Spatial Smoothing in Stan: Conditional Auto-Regressive Models

Size: px
Start display at page:

Download "Spatial Smoothing in Stan: Conditional Auto-Regressive Models"

Transcription

1 Spatial Smoothing in Stan: Conditional Auto-Regressive Models Charles DiMaggio, PhD, NYU School of Medicine Stephen J. Mooney, PhD, University of Washington Mitzi Morris, Columbia University Dan Simpson, PhD, University of Toronto Katherine Wheeler-Martin, NYU School of Medicine 1

2 Outline Data events: New York City pedestrian traffic accidents areal unit: Census Tract Models BYM, BYM2 model - Poisson GLM plus separate components for spatial and non-spatial variance ICAR model - component for spatial variance Stan Implementations ICAR model BYM2 model 2

3 Spatial Smoothing for Areal Data Counts of rare events in small-population regions are noisy. Conditional Auto-Regressive (CAR) models smooth noise by pooling information from neighboring regions. CAR models use binary, symmetric neighbor relationship: for map over N regions, neighbor relationship i j, (i j), holds if and only if regions n i and n j are neighbors CAR models defined by encoding neighbor relationships as an adjacency matrix: for map over N regions use N N matrix entries {i,j} and {j,i} are 1 when i j (i.e., regions n i and n j are neighbors), 0 otherwise entries {i,i} are always 0 3

4 NYC Study Data map regions: census tracts (2095) red points: accidents (17,193) median accidents per tract: 6 median population per tract: 510 4

5 NYC Census Tract Neighbors 5

6 NYC Census Tract Neighbors, Zoom black lines: census tract boundaries blue lines: neighbors median neighbors: 6 min neighbors: 1 (6 regions) max neighbors: 12 (5 regions) 6

7 Besag (1974): Conditional Auto-Regressive (CAR) Model Conditional specification of CAR model: multivariate normal - N-length normal random vector φ = (φ 1,..., φ n ) T where each φ i is conditional on the values of its neighbors and with unknown variance. n φ i φ j,j i Normal( w ij φ j, σ) j=1 w ij are entries in a N N weights matrix W W is constructed from the adjacency matrix and a parameter α which controls the amount of spatial correlation 0 < α < 1. φ is a Gaussian Markov Random Field (GMRF). 7

8 CAR to ICAR Joint specification of CAR model φ Normal(0, Q 1 ) φ is centered at 0, precision matrix Q Q is constructed from adjacency matrix and α to be positive definite. Log probability density of φ is proportional to 1 2 log(det(q)) 1 2 φt Qφ Computing the determinant of a N N matrix requires N 3 operations Intrinsic Conditional Auto-Regressive Model: set α = 1 precision matrix Q is constant, term 1 2 log(det(q)) drops out Q is not positive definite, log prob density is improper ICAR can only be used as a prior 8

9 ICAR Model - Pairwise Difference Formulation Joint specification rewrites to Pairwise Difference: p(φ) exp 1 (φ i φ j ) 2 2 i j centered at 0, assuming common variance for all elements of φ. Each (φ i φ j ) 2 contributes a penalty term based on the distance between the values of neighboring regions φ is non-identifiable, constant added to φ washes out of φ i φ j Sum-to-zero constraint centers φ 9

10 Stan ICAR Model Implementation p(φ) exp 1 (φ i φ j ) 2 2 Use Stan s vectorized operations to compute log probability density: i j target += -0.5 * dot_self(phi[node1] - phi[node2]); Encode neighbor information as graph edgeset, i.e. pairs of indices for neighbors i, j: int<lower=0> N; int<lower=0> N_edges; int<lower=1, upper=n> node1[n_edges]; int<lower=1, upper=n> node2[n_edges]; 10

11 Stan ICAR Model Implementation: Soft-centering φ is non-identifiable, sum-to-zero constraint centers φ Soft sum-to-zero constraint when vector values sum to zero, vector mean is zero as well. add prior to keep mean as close to zero as possible: mean(phi) ~ normal(0, 0.001); mean(phi) equivalent to 1/N * sum(phi) rewrite constraint to avoid division operation: sum(phi) ~ normal(0, * N); May allow for faster sampling than hard sum-to-zero constraint. 11

