Spatial smoothing over complex domain

Size: px
Start display at page:

Download "Spatial smoothing over complex domain"

Transcription

1 Spatial smoothing over complex domain Alessandro Ottavi NTNU Department of Mathematical Science August

2 Outline Spatial smoothing Complex domain The SPDE approch Manifold Some tests

3 Spatial smoothing Outline Spatial smoothing Complex domain The SPDE approch Manifold Some tests

4 Spatial smoothing What is smoothing To smooth a data set is to create an approximating function that attempts to capture important patterns in the data, while leaving out noise. This technique is used in many different field as geology biology insurance medicine...

5 Spatial smoothing Standard approach: Gaussian Field A standard approach is trough Gaussian Field. We say that x(s) s D R 2 is a Gaussian Field (GF) if all finite collection x(s i ) are jointly Gaussian. A GF is usually specify trough: a mean function µ(.) that lead to a mean vector µ(s i ) a covariance function C(.,.) that lead to a covariance matrix Σ = C(s i, s j )

6 Spatial smoothing Advantages: Intuitive approach Easy to use in many cases Easy to parametrize Problems: Can be computationally heavy Not good results when far away from standard cases (for example when the shape of the domain is important)

7 Complex domain Outline Spatial smoothing Complex domain The SPDE approch Manifold Some tests

8 Complex domain Complex domain and boundaries Spatial smoothing methods often assume the region of interest is R 2 but we can be in different situations: We might have a river, lake or a mountain, which, at least physically, prevents smoothing over the river, lake or mountain. In other cases topological caracteristics of the domain may play an important role and is important to introduce this aspects in the model.

9 Spatial smoothing over complex domain Complex domain Figure: example of a complex domain Fig 1 Distribution of flower and non-flowering S. leprosula in the alluvial (blue) and mudstone (brown) forest Fig 2 as above for S. johorensis Fig 3 as above for P tomentella Fig 4 as above for S. xanthophylla 2007 In the figure on the left there is an example where introducing information about the domain can improve the quality of the smoothing procedure: is showed the distribution of flowering and non flowering for three different spices of flowers over 2 different possible regions: alluvial and mud stone areas.

10 Complex domain In the figure on the right there is another possible example of complex domain, when there is the necessity to smooth for example over see region strictly connected over earth region and when is not feasible to do that then... may be. Figure: Cost of Norway

11 Complex domain Proposed methodology Non isotropic/ non stationary Gaussian Fields can be used to mimic the presence of complex boundaries; the strategy is to consider the distance between two points as length of the minimum arc not crossing the constrain. More recently Simon Wood (2008) 1 proposed a method based on spline able to be incorporated in GAM or mixed models. 1 Wood, S. N., Bravington, M. V. and Hedley, S. L. (2008), Soap film smoothing. Journal of the Royal Statistical Society

12 The SPDE approach Outline Spatial smoothing Complex domain The SPDE approch Manifold Some tests

13 3.5" Spatial smoothing over complex domain The SPDE approach We want to use the relation between Gaussian Field, SPDE Gaussian Markov Random Field and " 2.92" Stochastic Differential Equation GF GMRF in order to include in our (Bayesian) models information about the physical constrain.

14 The SPDE approach Gaussian Markov Random Field A Gaussian Markov Random Field is a Gaussian field x(s i ) s i D R 2 where the full conditionals only depends on a set of neighbors: π(x i x i ) = π(x i x δi ) With the property that the precision matrix is sparse due to: Q ij 0 i δ j A GMRF is discretized version of GF over a set of location s i where Q 1 = Σ.

15 The SPDE approach Second order differential equation We define a second order partial differential equation: Where: (κ 2 )x(s) = ɛ(s) s D (1) κ : is a range parameter, : is the Laplacian operator, in R 2 it results as ɛ : is a White Noise on D D : is a smooth surface f = 2 f x f y 2

16 The SPDE approach SPDE and GF Is possible to prove that: The solution x(s) of the differential equation is Gaussian Whittle in prove that if D = R 2 the solution is a Gaussian field with Matérn covariance function given by: r(h) σ 2 (κh) 3 K 3 (κh) where K is a Bessel function of second order and the relation between the parameter κ and the effective range ρ in the corresponding GF is given by ρ = 24/κ 2 Whittle P., Stochastic processes in several dimensions, Statistics in Physical Sciences 1963

