Paper Review: NONSTATIONARY COVARIANCE MODELS FOR GLOBAL DATA

Size: px
Start display at page:

Download "Paper Review: NONSTATIONARY COVARIANCE MODELS FOR GLOBAL DATA"

Transcription

1 Paper Review: NONSTATIONARY COVARIANCE MODELS FOR GLOBAL DATA BY MIKYOUNG JUN AND MICHAEL L. STEIN Presented by Sungkyu Jung April, 2009

2 Outline 1 Introduction 2 Covariance Models 3 Application: Level 3 TOMS data

3 Introduction Global data Spatial data covering a large portion of the Earth Such data show non-stationary covariance structure on a global scale. Figure: Level 3 Total Ozone Mapping Spectrometer (TOMS) day on a particular date on regular grid. (longitude 180 to 180, latitude 50 to 50 )

4 Introduction Focus of the paper 1. Introduce a flexible class of parametric models with properties: Spatial process covers the globe. Covariance model captures nonstationary. 2. Compare different models by criterion: Maximized Likelihood Values Comparison between empirical data and fitted values.

5 Introduction Distances on Earth The distance between two locations on the Earth, d[(l 1, l 1 ), (L 2, l 2 )], where L denotes the latitude, l denotes the longitude. Chordal distance Euclidean distance between two locations. Great Circle distance Length of the shortest path between two locations. Chordal distance is used in this paper.

6 Covariance Models Stationary (or homogeneous) model Let Z 0 (L, l) be a spatial process on a sphere. Z 0 is homogeneous if its covariance function K 0 only depends on the distance. i.e. Cov(Z 0 (L 1, l 1 ), Z 0 (L 2, l 2 )) = K 0 (d[(l 1, l 1 ), (L 2, l 2 )]). Example: Matérn covariance function: K 0 (d[(l 1, l 1 ), (L 2, l 2 )]) = α(d/β) ν K ν (d/β)

7 Covariance Models Axially symmetric model Z is called axially symmetric if Z is stationary with respect to longitude, i.e. Cov(Z(L 1, l 1 ), Z(L 2, l 2 )) = K(L 1, L 2, l 1 l 2 ). Figure: Empirical standard deviations along longitude and latitude (TOMS). Standard deviations varies along latitude.

8 Covariance Models Axially symmetric model + nugget effect Let Z 0 be a homogeneous process and K 0 be its covariance function. The simplest model for axially symmetric Z is a rescaled version of Z 0 plus a nugget effect (for measurement error), i.e. Z(L, l) = P (L)Z 0 (L, l) + ψ(l, l), where ψ is a white noise process, and P (L) is a linear combination of Legendre polynomials (will be introduced in the next slide).

9 Covariance Models Legendre Polynomials A class of orthogonal polynomials suited for functions on spheres. Figure: Graphs of nth order Legendre polynomials. (Source: wikipedia.org) Define P (L; p 0,..., p m ) = m i=0 p ip i (sin L), where P i denotes the Legendre polynomials or order i.

10 Covariance Models Nonstationary cov. models through Differential Operators Rescaled Z 0, Z, has the same covariance structure for different latitudes (up to scale). Define a process Z by applying differential operators; Z(L, l) = { A(L) L + B(L) l } Z 0 (L, l), (1) where A(L), B(L) are a linear combination of Legendre polynomials, Z 0 is a homogenous process with the covariance function K 0. The covariance function of this can be written in terms of derivatives of K. (Stein (2005)) That A,B only depending on L (latitude) makes Z axially symmetric. (Jun and Stein (2007)) Z has different covariance structure along different latitudes.