12 Stan ICAR Model Implementation functions { real icar_normal_lpdf(vector phi, int N, int[] node1, int[] node2) { return -0.5 * dot_self(phi[node1] - phi[node2]); } } data { int<lower=0> N; int<lower=0> N_edges; int<lower=1, upper=n> node1[n_edges]; // node1[i], node2[i] neighbors int<lower=1, upper=n> node2[n_edges]; // node1[i] < node2[i] } parameters { vector[n] phi; } model { phi ~ icar_normal_lpdf(n, node1, node2); sum(phi) ~ normal(0, * N); } 12

13 Stan ICAR Model: Visualize Covariance 13

14 Besag York Mollié (1991) BYM Model Lognormal Poisson model developed for disease risk mapping η i = µ + xβ + φ + θ where: µ is the fixed intercept. x is the design matrix, β is vector of regression coefficients. φ is an ICAR spatial component θ is an vector of ordinary random-effects components. MCMC samplers require strong hyperpriors on φ and θ. Bernardinelli et. al. (1995): hyperpriors depend on average number of neighbors, i.e., hyperpriors depend on data. Difficult to fit; difficult to interpret parameters. 14

15 Riebler et. al. (2016): BYM2 Model Reparameterize BYM model; rewrite sum of the spatial and non-spatial components φ + θ as ( ( (ρ/s) ) φ + ( ) 1 ρ) θ σ where: σ 0 is the overall standard deviation. ρ [0, 1] - proportion of spatial variance. φ is the ICAR component. θ N(0, 1) is the vector of ordinary random effects s is a scaling factor s.t. Var(φ i ) 1; s is data. 15

16 BYM2 Model Stan Implementation parameters { real beta0; vector[k] betas; vector[n] theta; vector[n] phi; real<lower=0> sigma; real<lower=0, upper=1> rho; } transformed parameters { vector[n] convolved_re; convolved_re = sqrt(rho / scaling_factor) * phi + sqrt(1 - rho) * theta; } model { y ~ poisson_log(log_e + beta0 + x * betas + convolved_re * sigma); beta0 ~ normal(0.0, 1.0); betas ~ normal(0.0, 1.0); sigma ~ normal(0, 1.0); rho ~ beta(0.5, 0.5); theta ~ normal(0.0, 1.0); phi ~ icar_normal_lpdf(n, node1, node2); sum(phi) ~ normal(0, * N); // sum-to-zero constraint } 16

17 Results 17

Stan Workshop. Peter Gao and Serge Aleshin-Guendel. November

Stan Workshop. Peter Gao and Serge Aleshin-Guendel. November Stan Workshop Peter Gao and Serge Aleshin-Guendel November 21 2017 Set Up To run a model in Stan in R, you need two files: a.stan file and a.r file. The.stan file declares the model, the.r file performs

More information

Approaches for Multiple Disease Mapping: MCAR and SANOVA

Approaches for Multiple Disease Mapping: MCAR and SANOVA Approaches for Multiple Disease Mapping: MCAR and SANOVA Dipankar Bandyopadhyay Division of Biostatistics, University of Minnesota SPH April 22, 2015 1 Adapted from Sudipto Banerjee s notes SANOVA vs MCAR

More information

(Moderately) Advanced Hierarchical Models

(Moderately) Advanced Hierarchical Models (Moderately) Advanced Hierarchical Models Ben Goodrich StanCon: January 12, 2018 Ben Goodrich Advanced Hierarchical Models StanCon 1 / 18 Obligatory Disclosure Ben is an employee of Columbia University,

More information

Bayesian Hierarchical Models

Bayesian Hierarchical Models Bayesian Hierarchical Models Gavin Shaddick, Millie Green, Matthew Thomas University of Bath 6 th - 9 th December 2016 1/ 34 APPLICATIONS OF BAYESIAN HIERARCHICAL MODELS 2/ 34 OUTLINE Spatial epidemiology

More information

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Jon Wakefield Departments of Statistics and Biostatistics University of Washington 1 / 37 Lecture Content Motivation

More information

Community Health Needs Assessment through Spatial Regression Modeling

Community Health Needs Assessment through Spatial Regression Modeling Community Health Needs Assessment through Spatial Regression Modeling Glen D. Johnson, PhD CUNY School of Public Health glen.johnson@lehman.cuny.edu Objectives: Assess community needs with respect to particular

More information

Areal data models. Spatial smoothers. Brook s Lemma and Gibbs distribution. CAR models Gaussian case Non-Gaussian case

Areal data models. Spatial smoothers. Brook s Lemma and Gibbs distribution. CAR models Gaussian case Non-Gaussian case Areal data models Spatial smoothers Brook s Lemma and Gibbs distribution CAR models Gaussian case Non-Gaussian case SAR models Gaussian case Non-Gaussian case CAR vs. SAR STAR models Inference for areal

More information

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P.