17 The SPDE approach SPDE and GMRF Is it possible to obtain the precision matrix Q for the process x i directly from the solution of the SPDE. Proceed to a triangularization of the region Express the SPDE in weak formulation < φ, ( + χ 2 )x >=< φ, ɛ > Approximate x i as a combination of basic functions ˆx = n φ i w i i=1 Find the precision matrix of x i

18 Manifold Outline Spatial smoothing Complex domain The SPDE approch Manifold Some tests

19 z z Spatial smoothing over complex domain Manifold What is a Manifold? A manifold is a space D that behaves locally as R d. Property: D is locally planar Y Y X X

20 Some tests Outline Spatial smoothing Complex domain The SPDE approch Manifold Some tests

21 Some tests Correlation around an obstacle Correlation around lake, alpha=2, chi=0.2 Correlation around lake, alpha=2, chi=0.2 Correlation around lake, alpha=2, chi=0.2 Correlation around lake, alpha=2, chi=0.2

22 Some tests correlation The correlation function across the obstacle (dots line) decrease much faster then the correlation away from the obstacle (continuous line) distance

23 Some tests Correlation across obstacle and bottleneck

24 Some tests

25 Some tests Correlation across bottleneck Correlation trough tunnel, alpha=2, chi=0.2 Correlation trough tunnel, alpha=2, chi=0.2 Correlation trough tunnel, alpha=2, chi=0.2 Correlation trough tunnel, alpha=2, chi=0.2

26 Some tests Last example

Multivariate Gaussian Random Fields with SPDEs

Multivariate Gaussian Random Fields with SPDEs Multivariate Gaussian Random Fields with SPDEs Xiangping Hu Daniel Simpson, Finn Lindgren and Håvard Rue Department of Mathematics, University of Oslo PASI, 214 Outline The Matérn covariance function and

More information

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016 Spatial Statistics Spatial Examples More Spatial Statistics with Image Analysis Johan Lindström 1 1 Mathematical Statistics Centre for Mathematical Sciences Lund University Lund October 6, 2016 Johan Lindström

More information

Spatial Statistics with Image Analysis. Lecture L08. Computer exercise 3. Lecture 8. Johan Lindström. November 25, 2016

Spatial Statistics with Image Analysis. Lecture L08. Computer exercise 3. Lecture 8. Johan Lindström. November 25, 2016 C3 Repetition Creating Q Spectral Non-grid Spatial Statistics with Image Analysis Lecture 8 Johan Lindström November 25, 216 Johan Lindström - johanl@maths.lth.se FMSN2/MASM25L8 1/39 Lecture L8 C3 Repetition

More information

Data are collected along transect lines, with dense data along. Spatial modelling using GMRFs. 200m. Today? Spatial modelling using GMRFs

Data are collected along transect lines, with dense data along. Spatial modelling using GMRFs. 200m. Today? Spatial modelling using GMRFs Centre for Mathematical Sciences Lund University Engineering geology Lund University Results A non-stationary extension The model Estimation Gaussian Markov random fields Basics Approximating Mate rn covariances

More information

Spatial smoothing using Gaussian processes

Spatial smoothing using Gaussian processes Spatial smoothing using Gaussian processes Chris Paciorek paciorek@hsph.harvard.edu August 5, 2004 1 OUTLINE Spatial smoothing and Gaussian processes Covariance modelling Nonstationary covariance modelling

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Fast approximations for the Expected Value of Partial Perfect Information using R-INLA

Fast approximations for the Expected Value of Partial Perfect Information using R-INLA Fast approximations for the Expected Value of Partial Perfect Information using R-INLA Anna Heath 1 1 Department of Statistical Science, University College London 22 May 2015 Outline 1 Health Economic

More information

arxiv: v4 [stat.me] 14 Sep 2015

arxiv: v4 [stat.me] 14 Sep 2015 Does non-stationary spatial data always require non-stationary random fields? Geir-Arne Fuglstad 1, Daniel Simpson 1, Finn Lindgren 2, and Håvard Rue 1 1 Department of Mathematical Sciences, NTNU, Norway

More information

Multi-resolution models for large data sets

Multi-resolution models for large data sets Multi-resolution models for large data sets Douglas Nychka, National Center for Atmospheric Research National Science Foundation NORDSTAT, Umeå, June, 2012 Credits Steve Sain, NCAR Tia LeRud, UC Davis

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Hierarchical Modelling for Univariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Spatial Statistics with Image Analysis. Lecture L02. Computer exercise 0 Daily Temperature. Lecture 2. Johan Lindström.