11 Covariance Models General axially symmetric model for TOMS data First, homogeneous Matern model: K 0 (d[(l 1, l 1 ), (L 2, l 2 )]; α, β, ν) = α(d/β) ν K ν (d/β), Then, rescaled axially symmetric model: K 1 (L 1, L 2, l; α, β, ν, ɛ, k 0,..., k m ) =P (L 1 ; k 0,..., k m )P (L 2 ; k 0,..., k m )K 0 (d; α, β, ν) + ɛ1 (L1 L 2 =l=0) Then add a covariance function of model (1): K 2 (L 1, L 2, l; α, β, ν, ɛ, k 0,..., k m, α 1, β 1, ν 1, a 0,..., a n1, b 0,..., b n2 ) =K Z (L 1, L 2, l; α 1, β 1, ν 1, a 0,..., a n1, b 0,..., b n2 ) + K 1 (L 1, L 2, l; α, β, ν, ɛ, k 0,..., k m ) (2)

12 Application: Level 3 TOMS data Application: Level 3 TOMS data Level 3 TOMS data gives daily total column ozone levels, spatially gridded, focus on particular dates: May 14-15, 1990

13 Application: Level 3 TOMS data Modeling Mean Structure + Tapering Subtract mean structure, and taper the residual.

14 Application: Level 3 TOMS data Covariance Model Comparisons: Maximized LKHD Various non-stationary covariance models (2) fitted to the tapered residuals.

15 Application: Level 3 TOMS data Covariance Model Comparisons: Graphics a) standard deviations along different longitude b) standard deviations along different latitude c) standard deviations of lag-1 difference along different latitude

16 Application: Level 3 TOMS data Summary & Discussion Summary Axially symmetric spatial process on the Earth Compared various covariance models informally on TOMS data Discussion Need more formal criterion (AIC, BIC) to penalize the #parameters Can be extended to spatial-temporal process naturally

Non-stationary Cross-Covariance Models for Multivariate Processes on a Globe

Non-stationary Cross-Covariance Models for Multivariate Processes on a Globe Scandinavian Journal of Statistics, Vol. 38: 726 747, 2011 doi: 10.1111/j.1467-9469.2011.00751.x Published by Blackwell Publishing Ltd. Non-stationary Cross-Covariance Models for Multivariate Processes

More information

Nonstationary cross-covariance models for multivariate processes on a globe

Nonstationary cross-covariance models for multivariate processes on a globe Nonstationary cross-covariance models for multivariate processes on a globe Mikyoung Jun 1 April 15, 2011 Abstract: In geophysical and environmental problems, it is common to have multiple variables of

More information

Cross-covariance Functions for Tangent Vector Fields on the Sphere

Cross-covariance Functions for Tangent Vector Fields on the Sphere Cross-covariance Functions for Tangent Vector Fields on the Sphere Minjie Fan 1 Tomoko Matsuo 2 1 Department of Statistics University of California, Davis 2 Cooperative Institute for Research in Environmental

More information

A TEST FOR STATIONARITY OF SPATIO-TEMPORAL RANDOM FIELDS ON PLANAR AND SPHERICAL DOMAINS

A TEST FOR STATIONARITY OF SPATIO-TEMPORAL RANDOM FIELDS ON PLANAR AND SPHERICAL DOMAINS Statistica Sinica 22 (2012), 1737-1764 doi:http://dx.doi.org/10.5705/ss.2010.251 A TEST FOR STATIONARITY OF SPATIO-TEMPORAL RANDOM FIELDS ON PLANAR AND SPHERICAL DOMAINS Mikyoung Jun and Marc G. Genton

More information

What s for today. All about Variogram Nugget effect. Mikyoung Jun (Texas A&M) stat647 lecture 4 September 6, / 17

What s for today. All about Variogram Nugget effect. Mikyoung Jun (Texas A&M) stat647 lecture 4 September 6, / 17 What s for today All about Variogram Nugget effect Mikyoung Jun (Texas A&M) stat647 lecture 4 September 6, 2012 1 / 17 What is the variogram? Let us consider a stationary (or isotropic) random field Z