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P. Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Melanie M. Wall, Bradley P. Carlin November 24, 2014 Outlines of the talk

More information

MODULE 12: Spatial Statistics in Epidemiology and Public Health Lecture 7: Slippery Slopes: Spatially Varying Associations

MODULE 12: Spatial Statistics in Epidemiology and Public Health Lecture 7: Slippery Slopes: Spatially Varying Associations MODULE 12: Spatial Statistics in Epidemiology and Public Health Lecture 7: Slippery Slopes: Spatially Varying Associations Jon Wakefield and Lance Waller 1 / 53 What are we doing? Alcohol Illegal drugs

More information

General Regression Model

General Regression Model Scott S. Emerson, M.D., Ph.D. Department of Biostatistics, University of Washington, Seattle, WA 98195, USA January 5, 2015 Abstract Regression analysis can be viewed as an extension of two sample statistical

More information

Multivariate spatial modeling

Multivariate spatial modeling Multivariate spatial modeling Point-referenced spatial data often come as multivariate measurements at each location Chapter 7: Multivariate Spatial Modeling p. 1/21 Multivariate spatial modeling Point-referenced

More information

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Christopher Paciorek, Department of Statistics, University

More information

Markov Random Fields

Markov Random Fields Markov Random Fields Umamahesh Srinivas ipal Group Meeting February 25, 2011 Outline 1 Basic graph-theoretic concepts 2 Markov chain 3 Markov random field (MRF) 4 Gauss-Markov random field (GMRF), and

More information

Part 8: GLMs and Hierarchical LMs and GLMs

Part 8: GLMs and Hierarchical LMs and GLMs Part 8: GLMs and Hierarchical LMs and GLMs 1 Example: Song sparrow reproductive success Arcese et al., (1992) provide data on a sample from a population of 52 female song sparrows studied over the course

More information

Areal Unit Data Regular or Irregular Grids or Lattices Large Point-referenced Datasets

Areal Unit Data Regular or Irregular Grids or Lattices Large Point-referenced Datasets Areal Unit Data Regular or Irregular Grids or Lattices Large Point-referenced Datasets Is there spatial pattern? Chapter 3: Basics of Areal Data Models p. 1/18 Areal Unit Data Regular or Irregular Grids

More information

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Outline Ordinary Least Squares (OLS) Regression Generalized Linear Models

More information

Bayesian Thinking in Spatial Statistics

Bayesian Thinking in Spatial Statistics Bayesian Thinking in Spatial Statistics Lance A. Waller Department of Biostatistics Rollins School of Public Health Emory University 1518 Clifton Road NE Atlanta, GA 30322 E-mail: lwaller@sph.emory.edu

More information

Disease mapping with Gaussian processes

Disease mapping with Gaussian processes EUROHEIS2 Kuopio, Finland 17-18 August 2010 Aki Vehtari (former Helsinki University of Technology) Department of Biomedical Engineering and Computational Science (BECS) Acknowledgments Researchers - Jarno

More information

Statistics 352: Spatial statistics. Jonathan Taylor. Department of Statistics. Models for discrete data. Stanford University.

Statistics 352: Spatial statistics. Jonathan Taylor. Department of Statistics. Models for discrete data. Stanford University. 352: 352: Models for discrete data April 28, 2009 1 / 33 Models for discrete data 352: Outline Dependent discrete data. Image data (binary). Ising models. Simulation: Gibbs sampling. Denoising. 2 / 33

More information

Lecture 5: Spatial probit models. James P. LeSage University of Toledo Department of Economics Toledo, OH

Lecture 5: Spatial probit models. James P. LeSage University of Toledo Department of Economics Toledo, OH Lecture 5: Spatial probit models James P. LeSage University of Toledo Department of Economics Toledo, OH 43606 jlesage@spatial-econometrics.com March 2004 1 A Bayesian spatial probit model with individual

More information

Hierarchical Linear Models

Hierarchical Linear Models Hierarchical Linear Models Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin The linear regression model Hierarchical Linear Models y N(Xβ, Σ y ) β σ 2 p(β σ 2 ) σ 2 p(σ 2 ) can be extended

More information

Lecture 19. Spatial GLM + Point Reference Spatial Data. Colin Rundel 04/03/2017

Lecture 19. Spatial GLM + Point Reference Spatial Data. Colin Rundel 04/03/2017 Lecture 19 Spatial GLM + Point Reference Spatial Data Colin Rundel 04/03/2017 1 Spatial GLM Models 2 Scottish Lip Cancer Data Observed Expected 60 N 59 N 58 N 57 N 56 N value 80 60 40 20 0 55 N 8 W 6 W

More information

Fully Bayesian Spatial Analysis of Homicide Rates.