Spatial Statistics with Image Analysis. Lecture L02. Computer exercise 0 Daily Temperature. Lecture 2. Johan Lindström. C Stochastic fields Covariance Spatial Statistics with Image Analysis Lecture 2 Johan Lindström November 4, 26 Lecture L2 Johan Lindström - johanl@maths.lth.se FMSN2/MASM2 L /2 C Stochastic fields Covariance

More information

Latent Gaussian Processes and Stochastic Partial Differential Equations

Latent Gaussian Processes and Stochastic Partial Differential Equations Latent Gaussian Processes and Stochastic Partial Differential Equations Johan Lindström 1 1 Centre for Mathematical Sciences Lund University Lund 2016-02-04 Johan Lindström - johanl@maths.lth.se Gaussian

More information

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Abhirup Datta 1 Sudipto Banerjee 1 Andrew O. Finley 2 Alan E. Gelfand 3 1 University of Minnesota, Minneapolis,

More information

Computer model calibration with large non-stationary spatial outputs: application to the calibration of a climate model

Computer model calibration with large non-stationary spatial outputs: application to the calibration of a climate model Computer model calibration with large non-stationary spatial outputs: application to the calibration of a climate model Kai-Lan Chang and Serge Guillas University College London, Gower Street, London WC1E

More information

The Bayesian approach to inverse problems

The Bayesian approach to inverse problems The Bayesian approach to inverse problems Youssef Marzouk Department of Aeronautics and Astronautics Center for Computational Engineering Massachusetts Institute of Technology ymarz@mit.edu, http://uqgroup.mit.edu

More information

Fast algorithms that utilise the sparsity of Q exist (c-package ( Q 1. GMRFlib) Seattle February 3, 2009

Fast algorithms that utilise the sparsity of Q exist (c-package ( Q 1. GMRFlib) Seattle February 3, 2009 GMRF:s Results References Some Theory for and Applications of Gaussian Markov Random Fields Johan Lindström 1 David Bolin 1 Finn Lindgren 1 Håvard Rue 2 1 Centre for Mathematical Sciences Lund University

More information

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information

Spatial point processes in the modern world an

Spatial point processes in the modern world an Spatial point processes in the modern world an interdisciplinary dialogue Janine Illian University of St Andrews, UK and NTNU Trondheim, Norway Bristol, October 2015 context statistical software past to

More information

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Marcela Alfaro Córdoba August 25, 2016 NCSU Department of Statistics Continuous Parameter

More information

Point-Referenced Data Models

Point-Referenced Data Models Point-Referenced Data Models Jamie Monogan University of Georgia Spring 2013 Jamie Monogan (UGA) Point-Referenced Data Models Spring 2013 1 / 19 Objectives By the end of these meetings, participants should

More information

Hierarchical Modeling for Spatio-temporal Data

Hierarchical Modeling for Spatio-temporal Data Hierarchical Modeling for Spatio-temporal Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Spatial omain Hierarchical Modelling for Univariate Spatial ata Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

More information

Bayesian computation using INLA. 5: Spatial Markovian models The SPDE approach

Bayesian computation using INLA. 5: Spatial Markovian models The SPDE approach Bayesian computation using INLA 5: Spatial Markovian models The SPDE approach Outline Spatial models Gaussian random fields Low-dimensional methods Spatial Matérn fields Example: Continuous vs Discrete

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 12: Gaussian Belief Propagation, State Space Models and Kalman Filters Guest Kalman Filter Lecture by

More information

Basics of Point-Referenced Data Models

Basics of Point-Referenced Data Models Basics of Point-Referenced Data Models Basic tool is a spatial process, {Y (s), s D}, where D R r Chapter 2: Basics of Point-Referenced Data Models p. 1/45 Basics of Point-Referenced Data Models Basic

More information

Markov random fields. The Markov property

Markov random fields. The Markov property Markov random fields The Markov property Discrete time: (X k X k!1,x k!2,... = (X k X k!1 A time symmetric version: (X k! X!k = (X k X k!1,x k+1 A more general version: Let A be a set of indices >k, B

More information

A multi-resolution Gaussian process model for the analysis of large spatial data sets.