More information

Chapter 5: Models for Nonstationary Time Series

Chapter 5: Models for Nonstationary Time Series Chapter 5: Models for Nonstationary Time Series Recall that any time series that is a stationary process has a constant mean function. So a process that has a mean function that varies over time must be

More information

What s for today. Introduction to Space-time models. c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, / 19

What s for today. Introduction to Space-time models. c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, / 19 What s for today Introduction to Space-time models c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, 2012 1 / 19 Space-time Data So far we looked at the data that vary over space Now we add another

More information

Non-parametric and semi-parametric estimation of spatial covariance function

Non-parametric and semi-parametric estimation of spatial covariance function Graduate Theses and Dissertations Graduate College 2013 Non-parametric and semi-parametric estimation of spatial covariance function Yang Li Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/etd

More information

Positive Definite Functions on Spheres

Positive Definite Functions on Spheres Positive Definite Functions on Spheres Tilmann Gneiting Institute for Applied Mathematics Heidelberg University, Germany t.gneiting@uni-heidelberg.de www.math.uni-heidelberg.de/spatial/tilmann/ International

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

A test for stationarity of spatio-temporal random fields on planar and spherical domains

A test for stationarity of spatio-temporal random fields on planar and spherical domains A test for stationarity of spatio-temporal random fields on planar and spherical domains Mikyoung Jun and Marc G. Genton 1 June 13, 2010 ABSTRACT: A formal test for weak stationarity of spatial and spatio-temporal

More information

Chapter 3: Regression Methods for Trends

Chapter 3: Regression Methods for Trends Chapter 3: Regression Methods for Trends Time series exhibiting trends over time have a mean function that is some simple function (not necessarily constant) of time. The example random walk graph from

More information

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay. Midterm

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay. Midterm Booth School of Business, University of Chicago Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay Midterm Chicago Booth Honor Code: I pledge my honor that I have not violated the Honor Code during

More information

Lesson 15: Building ARMA models. Examples

Lesson 15: Building ARMA models. Examples Lesson 15: Building ARMA models. Examples Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@ec.univaq.it Examples In this lesson, in order to illustrate

More information

Symmetry and Separability In Spatial-Temporal Processes

Symmetry and Separability In Spatial-Temporal Processes Symmetry and Separability In Spatial-Temporal Processes Man Sik Park, Montserrat Fuentes Symmetry and Separability In Spatial-Temporal Processes 1 Motivation In general, environmental data have very complex

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

Multivariate Gaussian Random Fields with SPDEs

Multivariate Gaussian Random Fields with SPDEs Multivariate Gaussian Random Fields with SPDEs Xiangping Hu Daniel Simpson, Finn Lindgren and Håvard Rue Department of Mathematics, University of Oslo PASI, 214 Outline The Matérn covariance function and

More information

Spatial mapping of ground-based observations of total ozone

Spatial mapping of ground-based observations of total ozone doi:10.5194/amt-8-4487-2015 Author(s) 2015. CC Attribution 3.0 License. Spatial mapping of ground-based observations of total ozone K.-L. Chang 1, S. Guillas 1, and V. E. Fioletov 2 1 Department of Statistical

More information

SPATIAL VARIATION OF TOTAL COLUMN OZONE ON A GLOBAL SCALE. BY MICHAEL L. STEIN 1 University of Chicago

SPATIAL VARIATION OF TOTAL COLUMN OZONE ON A GLOBAL SCALE. BY MICHAEL L. STEIN 1 University of Chicago The Annals of Applied Statistics 2007, Vol. 1, No. 1, 191 210 DOI: 10.1214/07-AOAS106 Institute of Mathematical Statistics, 2007 SPATIAL VARIATION OF TOTAL COLUMN OZONE ON A GLOBAL SCALE BY MICHAEL L.