Fully Bayesian Spatial Analysis of Homicide Rates. Fully Bayesian Spatial Analysis of Homicide Rates. Silvio A. da Silva, Luiz L.M. Melo and Ricardo S. Ehlers Universidade Federal do Paraná, Brazil Abstract Spatial models have been used in many fields

More information

MCMC for Cut Models or Chasing a Moving Target with MCMC

MCMC for Cut Models or Chasing a Moving Target with MCMC MCMC for Cut Models or Chasing a Moving Target with MCMC Martyn Plummer International Agency for Research on Cancer MCMSki Chamonix, 6 Jan 2014 Cut models What do we want to do? 1. Generate some random

More information

Statistics in Environmental Research (BUC Workshop Series) II Problem sheet - WinBUGS - SOLUTIONS

Statistics in Environmental Research (BUC Workshop Series) II Problem sheet - WinBUGS - SOLUTIONS Statistics in Environmental Research (BUC Workshop Series) II Problem sheet - WinBUGS - SOLUTIONS 1. (a) The posterior mean estimate of α is 14.27, and the posterior mean for the standard deviation of

More information

Bayesian spatial hierarchical modeling for temperature extremes

Bayesian spatial hierarchical modeling for temperature extremes Bayesian spatial hierarchical modeling for temperature extremes Indriati Bisono Dr. Andrew Robinson Dr. Aloke Phatak Mathematics and Statistics Department The University of Melbourne Maths, Informatics

More information

Statistics 203: Introduction to Regression and Analysis of Variance Course review

Statistics 203: Introduction to Regression and Analysis of Variance Course review Statistics 203: Introduction to Regression and Analysis of Variance Course review Jonathan Taylor - p. 1/?? Today Review / overview of what we learned. - p. 2/?? General themes in regression models Specifying

More information

Aggregated cancer incidence data: spatial models

Aggregated cancer incidence data: spatial models Aggregated cancer incidence data: spatial models 5 ième Forum du Cancéropôle Grand-est - November 2, 2011 Erik A. Sauleau Department of Biostatistics - Faculty of Medicine University of Strasbourg ea.sauleau@unistra.fr

More information

Dynamic modeling of organizational coordination over the course of the Katrina disaster

Dynamic modeling of organizational coordination over the course of the Katrina disaster Dynamic modeling of organizational coordination over the course of the Katrina disaster Zack Almquist 1 Ryan Acton 1, Carter Butts 1 2 Presented at MURI Project All Hands Meeting, UCI April 24, 2009 1

More information

Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models

Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models By BRIAN J. REICH a, JAMES S. HODGES a, and VESNA ZADNIK b 1 a Division of Biostatistics, School of Public

More information

Spatio-Temporal Modelling of Credit Default Data

Spatio-Temporal Modelling of Credit Default Data 1/20 Spatio-Temporal Modelling of Credit Default Data Sathyanarayan Anand Advisor: Prof. Robert Stine The Wharton School, University of Pennsylvania April 29, 2011 2/20 Outline 1 Background 2 Conditional

More information

Spatial inference. Spatial inference. Accounting for spatial correlation. Multivariate normal distributions

Spatial inference. Spatial inference. Accounting for spatial correlation. Multivariate normal distributions Spatial inference I will start with a simple model, using species diversity data Strong spatial dependence, Î = 0.79 what is the mean diversity? How precise is our estimate? Sampling discussion: The 64

More information

MAP Examples. Sargur Srihari

MAP Examples. Sargur Srihari MAP Examples Sargur srihari@cedar.buffalo.edu 1 Potts Model CRF for OCR Topics Image segmentation based on energy minimization 2 Examples of MAP Many interesting examples of MAP inference are instances

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 12: Gaussian Belief Propagation, State Space Models and Kalman Filters Guest Kalman Filter Lecture by

More information

Analysing geoadditive regression data: a mixed model approach

Analysing geoadditive regression data: a mixed model approach Analysing geoadditive regression data: a mixed model approach Institut für Statistik, Ludwig-Maximilians-Universität München Joint work with Ludwig Fahrmeir & Stefan Lang 25.11.2005 Spatio-temporal regression