A multi-resolution Gaussian process model for the analysis of large spatial data sets. National Science Foundation A multi-resolution Gaussian process model for the analysis of large spatial data sets. Doug Nychka Soutir Bandyopadhyay Dorit Hammerling Finn Lindgren Stephen Sain NCAR/TN-504+STR

More information

CBMS Lecture 1. Alan E. Gelfand Duke University

CBMS Lecture 1. Alan E. Gelfand Duke University CBMS Lecture 1 Alan E. Gelfand Duke University Introduction to spatial data and models Researchers in diverse areas such as climatology, ecology, environmental exposure, public health, and real estate

More information

Computation fundamentals of discrete GMRF representations of continuous domain spatial models

Computation fundamentals of discrete GMRF representations of continuous domain spatial models Computation fundamentals of discrete GMRF representations of continuous domain spatial models Finn Lindgren September 23 2015 v0.2.2 Abstract The fundamental formulas and algorithms for Bayesian spatial

More information

Gaussian Random Fields: Geometric Properties and Extremes

Gaussian Random Fields: Geometric Properties and Extremes Gaussian Random Fields: Geometric Properties and Extremes Yimin Xiao Michigan State University Outline Lecture 1: Gaussian random fields and their regularity Lecture 2: Hausdorff dimension results and

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Gaussian Processes (10/16/13)

Gaussian Processes (10/16/13) STA561: Probabilistic machine learning Gaussian Processes (10/16/13) Lecturer: Barbara Engelhardt Scribes: Changwei Hu, Di Jin, Mengdi Wang 1 Introduction In supervised learning, we observe some inputs

More information

Hierarchical Modelling for Multivariate Spatial Data

Hierarchical Modelling for Multivariate Spatial Data Hierarchical Modelling for Multivariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Point-referenced spatial data often come as

More information

Markov Random Fields

Markov Random Fields Markov Random Fields Umamahesh Srinivas ipal Group Meeting February 25, 2011 Outline 1 Basic graph-theoretic concepts 2 Markov chain 3 Markov random field (MRF) 4 Gauss-Markov random field (GMRF), and

More information

Hierarchical Modeling for Multivariate Spatial Data

Hierarchical Modeling for Multivariate Spatial Data Hierarchical Modeling for Multivariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Douglas Nychka, Soutir Bandyopadhyay, Dorit Hammerling, Finn Lindgren, and Stephan Sain. October 10, 2012

Douglas Nychka, Soutir Bandyopadhyay, Dorit Hammerling, Finn Lindgren, and Stephan Sain. October 10, 2012 A multi-resolution Gaussian process model for the analysis of large spatial data sets. Douglas Nychka, Soutir Bandyopadhyay, Dorit Hammerling, Finn Lindgren, and Stephan Sain October 10, 2012 Abstract

More information

Bayesian inference & process convolution models Dave Higdon, Statistical Sciences Group, LANL

Bayesian inference & process convolution models Dave Higdon, Statistical Sciences Group, LANL 1 Bayesian inference & process convolution models Dave Higdon, Statistical Sciences Group, LANL 2 MOVING AVERAGE SPATIAL MODELS Kernel basis representation for spatial processes z(s) Define m basis functions

More information

Monte Carlo simulation inspired by computational optimization. Colin Fox Al Parker, John Bardsley MCQMC Feb 2012, Sydney

Monte Carlo simulation inspired by computational optimization. Colin Fox Al Parker, John Bardsley MCQMC Feb 2012, Sydney Monte Carlo simulation inspired by computational optimization Colin Fox fox@physics.otago.ac.nz Al Parker, John Bardsley MCQMC Feb 2012, Sydney Sampling from π(x) Consider : x is high-dimensional (10 4

More information

Sliced Inverse Regression

Sliced Inverse Regression Sliced Inverse Regression Ge Zhao gzz13@psu.edu Department of Statistics The Pennsylvania State University Outline Background of Sliced Inverse Regression (SIR) Dimension Reduction Definition of SIR Inversed

More information

A spatio-temporal model for extreme precipitation simulated by a climate model

A spatio-temporal model for extreme precipitation simulated by a climate model A spatio-temporal model for extreme precipitation simulated by a climate model Jonathan Jalbert Postdoctoral fellow at McGill University, Montréal Anne-Catherine Favre, Claude Bélisle and Jean-François