More information

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay. Solutions to Midterm

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay. Solutions to Midterm Booth School of Business, University of Chicago Business 41914, Spring Quarter 017, Mr Ruey S Tsay Solutions to Midterm Problem A: (51 points; 3 points per question) Answer briefly the following questions

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry

More information

Spatial bias modeling with application to assessing remotely-sensed aerosol as a proxy for particulate matter

Spatial bias modeling with application to assessing remotely-sensed aerosol as a proxy for particulate matter Spatial bias modeling with application to assessing remotely-sensed aerosol as a proxy for particulate matter Chris Paciorek Department of Biostatistics Harvard School of Public Health application joint

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics,

More information

Predictive spatio-temporal models for spatially sparse environmental data. Umeå University

Predictive spatio-temporal models for spatially sparse environmental data. Umeå University Seminar p.1/28 Predictive spatio-temporal models for spatially sparse environmental data Xavier de Luna and Marc G. Genton xavier.deluna@stat.umu.se and genton@stat.ncsu.edu http://www.stat.umu.se/egna/xdl/index.html

More information

Univariate ARIMA Models

Univariate ARIMA Models Univariate ARIMA Models ARIMA Model Building Steps: Identification: Using graphs, statistics, ACFs and PACFs, transformations, etc. to achieve stationary and tentatively identify patterns and model components.

More information

Covariance models on the surface of a sphere: when does it matter?

Covariance models on the surface of a sphere: when does it matter? Stat Covariance models on the surface of a sphere: when does it matter? Jaehong Jeong and Mikyoung Jun Received 8 April 2015; Accepted 12 May 2015 There is a growing interest in developing covariance functions

More information

MCMC analysis of classical time series algorithms.

MCMC analysis of classical time series algorithms. MCMC analysis of classical time series algorithms. mbalawata@yahoo.com Lappeenranta University of Technology Lappeenranta, 19.03.2009 Outline Introduction 1 Introduction 2 3 Series generation Box-Jenkins

More information

Univariate Nonstationary Time Series 1

Univariate Nonstationary Time Series 1 Univariate Nonstationary Time Series 1 Sebastian Fossati University of Alberta 1 These slides are based on Eric Zivot s time series notes available at: http://faculty.washington.edu/ezivot Introduction

More information

On prediction and density estimation Peter McCullagh University of Chicago December 2004

On prediction and density estimation Peter McCullagh University of Chicago December 2004 On prediction and density estimation Peter McCullagh University of Chicago December 2004 Summary Having observed the initial segment of a random sequence, subsequent values may be predicted by calculating

More information

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation A Framework for Daily Spatio-Temporal Stochastic Weather Simulation, Rick Katz, Balaji Rajagopalan Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric

More information

7. Forecasting with ARIMA models

7. Forecasting with ARIMA models 7. Forecasting with ARIMA models 309 Outline: Introduction The prediction equation of an ARIMA model Interpreting the predictions Variance of the predictions Forecast updating Measuring predictability

More information

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay Midterm

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay Midterm Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay Midterm Chicago Booth Honor Code: I pledge my honor that I have not violated the Honor Code during

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

Isotropic Covariance Functions on Spheres: Some Properties and Modeling Considerations

Isotropic Covariance Functions on Spheres: Some Properties and Modeling Considerations Isotropic Covariance Functions on Spheres: Some Properties and Modeling Considerations Joseph Guinness a, Montserrat Fuentes a a NC State University, Department of Statistics Abstract Introducing flexible

More information

Model selection using penalty function criteria

Model selection using penalty function criteria Model selection using penalty function criteria Laimonis Kavalieris University of Otago Dunedin, New Zealand Econometrics, Time Series Analysis, and Systems Theory Wien, June 18 20 Outline Classes of models.