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT

GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT Cha Zhang Joint work with Dinei Florêncio and Philip A. Chou Microsoft Research Outline Gaussian Markov Random Field Graph construction Graph transform

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Modelling geoadditive survival data

Modelling geoadditive survival data Modelling geoadditive survival data Thomas Kneib & Ludwig Fahrmeir Department of Statistics, Ludwig-Maximilians-University Munich 1. Leukemia survival data 2. Structured hazard regression 3. Mixed model

More information

Creating Non-Gaussian Processes from Gaussian Processes by the Log-Sum-Exp Approach. Radford M. Neal, 28 February 2005

Creating Non-Gaussian Processes from Gaussian Processes by the Log-Sum-Exp Approach. Radford M. Neal, 28 February 2005 Creating Non-Gaussian Processes from Gaussian Processes by the Log-Sum-Exp Approach Radford M. Neal, 28 February 2005 A Very Brief Review of Gaussian Processes A Gaussian process is a distribution over

More information

Product Held at Accelerated Stability Conditions. José G. Ramírez, PhD Amgen Global Quality Engineering 6/6/2013

Product Held at Accelerated Stability Conditions. José G. Ramírez, PhD Amgen Global Quality Engineering 6/6/2013 Modeling Sub-Visible Particle Data Product Held at Accelerated Stability Conditions José G. Ramírez, PhD Amgen Global Quality Engineering 6/6/2013 Outline Sub-Visible Particle (SbVP) Poisson Negative Binomial

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Mark Schmidt University of British Columbia Winter 2018 Last Time: Learning and Inference in DAGs We discussed learning in DAG models, log p(x W ) = n d log p(x i j x i pa(j),

More information

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent Latent Variable Models for Binary Data Suppose that for a given vector of explanatory variables x, the latent variable, U, has a continuous cumulative distribution function F (u; x) and that the binary

More information

Linear, Generalized Linear, and Mixed-Effects Models in R. Linear and Generalized Linear Models in R Topics

Linear, Generalized Linear, and Mixed-Effects Models in R. Linear and Generalized Linear Models in R Topics Linear, Generalized Linear, and Mixed-Effects Models in R John Fox McMaster University ICPSR 2018 John Fox (McMaster University) Statistical Models in R ICPSR 2018 1 / 19 Linear and Generalized Linear

More information

Challenges in modelling air pollution and understanding its impact on human health

Challenges in modelling air pollution and understanding its impact on human health Challenges in modelling air pollution and understanding its impact on human health Alastair Rushworth Joint Statistical Meeting, Seattle Wednesday August 12 th, 2015 Acknowledgements Work in this talk

More information

Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm Strength of the Gibbs sampler Metropolis-Hastings Algorithm Easy algorithm to think about. Exploits the factorization properties of the joint probability distribution. No difficult choices to be made to

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Modeling Data with Linear Combinations of Basis Functions. Read Chapter 3 in the text by Bishop

Modeling Data with Linear Combinations of Basis Functions. Read Chapter 3 in the text by Bishop Modeling Data with Linear Combinations of Basis Functions Read Chapter 3 in the text by Bishop A Type of Supervised Learning Problem We want to model data (x 1, t 1 ),..., (x N, t N ), where x i is a vector

More information

Message-Passing Algorithms for GMRFs and Non-Linear Optimization

Message-Passing Algorithms for GMRFs and Non-Linear Optimization Message-Passing Algorithms for GMRFs and Non-Linear Optimization Jason Johnson Joint Work with Dmitry Malioutov, Venkat Chandrasekaran and Alan Willsky Stochastic Systems Group, MIT NIPS Workshop: Approximate

More information

Markov random fields. The Markov property

Markov random fields. The Markov property Markov random fields The Markov property Discrete time: (X k X k!1,x k!2,... = (X k X k!1 A time symmetric version: (X k! X!k = (X k X k!1,x k+1 A more general version: Let A be a set of indices >k, B

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

STA 216, GLM, Lecture 16. October 29, 2007

STA 216, GLM, Lecture 16. October 29, 2007 STA 216, GLM, Lecture 16 October 29, 2007 Efficient Posterior Computation in Factor Models Underlying Normal Models Generalized Latent Trait Models Formulation Genetic Epidemiology Illustration Structural

More information

Online Appendix: Bayesian versus maximum likelihood estimation of treatment effects in bivariate probit instrumental variable models

Online Appendix: Bayesian versus maximum likelihood estimation of treatment effects in bivariate probit instrumental variable models Online Appendix: Bayesian versus maximum likelihood estimation of treatment effects in bivariate probit instrumental variable models A. STAN CODE // STAN code for Bayesian bivariate model // based on code

