigenvalue (λ,2 ) efficient parameterizations of Φ( ) {a( ), b( ), λ 2 ( )} using basis function approimation to a stationary GP a, b λ 2 λ 1 19

20 DEGREE OF SMOOTHING ρ = 0.2 ρ = 0.04 y y y y

Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency

Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency Chris Paciorek March 11, 2005 Department of Biostatistics Harvard School of

More information

Nonstationary Covariance Functions for Gaussian Process Regression

Nonstationary Covariance Functions for Gaussian Process Regression Nonstationar Covariance Functions for Gaussian Process Regression Christopher J. Paciorek Department of Biostatistics Harvard School of Public Health Mark J. Schervish Department of Statistics Carnegie

More information

Spatial Modelling Using a New Class of Nonstationary Covariance Functions

Spatial Modelling Using a New Class of Nonstationary Covariance Functions Spatial Modelling Using a New Class of Nonstationary Covariance Functions Christopher J. Paciorek and Mark J. Schervish 13th June 2005 Abstract We introduce a new class of nonstationary covariance functions

More information

What s for today. Continue to discuss about nonstationary models Moving windows Convolution model Weighted stationary model

What s for today. Continue to discuss about nonstationary models Moving windows Convolution model Weighted stationary model What s for today Continue to discuss about nonstationary models Moving windows Convolution model Weighted stationary model c Mikyoung Jun (Texas A&M) Stat647 Lecture 11 October 2, 2012 1 / 23 Nonstationary

More information

NONSTATIONARY GAUSSIAN PROCESSES FOR REGRESSION AND SPATIAL MODELLING

NONSTATIONARY GAUSSIAN PROCESSES FOR REGRESSION AND SPATIAL MODELLING CARNEGIE MELLON UNIVERSITY NONSTATIONARY GAUSSIAN PROCESSES FOR REGRESSION AND SPATIAL MODELLING A DISSERTATION SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS for the degree

More information

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation A Framework for Daily Spatio-Temporal Stochastic Weather Simulation, Rick Katz, Balaji Rajagopalan Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric

More information

arxiv: v4 [stat.me] 14 Sep 2015

arxiv: v4 [stat.me] 14 Sep 2015 Does non-stationary spatial data always require non-stationary random fields? Geir-Arne Fuglstad 1, Daniel Simpson 1, Finn Lindgren 2, and Håvard Rue 1 1 Department of Mathematical Sciences, NTNU, Norway

More information

Model Selection for Gaussian Processes

Model Selection for Gaussian Processes Institute for Adaptive and Neural Computation School of Informatics,, UK December 26 Outline GP basics Model selection: covariance functions and parameterizations Criteria for model selection Marginal

More information

Anomaly Detection and Removal Using Non-Stationary Gaussian Processes

Anomaly Detection and Removal Using Non-Stationary Gaussian Processes Anomaly Detection and Removal Using Non-Stationary Gaussian ocesses Steven Reece Roman Garnett, Michael Osborne and Stephen Roberts Robotics Research Group Dept Engineering Science Oford University, UK

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University this presentation derived from that presented at the Pan-American Advanced

More information

A STATISTICAL TECHNIQUE FOR MODELLING NON-STATIONARY SPATIAL PROCESSES

A STATISTICAL TECHNIQUE FOR MODELLING NON-STATIONARY SPATIAL PROCESSES A STATISTICAL TECHNIQUE FOR MODELLING NON-STATIONARY SPATIAL PROCESSES JOHN STEPHENSON 1, CHRIS HOLMES, KERRY GALLAGHER 1 and ALEXANDRE PINTORE 1 Dept. Earth Science and Engineering, Imperial College,

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Spatial omain Hierarchical Modelling for Univariate Spatial ata Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

More information

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Christopher Paciorek, Department of Statistics, University

More information

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Marcela Alfaro Córdoba August 25, 2016 NCSU Department of Statistics Continuous Parameter

More information

STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS

STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS Eric Gilleland Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Supported

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley 1 and Sudipto Banerjee 2 1 Department of Forestry & Department of Geography, Michigan

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Alan Gelfand 1 and Andrew O. Finley 2 1 Department of Statistical Science, Duke University, Durham, North

More information

Overview of Spatial Statistics with Applications to fmri

Overview of Spatial Statistics with Applications to fmri with Applications to fmri School of Mathematics & Statistics Newcastle University April 8 th, 2016 Outline Why spatial statistics? Basic results Nonstationary models Inference for large data sets An example

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota,

More information

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley Department of Forestry & Department of Geography, Michigan State University, Lansing

More information

An Introduction to GAMs based on penalized regression splines. Simon Wood Mathematical Sciences, University of Bath, U.K.