More information

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data Hierarchical models for spatial data Based on the book by Banerjee, Carlin and Gelfand Hierarchical Modeling and Analysis for Spatial Data, 2004. We focus on Chapters 1, 2 and 5. Geo-referenced data arise

More information

Introduction to Geostatistics

Introduction to Geostatistics Introduction to Geostatistics Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore,

More information

An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach

An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach J. R. Statist. Soc. B (2011) 73, Part 4, pp. 423 498 An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach Finn Lindgren and

More information

Spatio-temporal prediction of site index based on forest inventories and climate change scenarios

Spatio-temporal prediction of site index based on forest inventories and climate change scenarios Forest Research Institute Spatio-temporal prediction of site index based on forest inventories and climate change scenarios Arne Nothdurft 1, Thilo Wolf 1, Andre Ringeler 2, Jürgen Böhner 2, Joachim Saborowski

More information

8.1 Concentration inequality for Gaussian random matrix (cont d)

8.1 Concentration inequality for Gaussian random matrix (cont d) MGMT 69: Topics in High-dimensional Data Analysis Falll 26 Lecture 8: Spectral clustering and Laplacian matrices Lecturer: Jiaming Xu Scribe: Hyun-Ju Oh and Taotao He, October 4, 26 Outline Concentration

More information

INLA for Spatial Statistics

INLA for Spatial Statistics INLA for Spatial Statistics 5. Log-Gaussian Co Processes Daniel Simpson Department of Mathematical Sciences University of Bath Outline spatial point processes fitting log Gaussian Co processes eamples

More information

Modelling Non-linear and Non-stationary Time Series

Modelling Non-linear and Non-stationary Time Series Modelling Non-linear and Non-stationary Time Series Chapter 2: Non-parametric methods Henrik Madsen Advanced Time Series Analysis September 206 Henrik Madsen (02427 Adv. TS Analysis) Lecture Notes September

More information

Multivariate modelling and efficient estimation of Gaussian random fields with application to roller data

Multivariate modelling and efficient estimation of Gaussian random fields with application to roller data Multivariate modelling and efficient estimation of Gaussian random fields with application to roller data Reinhard Furrer, UZH PASI, Búzios, 14-06-25 NZZ.ch Motivation Microarray data: construct alternative

More information

6. The econometrics of Financial Markets: Empirical Analysis of Financial Time Series. MA6622, Ernesto Mordecki, CityU, HK, 2006.

6. The econometrics of Financial Markets: Empirical Analysis of Financial Time Series. MA6622, Ernesto Mordecki, CityU, HK, 2006. 6. The econometrics of Financial Markets: Empirical Analysis of Financial Time Series MA6622, Ernesto Mordecki, CityU, HK, 2006. References for Lecture 5: Quantitative Risk Management. A. McNeil, R. Frey,

More information

R-INLA. Sam Clifford Su-Yun Kang Jeff Hsieh. 30 August Bayesian Research and Analysis Group 1 / 14

R-INLA. Sam Clifford Su-Yun Kang Jeff Hsieh. 30 August Bayesian Research and Analysis Group 1 / 14 1 / 14 R-INLA Sam Clifford Su-Yun Kang Jeff Hsieh Bayesian Research and Analysis Group 30 August 2012 What is R-INLA? R package for Bayesian computation Integrated Nested Laplace Approximation MCMC free

More information

A short introduction to INLA and R-INLA

A short introduction to INLA and R-INLA A short introduction to INLA and R-INLA Integrated Nested Laplace Approximation Thomas Opitz, BioSP, INRA Avignon Workshop: Theory and practice of INLA and SPDE November 7, 2018 2/21 Plan for this talk

More information

EE226a - Summary of Lecture 13 and 14 Kalman Filter: Convergence

EE226a - Summary of Lecture 13 and 14 Kalman Filter: Convergence 1 EE226a - Summary of Lecture 13 and 14 Kalman Filter: Convergence Jean Walrand I. SUMMARY Here are the key ideas and results of this important topic. Section II reviews Kalman Filter. A system is observable

More information

Gaussian Process Regression

Gaussian Process Regression Gaussian Process Regression 4F1 Pattern Recognition, 21 Carl Edward Rasmussen Department of Engineering, University of Cambridge November 11th - 16th, 21 Rasmussen (Engineering, Cambridge) Gaussian Process