More information

Machine Learning, Fall 2009: Midterm

Machine Learning, Fall 2009: Midterm 10-601 Machine Learning, Fall 009: Midterm Monday, November nd hours 1. Personal info: Name: Andrew account: E-mail address:. You are permitted two pages of notes and a calculator. Please turn off all

More information

Random Effects Models for Network Data

Random Effects Models for Network Data Random Effects Models for Network Data Peter D. Hoff 1 Working Paper no. 28 Center for Statistics and the Social Sciences University of Washington Seattle, WA 98195-4320 January 14, 2003 1 Department of

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models STAT 489-01: Bayesian Methods of Data Analysis Spring Semester 2017 Contents 1 Multi-Variable Linear Models 1 2 Generalized Linear Models 4 2.1 Illustration: Logistic Regression..........

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Graphical Model Selection

Graphical Model Selection May 6, 2013 Trevor Hastie, Stanford Statistics 1 Graphical Model Selection Trevor Hastie Stanford University joint work with Jerome Friedman, Rob Tibshirani, Rahul Mazumder and Jason Lee May 6, 2013 Trevor

More information

1 Cricket chirps: an example

1 Cricket chirps: an example Notes for 2016-09-26 1 Cricket chirps: an example Did you know that you can estimate the temperature by listening to the rate of chirps? The data set in Table 1 1. represents measurements of the number

More information

Web Appendices: Hierarchical and Joint Site-Edge Methods for Medicare Hospice Service Region Boundary Analysis

Web Appendices: Hierarchical and Joint Site-Edge Methods for Medicare Hospice Service Region Boundary Analysis Web Appendices: Hierarchical and Joint Site-Edge Methods for Medicare Hospice Service Region Boundary Analysis Haijun Ma, Bradley P. Carlin and Sudipto Banerjee December 8, 2008 Web Appendix A: Selecting

More information

Ratemaking with a Copula-Based Multivariate Tweedie Model

Ratemaking with a Copula-Based Multivariate Tweedie Model with a Copula-Based Model joint work with Xiaoping Feng and Jean-Philippe Boucher University of Wisconsin - Madison CAS RPM Seminar March 10, 2015 1 / 18 Outline 1 2 3 4 5 6 2 / 18 Insurance Claims Two

More information

Spatial Misalignment

Spatial Misalignment Spatial Misalignment Jamie Monogan University of Georgia Spring 2013 Jamie Monogan (UGA) Spatial Misalignment Spring 2013 1 / 28 Objectives By the end of today s meeting, participants should be able to:

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

4.2 centering Chris Parrish July 2, 2016

4.2 centering Chris Parrish July 2, 2016 4.2 centering Chris Parrish July 2, 2016 Contents centering and standardizing 1 centering.................................................. 1 data.................................................. 1 model.................................................

More information

An example of Bayesian reasoning Consider the one-dimensional deconvolution problem with various degrees of prior information.

An example of Bayesian reasoning Consider the one-dimensional deconvolution problem with various degrees of prior information. An example of Bayesian reasoning Consider the one-dimensional deconvolution problem with various degrees of prior information. Model: where g(t) = a(t s)f(s)ds + e(t), a(t) t = (rapidly). The problem,

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo Group Prof. Daniel Cremers 11. Sampling Methods: Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative

More information

R-INLA. Sam Clifford Su-Yun Kang Jeff Hsieh. 30 August Bayesian Research and Analysis Group 1 / 14

R-INLA. Sam Clifford Su-Yun Kang Jeff Hsieh. 30 August Bayesian Research and Analysis Group 1 / 14 1 / 14 R-INLA Sam Clifford Su-Yun Kang Jeff Hsieh Bayesian Research and Analysis Group 30 August 2012 What is R-INLA? R package for Bayesian computation Integrated Nested Laplace Approximation MCMC free

More information

Hierarchical Modelling for Univariate and Multivariate Spatial Data

Hierarchical Modelling for Univariate and Multivariate Spatial Data Hierarchical Modelling for Univariate and Multivariate Spatial Data p. 1/4 Hierarchical Modelling for Univariate and Multivariate Spatial Data Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota

More information

High-dimensional graphical model selection: Practical and information-theoretic limits

High-dimensional graphical model selection: Practical and information-theoretic limits 1 High-dimensional graphical model selection: Practical and information-theoretic limits Martin Wainwright Departments of Statistics, and EECS UC Berkeley, California, USA Based on joint work with: John

More information

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina.