An Introduction to GAMs based on penalized regression splines. Simon Wood Mathematical Sciences, University of Bath, U.K. An Introduction to GAMs based on penalied regression splines Simon Wood Mathematical Sciences, University of Bath, U.K. Generalied Additive Models (GAM) A GAM has a form something like: g{e(y i )} = η

More information

A Generalized Convolution Model for Multivariate Nonstationary Spatial Processes

A Generalized Convolution Model for Multivariate Nonstationary Spatial Processes A Generalized Convolution Model for Multivariate Nonstationary Spatial Processes Anandamayee Majumdar, Debashis Paul and Dianne Bautista Department of Mathematics and Statistics, Arizona State University,

More information

A Fused Lasso Approach to Nonstationary Spatial Covariance Estimation

A Fused Lasso Approach to Nonstationary Spatial Covariance Estimation Supplementary materials for this article are available at 10.1007/s13253-016-0251-8. A Fused Lasso Approach to Nonstationary Spatial Covariance Estimation Ryan J. Parker, Brian J. Reich,andJoEidsvik Spatial

More information

Estimation of non-stationary spatial covariance structure

Estimation of non-stationary spatial covariance structure Estimation of non-stationary spatial covariance structure DAVID J NOTT Department of Statistics, University of New South Wales, Sydney 2052, Australia djn@mathsunsweduau WILLIAM T M DUNSMUIR Division of

More information

Outline Lecture 2 2(32)

Outline Lecture 2 2(32) Outline Lecture (3), Lecture Linear Regression and Classification it is our firm belief that an understanding of linear models is essential for understanding nonlinear ones Thomas Schön Division of Automatic

More information

Measurement Error in Spatial Modeling of Environmental Exposures

Measurement Error in Spatial Modeling of Environmental Exposures Measurement Error in Spatial Modeling of Environmental Exposures Chris Paciorek, Alexandros Gryparis, and Brent Coull August 9, 2005 Department of Biostatistics Harvard School of Public Health www.biostat.harvard.edu/~paciorek

More information

Spatial bias modeling with application to assessing remotely-sensed aerosol as a proxy for particulate matter

Spatial bias modeling with application to assessing remotely-sensed aerosol as a proxy for particulate matter Spatial bias modeling with application to assessing remotely-sensed aerosol as a proxy for particulate matter Chris Paciorek Department of Biostatistics Harvard School of Public Health application joint

More information

Integrated Likelihood Estimation in Semiparametric Regression Models. Thomas A. Severini Department of Statistics Northwestern University

Integrated Likelihood Estimation in Semiparametric Regression Models. Thomas A. Severini Department of Statistics Northwestern University Integrated Likelihood Estimation in Semiparametric Regression Models Thomas A. Severini Department of Statistics Northwestern University Joint work with Heping He, University of York Introduction Let Y

More information

Basics of Point-Referenced Data Models

Basics of Point-Referenced Data Models Basics of Point-Referenced Data Models Basic tool is a spatial process, {Y (s), s D}, where D R r Chapter 2: Basics of Point-Referenced Data Models p. 1/45 Basics of Point-Referenced Data Models Basic

More information

A Generalized Convolution Model for Multivariate Nonstationary Spatial Processes

A Generalized Convolution Model for Multivariate Nonstationary Spatial Processes A Generalized Convolution Model for Multivariate Nonstationary Spatial Processes Anandamayee Majumdar, Debashis Paul and Dianne Bautista Department of Mathematics and Statistics, Arizona State University,

More information

Spatial smoothing over complex domain

Spatial smoothing over complex domain Spatial smoothing over complex domain Alessandro Ottavi NTNU Department of Mathematical Science August 16-20 2010 Outline Spatial smoothing Complex domain The SPDE approch Manifold Some tests Spatial smoothing

More information

Student-t Process as Alternative to Gaussian Processes Discussion

Student-t Process as Alternative to Gaussian Processes Discussion Student-t Process as Alternative to Gaussian Processes Discussion A. Shah, A. G. Wilson and Z. Gharamani Discussion by: R. Henao Duke University June 20, 2014 Contributions The paper is concerned about