More information

Gaussian Processes 1. Schedule

Gaussian Processes 1. Schedule 1 Schedule 17 Jan: Gaussian processes (Jo Eidsvik) 24 Jan: Hands-on project on Gaussian processes (Team effort, work in groups) 31 Jan: Latent Gaussian models and INLA (Jo Eidsvik) 7 Feb: Hands-on project

More information

Introduction to Functional Data Analysis A CSCU Workshop. Giles Hooker Biological Statistics and Computational Biology

Introduction to Functional Data Analysis A CSCU Workshop. Giles Hooker Biological Statistics and Computational Biology Introduction to Functional Data Analysis A CSCU Workshop Giles Hooker Biological Statistics and Computational Biology gjh27@cornell.edu www.bscb.cornell.edu/ hooker/fdaworkshop 1 / 26 Agenda What is Functional

More information

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation A Framework for Daily Spatio-Temporal Stochastic Weather Simulation, Rick Katz, Balaji Rajagopalan Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric

More information

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Investigating posterior contour probabilities using INLA: A case study on recurrence of bladder tumours by Rupali Akerkar PREPRINT STATISTICS NO. 4/2012 NORWEGIAN

More information

A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking

A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking György Terdik and Subba Rao Tata UofD, HU & UofM, UK January 30, 2015 Laboratoire

More information

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP The IsoMAP uses the multiple linear regression and geostatistical methods to analyze isotope data Suppose the response variable

More information

Covariance Matrix Simplification For Efficient Uncertainty Management

Covariance Matrix Simplification For Efficient Uncertainty Management PASEO MaxEnt 2007 Covariance Matrix Simplification For Efficient Uncertainty Management André Jalobeanu, Jorge A. Gutiérrez PASEO Research Group LSIIT (CNRS/ Univ. Strasbourg) - Illkirch, France *part

More information

Reduction of Model Complexity and the Treatment of Discrete Inputs in Computer Model Emulation

Reduction of Model Complexity and the Treatment of Discrete Inputs in Computer Model Emulation Reduction of Model Complexity and the Treatment of Discrete Inputs in Computer Model Emulation Curtis B. Storlie a a Los Alamos National Laboratory E-mail:storlie@lanl.gov Outline Reduction of Emulator

More information

Non-gaussian spatiotemporal modeling

Non-gaussian spatiotemporal modeling Dec, 2008 1/ 37 Non-gaussian spatiotemporal modeling Thais C O da Fonseca Joint work with Prof Mark F J Steel Department of Statistics University of Warwick Dec, 2008 Dec, 2008 2/ 37 1 Introduction Motivation

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini May 30, 2018 1 / 57 Table of Contents 1 Sparse linear models Basis Pursuit and restricted null space property Sufficient conditions for RNS 2 / 57

More information

Efficient spatial modelling using the SPDE approach with bivariate splines

Efficient spatial modelling using the SPDE approach with bivariate splines Efficient spatial modelling using the SPDE approach with bivariate splines Xiaoyu Liu Department of Statistical Science, University College London Serge Guillas Department of Statistical Science, University

More information

Nearest Neighbor Gaussian Processes for Large Spatial Data

Nearest Neighbor Gaussian Processes for Large Spatial Data Nearest Neighbor Gaussian Processes for Large Spatial Data Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns

More information

scrna-seq Differential expression analysis methods Olga Dethlefsen NBIS, National Bioinformatics Infrastructure Sweden October 2017

scrna-seq Differential expression analysis methods Olga Dethlefsen NBIS, National Bioinformatics Infrastructure Sweden October 2017 scrna-seq Differential expression analysis methods Olga Dethlefsen NBIS, National Bioinformatics Infrastructure Sweden October 2017 Olga (NBIS) scrna-seq de October 2017 1 / 34 Outline Introduction: what

More information

Gaussian with mean ( µ ) and standard deviation ( σ)

Gaussian with mean ( µ ) and standard deviation ( σ) Slide from Pieter Abbeel Gaussian with mean ( µ ) and standard deviation ( σ) 10/6/16 CSE-571: Robotics X ~ N( µ, σ ) Y ~ N( aµ + b, a σ ) Y = ax + b + + + + 1 1 1 1 1 1 1 1 1 1, ~ ) ( ) ( ), ( ~ ), (

More information

A Multi-resolution Gaussian process model for the analysis of large spatial data sets.