More information

What s for today. Continue to discuss about nonstationary models Moving windows Convolution model Weighted stationary model

What s for today. Continue to discuss about nonstationary models Moving windows Convolution model Weighted stationary model What s for today Continue to discuss about nonstationary models Moving windows Convolution model Weighted stationary model c Mikyoung Jun (Texas A&M) Stat647 Lecture 11 October 2, 2012 1 / 23 Nonstationary

More information

Overview of Spatial Statistics with Applications to fmri

Overview of Spatial Statistics with Applications to fmri with Applications to fmri School of Mathematics & Statistics Newcastle University April 8 th, 2016 Outline Why spatial statistics? Basic results Nonstationary models Inference for large data sets An example

More information

Simple example of analysis on spatial-temporal data set

Simple example of analysis on spatial-temporal data set Simple example of analysis on spatial-temporal data set I used the ground level ozone data in North Carolina (from Suhasini Subba Rao s website) The original data consists of 920 days of data over 72 locations

More information

Temporal context calibrates interval timing

Temporal context calibrates interval timing Temporal context calibrates interval timing, Mehrdad Jazayeri & Michael N. Shadlen Helen Hay Whitney Foundation HHMI, NPRC, Department of Physiology and Biophysics, University of Washington, Seattle, Washington

More information

Topic 4 Unit Roots. Gerald P. Dwyer. February Clemson University

Topic 4 Unit Roots. Gerald P. Dwyer. February Clemson University Topic 4 Unit Roots Gerald P. Dwyer Clemson University February 2016 Outline 1 Unit Roots Introduction Trend and Difference Stationary Autocorrelations of Series That Have Deterministic or Stochastic Trends

More information

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, N.C.,

More information

Anouncements. Assignment 3 has been posted!

Anouncements. Assignment 3 has been posted! Anouncements Assignment 3 has been posted! FFTs in Graphics and Vision Correlation of Spherical Functions Outline Math Review Spherical Correlation Review Dimensionality: Given a complex n-dimensional

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley 1 and Sudipto Banerjee 2 1 Department of Forestry & Department of Geography, Michigan

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Lecture 5: A step back

Lecture 5: A step back Lecture 5: A step back Last time Last time we talked about a practical application of the shrinkage idea, introducing James-Stein estimation and its extension We saw our first connection between shrinkage

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 IX. Vector Time Series Models VARMA Models A. 1. Motivation: The vector

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota,

More information

arxiv: v1 [stat.ap] 18 Apr 2011

arxiv: v1 [stat.ap] 18 Apr 2011 The Annals of Applied Statistics 2011, Vol. 5, No. 1, 523 550 DOI: 10.1214/10-AOAS383 c Institute of Mathematical Statistics, 2011 arxiv:1104.3436v1 [stat.ap] 18 Apr 2011 SPATIAL MODELS GENERATED BY NESTED

More information

Generalized additive modelling of hydrological sample extremes

Generalized additive modelling of hydrological sample extremes Generalized additive modelling of hydrological sample extremes Valérie Chavez-Demoulin 1 Joint work with A.C. Davison (EPFL) and Marius Hofert (ETHZ) 1 Faculty of Business and Economics, University of

More information

9. Model Selection. statistical models. overview of model selection. information criteria. goodness-of-fit measures

9. Model Selection. statistical models. overview of model selection. information criteria. goodness-of-fit measures FE661 - Statistical Methods for Financial Engineering 9. Model Selection Jitkomut Songsiri statistical models overview of model selection information criteria goodness-of-fit measures 9-1 Statistical models

More information

Statistical Inference and Visualization in Scale-Space for Spatially Dependent Images

Statistical Inference and Visualization in Scale-Space for Spatially Dependent Images Statistical Inference and Visualization in Scale-Space for Spatially Dependent Images Amy Vaughan College of Business and Public Administration, Drake University, Des Moines, IA 0311, USA Mikyoung Jun

More information

Minimum message length estimation of mixtures of multivariate Gaussian and von Mises-Fisher distributions

Minimum message length estimation of mixtures of multivariate Gaussian and von Mises-Fisher distributions Minimum message length estimation of mixtures of multivariate Gaussian and von Mises-Fisher distributions Parthan Kasarapu & Lloyd Allison Monash University, Australia September 8, 25 Parthan Kasarapu