More information

Multi-resolution models for large data sets

Multi-resolution models for large data sets Multi-resolution models for large data sets Douglas Nychka, National Center for Atmospheric Research National Science Foundation NORDSTAT, Umeå, June, 2012 Credits Steve Sain, NCAR Tia LeRud, UC Davis

More information

Modelling with smooth functions. Simon Wood University of Bath, EPSRC funded

Modelling with smooth functions. Simon Wood University of Bath, EPSRC funded Modelling with smooth functions Simon Wood University of Bath, EPSRC funded Some data... Daily respiratory deaths, temperature and ozone in Chicago (NMMAPS) 0 50 100 150 200 deaths temperature ozone 2000

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Hierarchical Modelling for Univariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

random fields on a fine grid

random fields on a fine grid Spatial models for point and areal data using Markov random fields on a fine grid arxiv:1204.6087v1 [stat.me] 26 Apr 2012 Christopher J. Paciorek Department of Biostatistics, Harvard School of Public Health

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Power EP. Thomas Minka Microsoft Research Ltd., Cambridge, UK MSR-TR , October 4, Abstract

Power EP. Thomas Minka Microsoft Research Ltd., Cambridge, UK MSR-TR , October 4, Abstract Power EP Thomas Minka Microsoft Research Ltd., Cambridge, UK MSR-TR-2004-149, October 4, 2004 Abstract This note describes power EP, an etension of Epectation Propagation (EP) that makes the computations

More information

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, N.C.,

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Announcements Machine Learning Lecture 3 Eam dates We re in the process of fiing the first eam date Probability Density Estimation II 9.0.207 Eercises The first eercise sheet is available on L2P now First

More information

Spatial Statistics with Image Analysis. Lecture L02. Computer exercise 0 Daily Temperature. Lecture 2. Johan Lindström.

Spatial Statistics with Image Analysis. Lecture L02. Computer exercise 0 Daily Temperature. Lecture 2. Johan Lindström. C Stochastic fields Covariance Spatial Statistics with Image Analysis Lecture 2 Johan Lindström November 4, 26 Lecture L2 Johan Lindström - johanl@maths.lth.se FMSN2/MASM2 L /2 C Stochastic fields Covariance

More information

Implementing an anisotropic and spatially varying Matérn model covariance with smoothing filters

Implementing an anisotropic and spatially varying Matérn model covariance with smoothing filters CWP-815 Implementing an anisotropic and spatially varying Matérn model covariance with smoothing filters Dave Hale Center for Wave Phenomena, Colorado School of Mines, Golden CO 80401, USA a) b) c) Figure

More information

Gaussian Process Regression

Gaussian Process Regression Gaussian Process Regression 4F1 Pattern Recognition, 21 Carl Edward Rasmussen Department of Engineering, University of Cambridge November 11th - 16th, 21 Rasmussen (Engineering, Cambridge) Gaussian Process

More information

Disease mapping with Gaussian processes

Disease mapping with Gaussian processes EUROHEIS2 Kuopio, Finland 17-18 August 2010 Aki Vehtari (former Helsinki University of Technology) Department of Biomedical Engineering and Computational Science (BECS) Acknowledgments Researchers - Jarno

More information

Journal of Multivariate Analysis. Nonstationary modeling for multivariate spatial processes

Journal of Multivariate Analysis. Nonstationary modeling for multivariate spatial processes Journal of Multivariate Analysis () 76 9 Contents lists available at SciVerse ScienceDirect Journal of Multivariate Analysis journal homepage: wwwelseviercom/locate/jmva Nonstationary modeling for multivariate

More information

A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking

A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking György Terdik and Subba Rao Tata UofD, HU & UofM, UK January 30, 2015 Laboratoire

More information

Inversion Base Height. Daggot Pressure Gradient Visibility (miles)

Inversion Base Height. Daggot Pressure Gradient Visibility (miles) Stanford University June 2, 1998 Bayesian Backtting: 1 Bayesian Backtting Trevor Hastie Stanford University Rob Tibshirani University of Toronto Email: trevor@stat.stanford.edu Ftp: stat.stanford.edu:

More information

Multivariate Gaussian Random Fields with SPDEs

Multivariate Gaussian Random Fields with SPDEs Multivariate Gaussian Random Fields with SPDEs Xiangping Hu Daniel Simpson, Finn Lindgren and Håvard Rue Department of Mathematics, University of Oslo PASI, 214 Outline The Matérn covariance function and