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina. Using Quadratic Approximation Inderjit S. Dhillon Dept of Computer Science UT Austin SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina Sept 12, 2012 Joint work with C. Hsieh, M. Sustik and

More information

Lecture 7 Autoregressive Processes in Space

Lecture 7 Autoregressive Processes in Space Lecture 7 Autoregressive Processes in Space Dennis Sun Stanford University Stats 253 July 8, 2015 1 Last Time 2 Autoregressive Processes in Space 3 Estimating Parameters 4 Testing for Spatial Autocorrelation

More information

Ratemaking application of Bayesian LASSO with conjugate hyperprior

Ratemaking application of Bayesian LASSO with conjugate hyperprior Ratemaking application of Bayesian LASSO with conjugate hyperprior Himchan Jeong and Emiliano A. Valdez University of Connecticut Actuarial Science Seminar Department of Mathematics University of Illinois

More information

. a m1 a mn. a 1 a 2 a = a n

. a m1 a mn. a 1 a 2 a = a n Biostat 140655, 2008: Matrix Algebra Review 1 Definition: An m n matrix, A m n, is a rectangular array of real numbers with m rows and n columns Element in the i th row and the j th column is denoted by

More information

Small Area Estimation via Multivariate Fay-Herriot Models with Latent Spatial Dependence

Small Area Estimation via Multivariate Fay-Herriot Models with Latent Spatial Dependence Small Area Estimation via Multivariate Fay-Herriot Models with Latent Spatial Dependence Aaron T. Porter 1, Christopher K. Wikle 2, Scott H. Holan 2 arxiv:1310.7211v1 [stat.me] 27 Oct 2013 Abstract The

More information

High-dimensional graphical model selection: Practical and information-theoretic limits

High-dimensional graphical model selection: Practical and information-theoretic limits 1 High-dimensional graphical model selection: Practical and information-theoretic limits Martin Wainwright Departments of Statistics, and EECS UC Berkeley, California, USA Based on joint work with: John

More information

Spatial Analysis of Incidence Rates: A Bayesian Approach

Spatial Analysis of Incidence Rates: A Bayesian Approach Spatial Analysis of Incidence Rates: A Bayesian Approach Silvio A. da Silva, Luiz L.M. Melo and Ricardo Ehlers July 2004 Abstract Spatial models have been used in many fields of science where the data

More information

A Practitioner s Guide to Generalized Linear Models

A Practitioner s Guide to Generalized Linear Models A Practitioners Guide to Generalized Linear Models Background The classical linear models and most of the minimum bias procedures are special cases of generalized linear models (GLMs). GLMs are more technically

More information

Introduction to graphical models: Lecture III

Introduction to graphical models: Lecture III Introduction to graphical models: Lecture III Martin Wainwright UC Berkeley Departments of Statistics, and EECS Martin Wainwright (UC Berkeley) Some introductory lectures January 2013 1 / 25 Introduction

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Local Probability Models

Local Probability Models Readings: K&F 3.4, 5.~5.5 Local Probability Models Lecture 3 pr 4, 2 SE 55, Statistical Methods, Spring 2 Instructor: Su-In Lee University of Washington, Seattle Outline Last time onditional parameterization

More information

Hypothesis Testing hypothesis testing approach

Hypothesis Testing hypothesis testing approach Hypothesis Testing In this case, we d be trying to form an inference about that neighborhood: Do people there shop more often those people who are members of the larger population To ascertain this, we

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Gaussian graphical models and Ising models: modeling networks Eric Xing Lecture 0, February 7, 04 Reading: See class website Eric Xing @ CMU, 005-04

More information

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013.

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013. The University of Texas at Austin Department of Electrical and Computer Engineering EE381V: Large Scale Learning Spring 2013 Assignment 1 Caramanis/Sanghavi Due: Thursday, Feb. 7, 2013. (Problems 1 and

More information

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods Prof. Daniel Cremers 14. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Summary STK 4150/9150

Summary STK 4150/9150 STK4150 - Intro 1 Summary STK 4150/9150 Odd Kolbjørnsen May 22 2017 Scope You are expected to know and be able to use basic concepts introduced in the book. You knowledge is expected to be larger than

More information

Active and Semi-supervised Kernel Classification

Active and Semi-supervised Kernel Classification Active and Semi-supervised Kernel Classification Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London Work done in collaboration with Xiaojin Zhu (CMU), John Lafferty (CMU),