More information

Lecture Stat Information Criterion

Lecture Stat Information Criterion Lecture Stat 461-561 Information Criterion Arnaud Doucet February 2008 Arnaud Doucet () February 2008 1 / 34 Review of Maximum Likelihood Approach We have data X i i.i.d. g (x). We model the distribution

More information

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University this presentation derived from that presented at the Pan-American Advanced

More information

of the 7 stations. In case the number of daily ozone maxima in a month is less than 15, the corresponding monthly mean was not computed, being treated

of the 7 stations. In case the number of daily ozone maxima in a month is less than 15, the corresponding monthly mean was not computed, being treated Spatial Trends and Spatial Extremes in South Korean Ozone Seokhoon Yun University of Suwon, Department of Applied Statistics Suwon, Kyonggi-do 445-74 South Korea syun@mail.suwon.ac.kr Richard L. Smith

More information

Chapter 4: Models for Stationary Time Series

Chapter 4: Models for Stationary Time Series Chapter 4: Models for Stationary Time Series Now we will introduce some useful parametric models for time series that are stationary processes. We begin by defining the General Linear Process. Let {Y t

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley Department of Forestry & Department of Geography, Michigan State University, Lansing

More information

E(x i ) = µ i. 2 d. + sin 1 d θ 2. for d < θ 2 0 for d θ 2

E(x i ) = µ i. 2 d. + sin 1 d θ 2. for d < θ 2 0 for d θ 2 1 Gaussian Processes Definition 1.1 A Gaussian process { i } over sites i is defined by its mean function and its covariance function E( i ) = µ i c ij = Cov( i, j ) plus joint normality of the finite

More information

CHAPTER 8 FORECASTING PRACTICE I

CHAPTER 8 FORECASTING PRACTICE I CHAPTER 8 FORECASTING PRACTICE I Sometimes we find time series with mixed AR and MA properties (ACF and PACF) We then can use mixed models: ARMA(p,q) These slides are based on: González-Rivera: Forecasting

More information

New Flexible Compact Covariance Model on a Sphere

New Flexible Compact Covariance Model on a Sphere New Flexible Compact Covariance Model on a Sphere Alexander Gribov, Konstantin Krivoruchko Esri 380 New York Street Redlands, CA 9373 Emails: agribov@esri.com; kkrivoruchko@esri.com arxiv:1701.03405v1

More information

TMA4285 Time Series Models Exam December

TMA4285 Time Series Models Exam December Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA485 Time Series Models Solution Oppgave a) A process {z t } is invertible if it can be represented as an A( ) process, z

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

Likelihood Ratio Tests. that Certain Variance Components Are Zero. Ciprian M. Crainiceanu. Department of Statistical Science

Likelihood Ratio Tests. that Certain Variance Components Are Zero. Ciprian M. Crainiceanu. Department of Statistical Science 1 Likelihood Ratio Tests that Certain Variance Components Are Zero Ciprian M. Crainiceanu Department of Statistical Science www.people.cornell.edu/pages/cmc59 Work done jointly with David Ruppert, School

More information

An application of the GAM-PCA-VAR model to respiratory disease and air pollution data

An application of the GAM-PCA-VAR model to respiratory disease and air pollution data An application of the GAM-PCA-VAR model to respiratory disease and air pollution data Márton Ispány 1 Faculty of Informatics, University of Debrecen Hungary Joint work with Juliana Bottoni de Souza, Valdério

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Covariance function estimation in Gaussian process regression

Covariance function estimation in Gaussian process regression Covariance function estimation in Gaussian process regression François Bachoc Department of Statistics and Operations Research, University of Vienna WU Research Seminar - May 2015 François Bachoc Gaussian

More information

Point-Referenced Data Models

Point-Referenced Data Models Point-Referenced Data Models Jamie Monogan University of Georgia Spring 2013 Jamie Monogan (UGA) Point-Referenced Data Models Spring 2013 1 / 19 Objectives By the end of these meetings, participants should