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry

More information

Constrained Gaussian processes: methodology, theory and applications

Constrained Gaussian processes: methodology, theory and applications Constrained Gaussian processes: methodology, theory and applications Hassan Maatouk hassan.maatouk@univ-rennes2.fr Workshop on Gaussian Processes, November 6-7, 2017, St-Etienne (France) Hassan Maatouk

More information

Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification

Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification François Bachoc Josselin Garnier Jean-Marc Martinez CEA-Saclay, DEN, DM2S, STMF,

More information

STATISTICAL INTERPOLATION METHODS RICHARD SMITH AND NOEL CRESSIE Statistical methods of interpolation are all based on assuming that the process

STATISTICAL INTERPOLATION METHODS RICHARD SMITH AND NOEL CRESSIE Statistical methods of interpolation are all based on assuming that the process 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 STATISTICAL INTERPOLATION METHODS

More information

Bayesian non-parametric model to longitudinally predict churn

Bayesian non-parametric model to longitudinally predict churn Bayesian non-parametric model to longitudinally predict churn Bruno Scarpa Università di Padova Conference of European Statistics Stakeholders Methodologists, Producers and Users of European Statistics

More information

arxiv: v1 [stat.me] 3 Dec 2014

arxiv: v1 [stat.me] 3 Dec 2014 A Generalized Convolution Model and Estimation for Non-stationary Random Functions F. Fouedjio, N. Desassis, J. Rivoirard Équipe Géostatistique - Centre de Géosciences, MINES ParisTech 35, rue Saint-Honoré,

More information

Lecture 1c: Gaussian Processes for Regression

Lecture 1c: Gaussian Processes for Regression Lecture c: Gaussian Processes for Regression Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London c.archambeau@cs.ucl.ac.uk

More information

Neutron inverse kinetics via Gaussian Processes

Neutron inverse kinetics via Gaussian Processes Neutron inverse kinetics via Gaussian Processes P. Picca Politecnico di Torino, Torino, Italy R. Furfaro University of Arizona, Tucson, Arizona Outline Introduction Review of inverse kinetics techniques

More information

Spatial Process Estimates as Smoothers: A Review

Spatial Process Estimates as Smoothers: A Review Spatial Process Estimates as Smoothers: A Review Soutir Bandyopadhyay 1 Basic Model The observational model considered here has the form Y i = f(x i ) + ɛ i, for 1 i n. (1.1) where Y i is the observed

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics,

More information

6.435, System Identification

6.435, System Identification System Identification 6.435 SET 3 Nonparametric Identification Munther A. Dahleh 1 Nonparametric Methods for System ID Time domain methods Impulse response Step response Correlation analysis / time Frequency

More information

Geostatistics for Seismic Data Integration in Earth Models

Geostatistics for Seismic Data Integration in Earth Models 2003 Distinguished Instructor Short Course Distinguished Instructor Series, No. 6 sponsored by the Society of Exploration Geophysicists European Association of Geoscientists & Engineers SUB Gottingen 7

More information

Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis

Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis Stéphanie Allassonnière CIS, JHU July, 15th 28 Context : Computational Anatomy Context and motivations :

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Nearest Neighbor Gaussian Processes for Large Spatial Data

Nearest Neighbor Gaussian Processes for Large Spatial Data Nearest Neighbor Gaussian Processes for Large Spatial Data Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns

More information

Statistical Geometry Processing Winter Semester 2011/2012

Statistical Geometry Processing Winter Semester 2011/2012 Statistical Geometry Processing Winter Semester 2011/2012 Linear Algebra, Function Spaces & Inverse Problems Vector and Function Spaces 3 Vectors vectors are arrows in space classically: 2 or 3 dim. Euclidian

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Geostatistical Modeling for Large Data Sets: Low-rank methods

Geostatistical Modeling for Large Data Sets: Low-rank methods Geostatistical Modeling for Large Data Sets: Low-rank methods Whitney Huang, Kelly-Ann Dixon Hamil, and Zizhuang Wu Department of Statistics Purdue University February 22, 2016 Outline Motivation Low-rank

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Low-rank methods and predictive processes for spatial models

Low-rank methods and predictive processes for spatial models Low-rank methods and predictive processes for spatial models Sam Bussman, Linchao Chen, John Lewis, Mark Risser with Sebastian Kurtek, Vince Vu, Ying Sun February 27, 2014 Outline Introduction and general