More information

Spatial Lasso with Application to GIS Model Selection. F. Jay Breidt Colorado State University

Spatial Lasso with Application to GIS Model Selection. F. Jay Breidt Colorado State University Spatial Lasso with Application to GIS Model Selection F. Jay Breidt Colorado State University with Hsin-Cheng Huang, Nan-Jung Hsu, and Dave Theobald September 25 The work reported here was developed under

More information

Bayesian nonparametric models of sparse and exchangeable random graphs

Bayesian nonparametric models of sparse and exchangeable random graphs Bayesian nonparametric models of sparse and exchangeable random graphs F. Caron & E. Fox Technical Report Discussion led by Esther Salazar Duke University May 16, 2014 (Reading group) May 16, 2014 1 /

More information

Bayesian Networks in Educational Assessment

Bayesian Networks in Educational Assessment Bayesian Networks in Educational Assessment Estimating Parameters with MCMC Bayesian Inference: Expanding Our Context Roy Levy Arizona State University Roy.Levy@asu.edu 2017 Roy Levy MCMC 1 MCMC 2 Posterior

More information

CTDL-Positive Stable Frailty Model

CTDL-Positive Stable Frailty Model CTDL-Positive Stable Frailty Model M. Blagojevic 1, G. MacKenzie 2 1 Department of Mathematics, Keele University, Staffordshire ST5 5BG,UK and 2 Centre of Biostatistics, University of Limerick, Ireland

More information

High dimensional Ising model selection

High dimensional Ising model selection High dimensional Ising model selection Pradeep Ravikumar UT Austin (based on work with John Lafferty, Martin Wainwright) Sparse Ising model US Senate 109th Congress Banerjee et al, 2008 Estimate a sparse

More information

Supplementary Materials for A Spatial Time-to-Event Approach for Estimating Associations between Air Pollution and Preterm Birth

Supplementary Materials for A Spatial Time-to-Event Approach for Estimating Associations between Air Pollution and Preterm Birth Supplementary Materials for A Spatial Time-to-Event Approach for Estimating Associations between Air Pollution and Preterm Birth Howard H. Chang Department of Biostatistics and Bioinformatics Emory University,

More information

Multivariate Normal & Wishart

Multivariate Normal & Wishart Multivariate Normal & Wishart Hoff Chapter 7 October 21, 2010 Reading Comprehesion Example Twenty-two children are given a reading comprehsion test before and after receiving a particular instruction method.

More information

Statistical Methods III Statistics 212. Problem Set 2 - Answer Key

Statistical Methods III Statistics 212. Problem Set 2 - Answer Key Statistical Methods III Statistics 212 Problem Set 2 - Answer Key 1. (Analysis to be turned in and discussed on Tuesday, April 24th) The data for this problem are taken from long-term followup of 1423

More information

LASSO-Type Penalization in the Framework of Generalized Additive Models for Location, Scale and Shape

LASSO-Type Penalization in the Framework of Generalized Additive Models for Location, Scale and Shape LASSO-Type Penalization in the Framework of Generalized Additive Models for Location, Scale and Shape Nikolaus Umlauf https://eeecon.uibk.ac.at/~umlauf/ Overview Joint work with Andreas Groll, Julien Hambuckers

More information

Lattice Data. Tonglin Zhang. Spatial Statistics for Point and Lattice Data (Part III)

Lattice Data. Tonglin Zhang. Spatial Statistics for Point and Lattice Data (Part III) Title: Spatial Statistics for Point Processes and Lattice Data (Part III) Lattice Data Tonglin Zhang Outline Description Research Problems Global Clustering and Local Clusters Permutation Test Spatial

More information

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data Hierarchical models for spatial data Based on the book by Banerjee, Carlin and Gelfand Hierarchical Modeling and Analysis for Spatial Data, 2004. We focus on Chapters 1, 2 and 5. Geo-referenced data arise

More information

Stochastic Generative Hashing

Stochastic Generative Hashing Stochastic Generative Hashing B. Dai 1, R. Guo 2, S. Kumar 2, N. He 3 and L. Song 1 1 Georgia Institute of Technology, 2 Google Research, NYC, 3 University of Illinois at Urbana-Champaign Discussion by

More information

Computational Genomics

Computational Genomics Computational Genomics http://www.cs.cmu.edu/~02710 Introduction to probability, statistics and algorithms (brief) intro to probability Basic notations Random variable - referring to an element / event

More information

Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University

Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University Outline of This Week Last week, we learned: Data representation: Object vs. Fieldbased approaches

More information