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

Wrapped Gaussian processes: a short review and some new results

Wrapped Gaussian processes: a short review and some new results Wrapped Gaussian processes: a short review and some new results Giovanna Jona Lasinio 1, Gianluca Mastrantonio 2 and Alan Gelfand 3 1-Università Sapienza di Roma 2- Università RomaTRE 3- Duke University

More information

A Gaussian state-space model for wind fields in the North-East Atlantic

A Gaussian state-space model for wind fields in the North-East Atlantic A Gaussian state-space model for wind fields in the North-East Atlantic Julie BESSAC - Université de Rennes 1 with Pierre AILLIOT and Valï 1 rie MONBET 2 Juillet 2013 Plan Motivations 1 Motivations 2 Context

More information

Models for models. Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research

Models for models. Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Models for models Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Outline Statistical models and tools Spatial fields (Wavelets) Climate regimes (Regression and clustering)

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini June 9, 2018 1 / 21 Model selection Choosing the best model among a collection of models {M 1, M 2..., M N }. What is a good model? 1. fits the data well (model

More information

What s for today. Random Fields Autocovariance Stationarity, Isotropy. c Mikyoung Jun (Texas A&M) stat647 Lecture 2 August 30, / 13

What s for today. Random Fields Autocovariance Stationarity, Isotropy. c Mikyoung Jun (Texas A&M) stat647 Lecture 2 August 30, / 13 What s for today Random Fields Autocovariance Stationarity, Isotropy c Mikyoung Jun (Texas A&M) stat647 Lecture 2 August 30, 2012 1 / 13 Stochastic Process and Random Fields A stochastic process is a family

More information

Lecture 2: Univariate Time Series

Lecture 2: Univariate Time Series Lecture 2: Univariate Time Series Analysis: Conditional and Unconditional Densities, Stationarity, ARMA Processes Prof. Massimo Guidolin 20192 Financial Econometrics Spring/Winter 2017 Overview Motivation:

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Hierarchical Modelling for Univariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Alan Gelfand 1 and Andrew O. Finley 2 1 Department of Statistical Science, Duke University, Durham, North

More information

Spatio-temporal modelling of daily air temperature in Catalonia

Spatio-temporal modelling of daily air temperature in Catalonia Spatio-temporal modelling of daily air temperature in Catalonia M. Saez 1,, M.A. Barceló 1,, A. Tobias 3, D. Varga 1,4 and R. Ocaña-Riola 5 1 Research Group on Statistics, Applied Economics and Health

More information

Unit #3 Rules of Differentiation Homework Packet

Unit #3 Rules of Differentiation Homework Packet Unit #3 Rules of Differentiation Homework Packet In the table below, a function is given. Show the algebraic analysis that leads to the derivative of the function. Find the derivative by the specified

More information

Threshold estimation in marginal modelling of spatially-dependent non-stationary extremes

Threshold estimation in marginal modelling of spatially-dependent non-stationary extremes Threshold estimation in marginal modelling of spatially-dependent non-stationary extremes Philip Jonathan Shell Technology Centre Thornton, Chester philip.jonathan@shell.com Paul Northrop University College

More information

Linear Dimensionality Reduction

Linear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Principal Component Analysis 3 Factor Analysis

More information

Introduction to Signal Processing

Introduction to Signal Processing to Signal Processing Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Intelligent Systems for Pattern Recognition Signals = Time series Definitions Motivations A sequence

More information

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Environmentrics 00, 1 12 DOI: 10.1002/env.XXXX Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Regina Wu a and Cari G. Kaufman a Summary: Fitting a Bayesian model to spatial

More information

arxiv: v4 [stat.me] 14 Sep 2015

arxiv: v4 [stat.me] 14 Sep 2015 Does non-stationary spatial data always require non-stationary random fields? Geir-Arne Fuglstad 1, Daniel Simpson 1, Finn Lindgren 2, and Håvard Rue 1 1 Department of Mathematical Sciences, NTNU, Norway