A Multi-resolution Gaussian process model for the analysis of large spatial data sets. 1 2 3 4 A Multi-resolution Gaussian process model for the analysis of large spatial data sets. Douglas Nychka, Soutir Bandyopadhyay, Dorit Hammerling, Finn Lindgren, and Stephan Sain August 13, 2013 5

More information

An EM algorithm for Gaussian Markov Random Fields

An EM algorithm for Gaussian Markov Random Fields An EM algorithm for Gaussian Markov Random Fields Will Penny, Wellcome Department of Imaging Neuroscience, University College, London WC1N 3BG. wpenny@fil.ion.ucl.ac.uk October 28, 2002 Abstract Lavine

More information

Spatial Lasso with Application to GIS Model Selection. F. Jay Breidt Colorado State University

Spatial Lasso with Application to GIS Model Selection. F. Jay Breidt Colorado State University Spatial Lasso with Application to GIS Model Selection F. Jay Breidt Colorado State University with Hsin-Cheng Huang, Nan-Jung Hsu, and Dave Theobald September 25 The work reported here was developed under

More information

Gaussian Markov Random Fields: Theory and Applications

Gaussian Markov Random Fields: Theory and Applications Gaussian Markov Random Fields: Theory and Applications Håvard Rue 1 1 Department of Mathematical Sciences NTNU, Norway September 26, 2008 Part I Definition and basic properties Outline I Introduction Why?

More information

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Neural Computation, June 2003; 15 (6):1373-1396 Presentation for CSE291 sp07 M. Belkin 1 P. Niyogi 2 1 University of Chicago, Department

More information

A Process over all Stationary Covariance Kernels

A Process over all Stationary Covariance Kernels A Process over all Stationary Covariance Kernels Andrew Gordon Wilson June 9, 0 Abstract I define a process over all stationary covariance kernels. I show how one might be able to perform inference that

More information

GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT

GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT Cha Zhang Joint work with Dinei Florêncio and Philip A. Chou Microsoft Research Outline Gaussian Markov Random Field Graph construction Graph transform

More information

Gaussian predictive process models for large spatial data sets.

Gaussian predictive process models for large spatial data sets. Gaussian predictive process models for large spatial data sets. Sudipto Banerjee, Alan E. Gelfand, Andrew O. Finley, and Huiyan Sang Presenters: Halley Brantley and Chris Krut September 28, 2015 Overview

More information

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University this presentation derived from that presented at the Pan-American Advanced

More information

Introduction to Design and Analysis of Computer Experiments

Introduction to Design and Analysis of Computer Experiments Introduction to Design and Analysis of Thomas Santner Department of Statistics The Ohio State University October 2010 Outline Empirical Experimentation Empirical Experimentation Physical Experiments (agriculture,

More information

Hierarchical Matérn fields and Cauchy difference priors for Bayesian inversion

Hierarchical Matérn fields and Cauchy difference priors for Bayesian inversion Hierarchical Matérn fields and Cauchy difference priors for Bayesian inversion Lassi Roininen Bayesian Computation for High-Dimensional Statistical Models National University of Singapore, 27 August 2018

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

9 Multi-Model State Estimation

9 Multi-Model State Estimation Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof. N. Shimkin 9 Multi-Model State

More information

A Divide-and-Conquer Bayesian Approach to Large-Scale Kriging

A Divide-and-Conquer Bayesian Approach to Large-Scale Kriging A Divide-and-Conquer Bayesian Approach to Large-Scale Kriging Cheng Li DSAP, National University of Singapore Joint work with Rajarshi Guhaniyogi (UC Santa Cruz), Terrance D. Savitsky (US Bureau of Labor

More information

Bayesian Hierarchical Models

Bayesian Hierarchical Models Bayesian Hierarchical Models Gavin Shaddick, Millie Green, Matthew Thomas University of Bath 6 th - 9 th December 2016 1/ 34 APPLICATIONS OF BAYESIAN HIERARCHICAL MODELS 2/ 34 OUTLINE Spatial epidemiology

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes TK4150 - Intro 1 Chapter 4 - Fundamentals of spatial processes Lecture notes Odd Kolbjørnsen and Geir Storvik January 30, 2017 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites

More information

Motivation Sparse Signal Recovery is an interesting area with many potential applications. Methods developed for solving sparse signal recovery proble