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

A short introduction to INLA and R-INLA

A short introduction to INLA and R-INLA A short introduction to INLA and R-INLA Integrated Nested Laplace Approximation Thomas Opitz, BioSP, INRA Avignon Workshop: Theory and practice of INLA and SPDE November 7, 2018 2/21 Plan for this talk

More information

Flexible Spatio-temporal smoothing with array methods

Flexible Spatio-temporal smoothing with array methods Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS046) p.849 Flexible Spatio-temporal smoothing with array methods Dae-Jin Lee CSIRO, Mathematics, Informatics and

More information

Flexible Gaussian Processes via Convolution

Flexible Gaussian Processes via Convolution Flexible Gaussian Processes via Convolution Herbert K. H. Lee, Christopher H. Holloman, Catherine A. Calder, and Dave M. Higdon Duke University (and LANL) June 21, 2002 Abstract Spatial and spatio-temporal

More information

Some Topics in Convolution-Based Spatial Modeling

Some Topics in Convolution-Based Spatial Modeling Some Topics in Convolution-Based Spatial Modeling Catherine A. Calder 1 and Noel Cressie Department of Statistics The Ohio State University 1958 Neil Ave. Columbus, OH 43210 USA Appears in the Proceedings

More information

Spatio-Temporal Modeling using Kernel Convolution of. Order Based Dependent Dirichlet Process

Spatio-Temporal Modeling using Kernel Convolution of. Order Based Dependent Dirichlet Process Nonstationary, Nonparametric, Nonseparable Bayesian Spatio-Temporal Modeling using Kernel Convolution of Order Based Dependent Dirichlet Process arxiv:405.4955v [stat.me] 0 May 04 Moumita Das and Sourabh

More information

Fixed-domain Asymptotics of Covariance Matrices and Preconditioning

Fixed-domain Asymptotics of Covariance Matrices and Preconditioning Fixed-domain Asymptotics of Covariance Matrices and Preconditioning Jie Chen IBM Thomas J. Watson Research Center Presented at Preconditioning Conference, August 1, 2017 Jie Chen (IBM Research) Covariance

More information

Lecture 3: Statistical Decision Theory (Part II)

Lecture 3: Statistical Decision Theory (Part II) Lecture 3: Statistical Decision Theory (Part II) Hao Helen Zhang Hao Helen Zhang Lecture 3: Statistical Decision Theory (Part II) 1 / 27 Outline of This Note Part I: Statistics Decision Theory (Classical

More information

FuncICA for time series pattern discovery

FuncICA for time series pattern discovery FuncICA for time series pattern discovery Nishant Mehta and Alexander Gray Georgia Institute of Technology The problem Given a set of inherently continuous time series (e.g. EEG) Find a set of patterns

More information

VARIANCE ESTIMATION AND KRIGING PREDICTION FOR A CLASS OF NON-STATIONARY SPATIAL MODELS

VARIANCE ESTIMATION AND KRIGING PREDICTION FOR A CLASS OF NON-STATIONARY SPATIAL MODELS Statistica Sinica 25 (2015), 135-149 doi:http://dx.doi.org/10.5705/ss.2013.205w VARIANCE ESTIMATION AND KRIGING PREDICTION FOR A CLASS OF NON-STATIONARY SPATIAL MODELS Shu Yang and Zhengyuan Zhu Iowa State

More information

The Matrix Reloaded: Computations for large spatial data sets

The Matrix Reloaded: Computations for large spatial data sets The Matrix Reloaded: Computations for large spatial data sets The spatial model Solving linear systems Matrix multiplication Creating sparsity Doug Nychka National Center for Atmospheric Research Sparsity,

More information

Modeling Real Estate Data using Quantile Regression

Modeling Real Estate Data using Quantile Regression Modeling Real Estate Data using Semiparametric Quantile Regression Department of Statistics University of Innsbruck September 9th, 2011 Overview 1 Application: 2 3 4 Hedonic regression data for house prices

More information

A Complete Spatial Downscaler

A Complete Spatial Downscaler A Complete Spatial Downscaler Yen-Ning Huang, Brian J Reich, Montserrat Fuentes 1 Sankar Arumugam 2 1 Department of Statistics, NC State University 2 Department of Civil, Construction, and Environmental

More information

A full scale, non stationary approach for the kriging of large spatio(-temporal) datasets