More information

Modelling Non-linear and Non-stationary Time Series

Modelling Non-linear and Non-stationary Time Series Modelling Non-linear and Non-stationary Time Series Chapter 7(extra): (Generalized) Hidden Markov Models Henrik Madsen Lecture Notes September 2016 Henrik Madsen (02427 Adv. TS Analysis) Lecture Notes

More information

Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study

Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study 1.4 0.0-6 7 8 9 10 11 12 13 14 15 16 17 18 19 age Model 1: A simple broken stick model with knot at 14 fit with

More information

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn }

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn } Stochastic processes Time series are an example of a stochastic or random process Models for time series A stochastic process is 'a statistical phenomenon that evolves in time according to probabilistic

More information

Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models

Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models Facoltà di Economia Università dell Aquila umberto.triacca@gmail.com Introduction In this lesson we present a method to construct an ARMA(p,

More information

1 Introduction to Generalized Least Squares

1 Introduction to Generalized Least Squares ECONOMICS 7344, Spring 2017 Bent E. Sørensen April 12, 2017 1 Introduction to Generalized Least Squares Consider the model Y = Xβ + ɛ, where the N K matrix of regressors X is fixed, independent of the

More information

MLR Model Selection. Author: Nicholas G Reich, Jeff Goldsmith. This material is part of the statsteachr project

MLR Model Selection. Author: Nicholas G Reich, Jeff Goldsmith. This material is part of the statsteachr project MLR Model Selection Author: Nicholas G Reich, Jeff Goldsmith This material is part of the statsteachr project Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en

More information

A non-parametric regression model for estimation of ionospheric plasma velocity distribution from SuperDARN data

A non-parametric regression model for estimation of ionospheric plasma velocity distribution from SuperDARN data A non-parametric regression model for estimation of ionospheric plasma velocity distribution from SuperDARN data S. Nakano (The Institute of Statistical Mathematics) T. Hori (ISEE, Nagoya University) K.

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Spatial omain Hierarchical Modelling for Univariate Spatial ata Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

More information

Classic Time Series Analysis

Classic Time Series Analysis Classic Time Series Analysis Concepts and Definitions Let Y be a random number with PDF f Y t ~f,t Define t =E[Y t ] m(t) is known as the trend Define the autocovariance t, s =COV [Y t,y s ] =E[ Y t t

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

3. ARMA Modeling. Now: Important class of stationary processes

3. ARMA Modeling. Now: Important class of stationary processes 3. ARMA Modeling Now: Important class of stationary processes Definition 3.1: (ARMA(p, q) process) Let {ɛ t } t Z WN(0, σ 2 ) be a white noise process. The process {X t } t Z is called AutoRegressive-Moving-Average

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Estimation methods Review of last class Restrict to basically linear estimation problems (also non-linear problems that are nearly linear) Restrict to parametric,

More information

Half-Spectral Space-Time Covariance Models

Half-Spectral Space-Time Covariance Models Half-Spectral Space-Time Covariance Models Michael T. Horrell & Michael L. Stein University of Chicago arxiv:1505.01243v1 [stat.me] 6 May 2015 September 18, 2018 Abstract We develop two new classes of

More information

STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS

STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS Eric Gilleland Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Supported

More information

Circle a single answer for each multiple choice question. Your choice should be made clearly.

Circle a single answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 4, 215 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 31 questions. Circle

More information

Introduction to Geostatistics

Introduction to Geostatistics Introduction to Geostatistics Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore,

More information

Fitting Linear Statistical Models to Data by Least Squares II: Weighted

Fitting Linear Statistical Models to Data by Least Squares II: Weighted Fitting Linear Statistical Models to Data by Least Squares II: Weighted Brian R. Hunt and C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling April 21, 2014 version

More information