Motivation Sparse Signal Recovery is an interesting area with many potential applications. Methods developed for solving sparse signal recovery proble Bayesian Methods for Sparse Signal Recovery Bhaskar D Rao 1 University of California, San Diego 1 Thanks to David Wipf, Zhilin Zhang and Ritwik Giri Motivation Sparse Signal Recovery is an interesting

More information

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Jon Wakefield Departments of Statistics and Biostatistics University of Washington 1 / 37 Lecture Content Motivation

More information

Nonparametric Bayesian Methods - Lecture I

Nonparametric Bayesian Methods - Lecture I Nonparametric Bayesian Methods - Lecture I Harry van Zanten Korteweg-de Vries Institute for Mathematics CRiSM Masterclass, April 4-6, 2016 Overview of the lectures I Intro to nonparametric Bayesian statistics

More information

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET. Directional Metropolis Hastings updates for posteriors with nonlinear likelihoods

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET. Directional Metropolis Hastings updates for posteriors with nonlinear likelihoods NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Directional Metropolis Hastings updates for posteriors with nonlinear likelihoods by Håkon Tjelmeland and Jo Eidsvik PREPRINT STATISTICS NO. 5/2004 NORWEGIAN

More information

Compressed Sensing Using Bernoulli Measurement Matrices

Compressed Sensing Using Bernoulli Measurement Matrices ITSchool 11, Austin Compressed Sensing Using Bernoulli Measurement Matrices Yuhan Zhou Advisor: Wei Yu Department of Electrical and Computer Engineering University of Toronto, Canada Motivation Motivation

More information

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Overview Introduction Linear Methods for Dimensionality Reduction Nonlinear Methods and Manifold

More information

Learning Graphs from Data: A Signal Representation Perspective

Learning Graphs from Data: A Signal Representation Perspective 1 Learning Graphs from Data: A Signal Representation Perspective Xiaowen Dong*, Dorina Thanou*, Michael Rabbat, and Pascal Frossard arxiv:1806.00848v1 [cs.lg] 3 Jun 2018 The construction of a meaningful

More information

Cross-covariance Functions for Tangent Vector Fields on the Sphere

Cross-covariance Functions for Tangent Vector Fields on the Sphere Cross-covariance Functions for Tangent Vector Fields on the Sphere Minjie Fan 1 Tomoko Matsuo 2 1 Department of Statistics University of California, Davis 2 Cooperative Institute for Research in Environmental

More information

Missing Data Issues in the Studies of Neurodegenerative Disorders: the Methodology

Missing Data Issues in the Studies of Neurodegenerative Disorders: the Methodology Missing Data Issues in the Studies of Neurodegenerative Disorders: the Methodology Sheng Luo, PhD Associate Professor Department of Biostatistics & Bioinformatics Duke University Medical Center sheng.luo@duke.edu

More information

spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models

spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models Andrew O. Finley 1, Sudipto Banerjee 2, and Bradley P. Carlin 2 1 Michigan State University, Departments

More information

Lecture 9 Point Processes

Lecture 9 Point Processes Lecture 9 Point Processes Dennis Sun Stats 253 July 21, 2014 Outline of Lecture 1 Last Words about the Frequency Domain 2 Point Processes in Time and Space 3 Inhomogeneous Poisson Processes 4 Second-Order

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Models for models. Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research

Models for models. Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Models for models Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Outline Statistical models and tools Spatial fields (Wavelets) Climate regimes (Regression and clustering)

More information

Rice method for the maximum of Gaussian fields

Rice method for the maximum of Gaussian fields Rice method for the maximum of Gaussian fields IWAP, July 8, 2010 Jean-Marc AZAÏS Institut de Mathématiques, Université de Toulouse Jean-Marc AZAÏS ( Institut de Mathématiques, Université de Toulouse )

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

ISSN Article. Simulation Study of Direct Causality Measures in Multivariate Time Series

ISSN Article. Simulation Study of Direct Causality Measures in Multivariate Time Series Entropy 2013, 15, 2635-2661; doi:10.3390/e15072635 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Simulation Study of Direct Causality Measures in Multivariate Time Series Angeliki

More information

Spatial Smoothing in Stan: Conditional Auto-Regressive Models

Spatial Smoothing in Stan: Conditional Auto-Regressive Models Spatial Smoothing in Stan: Conditional Auto-Regressive Models Charles DiMaggio, PhD, NYU School of Medicine Stephen J. Mooney, PhD, University of Washington Mitzi Morris, Columbia University Dan Simpson,

More information