A full scale, non stationary approach for the kriging of large spatio(-temporal) datasets A full scale, non stationary approach for the kriging of large spatio(-temporal) datasets Thomas Romary, Nicolas Desassis & Francky Fouedjio Mines ParisTech Centre de Géosciences, Equipe Géostatistique

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Iain Murray murray@cs.toronto.edu CSC255, Introduction to Machine Learning, Fall 28 Dept. Computer Science, University of Toronto The problem Learn scalar function of

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016 Spatial Statistics Spatial Examples More Spatial Statistics with Image Analysis Johan Lindström 1 1 Mathematical Statistics Centre for Mathematical Sciences Lund University Lund October 6, 2016 Johan Lindström

More information

Spatially-Varying Covariance Functions for Nonstationary Spatial Process Modeling

Spatially-Varying Covariance Functions for Nonstationary Spatial Process Modeling Spatially-Varying Covariance Functions for Nonstationary Spatial Process Modeling Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School

More information

Statistícal Methods for Spatial Data Analysis

Statistícal Methods for Spatial Data Analysis Texts in Statistícal Science Statistícal Methods for Spatial Data Analysis V- Oliver Schabenberger Carol A. Gotway PCT CHAPMAN & K Contents Preface xv 1 Introduction 1 1.1 The Need for Spatial Analysis

More information

Multi-task Learning with Gaussian Processes, with Applications to Robot Inverse Dynamics

Multi-task Learning with Gaussian Processes, with Applications to Robot Inverse Dynamics 1 / 38 Multi-task Learning with Gaussian Processes, with Applications to Robot Inverse Dynamics Chris Williams with Kian Ming A. Chai, Stefan Klanke, Sethu Vijayakumar December 2009 Motivation 2 / 38 Examples

More information

A Divide-and-Conquer Bayesian Approach to Large-Scale Kriging

A Divide-and-Conquer Bayesian Approach to Large-Scale Kriging A Divide-and-Conquer Bayesian Approach to Large-Scale Kriging Cheng Li DSAP, National University of Singapore Joint work with Rajarshi Guhaniyogi (UC Santa Cruz), Terrance D. Savitsky (US Bureau of Labor

More information

Paul Sampson Doris Damian Peter Guttorp NRCSE. T e c h n i c a l R e p o r t S e r i e s. NRCSE-TRS No January 18, 2001

Paul Sampson Doris Damian Peter Guttorp NRCSE. T e c h n i c a l R e p o r t S e r i e s. NRCSE-TRS No January 18, 2001 Advances in Modeling and Inference for Environmental Processes with Nonstationary Spatial Covariance Paul Sampson Doris Damian Peter Guttorp NRCSE T e c h n i c a l R e p o r t S e r i e s NRCSE-TRS No.

More information

Introduction to Gaussian Process

Introduction to Gaussian Process Introduction to Gaussian Process CS 778 Chris Tensmeyer CS 478 INTRODUCTION 1 What Topic? Machine Learning Regression Bayesian ML Bayesian Regression Bayesian Non-parametric Gaussian Process (GP) GP Regression

More information

2.7 The Gaussian Probability Density Function Forms of the Gaussian pdf for Real Variates

2.7 The Gaussian Probability Density Function Forms of the Gaussian pdf for Real Variates .7 The Gaussian Probability Density Function Samples taken from a Gaussian process have a jointly Gaussian pdf (the definition of Gaussian process). Correlator outputs are Gaussian random variables if

More information

The Bayesian approach to inverse problems

The Bayesian approach to inverse problems The Bayesian approach to inverse problems Youssef Marzouk Department of Aeronautics and Astronautics Center for Computational Engineering Massachusetts Institute of Technology ymarz@mit.edu, http://uqgroup.mit.edu

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

Accounting for Complex Sample Designs via Mixture Models

Accounting for Complex Sample Designs via Mixture Models Accounting for Complex Sample Designs via Finite Normal Mixture Models 1 1 University of Michigan School of Public Health August 2009 Talk Outline 1 2 Accommodating Sampling Weights in Mixture Models 3

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

Data are collected along transect lines, with dense data along. Spatial modelling using GMRFs. 200m. Today? Spatial modelling using GMRFs

Data are collected along transect lines, with dense data along. Spatial modelling using GMRFs. 200m. Today? Spatial modelling using GMRFs Centre for Mathematical Sciences Lund University Engineering geology Lund University Results A non-stationary extension The model Estimation Gaussian Markov random fields Basics Approximating Mate rn covariances

More information