TMA4285 Time Series Models Exam December

Size: px
Start display at page:

Download "TMA4285 Time Series Models Exam December"

Transcription

1 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA485 Time Series Models Solution Oppgave a) A process {z t } is invertible if it can be represented as an A( ) process, z t = π j z t j +a t j= The process is invertible if and only if all the roots of θ(b) = lie outside the unit circle We have θ(b) = B + 4 B Thus, and ( θ(b) = 4 B B + = B = ± ) B = ±i 3 B = + 3 = +3 = 4 > All roots are outside the unit circle, so the model is invertible A process {z t } is covariance stationary if Ez t exists and is not a function of t, and Covz t,z t+k exists and is not a function of t, only a function of k = ± 3 4 The process is covariance stationary if and only if all roots of ϕ(b) = lie outside the unit circle We have ϕ(b) = B Thus, ϕ(b) = B = B > All roots lie outside the unit circle, so the model is covariance stationary eksdesl juni 3 Side

2 TMA485 Time Series Models b) We have Thus, we must have This gives ϕ(b)z t = θ(b)a t z t = θ(b) ϕ(b) a t ψ(b) = θ(b) ϕ(b)ψ(b) = θ(b) ϕ(b) c) ( ϕ B)( ψ B ψ B ψ 3 B ) = θ B θ B By exanding on the left hand side of this equation and setting equal coefficients in front of the same power of B, we get sequentially B : ψ ϕ = θ ψ = θ ϕ, B : ψ +ϕ ψ = θ ψ = θ +ϕ ψ = (θ ϕ )ϕ +θ, B 3 : ψ 3 +ϕ ψ = ψ 3 = ϕ ψ = ϕ ((θ ϕ )ϕ +θ ), B k : ψ k +ϕ ψ k = ψ k = ϕ ψ k = = ϕ k ((θ ϕ )ϕ +θ ) By noting that the formula ψ k = ϕ k ((θ ϕ )+θ ) is valid also for k =, we have shown what is asked for γ = Varz t = Var ψ j a t j = ψjvara t j +ψ + +(θ ϕ ) + j= ((θ ϕ )ϕ +θ ) ϕ (j ) +(θ ϕ ) +((θ ϕ )ϕ +θ ) ϕ j +(θ ϕ ) + ((θ ϕ )ϕ +θ ) j= ψ j γ = σ a ϕ γ = Covz t,z t+ = Cov ψ j a t j, ψ i a t+ i = ψ j ψ i Cova t j,a t+ i i= i= As we have { σ Cova j,a i = a if t j = t+ i i = j +, otherwise, the double sum reduces to a single sum, γ = ψ j ψ j+ σa ψ +ψ ψ + ψ j ψ j+ j= eksdesl juni 3 Side

3 γ = σ a j= TMA485 Time Series Models ψ +ψ ψ + ϕ j ϕ j+ ((θ ϕ )ϕ +θ ) ψ (+ψ )+((θ ϕ )ϕ +θ ) ϕ = σ a ψ (+ψ )+ ((θ ϕ )ϕ +θ ) ϕ ϕ ϕ j (θ ϕ )(+(θ ϕ )ϕ +θ )+ ((θ ϕ )ϕ +θ ) ϕ ϕ Oppgave a) From the plot of {z t }, the time series is clearly not stationary We can see this also from the fact that ρ k decays very slowly and φ kk goes quickly to zero The differenced time series seems to be stationary Thus, we choose d = The acf for the differenced time series decays exponentially to zero, whereas the correspondingpacfappearstocutafterlagthus,itseemsreasonabletotryanaima(,,) model It is not natural to include a deterministic trend parameter θ because the observed {z t } has no clear deterministic trend b) We first discuss the fit of each of the six proposed AIMA models in turn AIMA(,, ): the acf for the estimated residuals is significantly different from zero at lag Thus, this model does not give a good fit for the observed data AIMA(,,): the acf for the estimated residuals looks ok, and all the estimated parameters are significant This looks like a promising model AIMA(3,,): the acf for the estimated residuals looks ok, but ϕ 3 is not significantly different from zero Thus, the model seems to be overparameterised AIMA(,, ): the acf for the estimated residuals looks ok and all estimated parameters are significant This looks like a promising model AIMA(,,): the acf for the estimated residuals looks ok, but θ is not significantly different from zero Thus, the model seems to be overparameterised AIMA(,,3): the acf for the estimated residuals looks ok, but θ and θ 3 are not significantly different from zero Thus, the model seems to be overparameterised The AIMA(,,) and AIMA(,,) models both give a good fit for the observed data These models have the same number of parameters and the log-likelihood is slightly lower for the AIMA(,,) model (and thereby also the AIC is slightly lower for the AIMA(,,) model), so for this reason we prefer the AIMA(,,) model eksdesl juni 3 Side 3

4 Oppgave 3 a) ) Define x t = x t+ = zt z t zt+ z t and y t = u t We then get = 9 at x t + TMA485 Time Series Models and y t = u t = x t +b t Thus we have ) Define x t = x t+ = z t+ z t r t+ ( at Q = Cov z t z t r t = 9 Φ = ) = σ a, A = and y t = u t We then get x t + a t b t, and = Cov(b t ) = σ b and y t = u t = xt +c t Thus, we have Q = Cov Φ = a t b t = σ a σ b, A = and = Cov(c t ) = σ c b) Inserting values for Φ, A and in the Kalman recursions we get P t t+ = 4 Pt t +Q, P t+ t+ = ( K t+ )P t t+, K t+ = Pt t+ 4P t t+ + Eliminating K t+ and Pt+ t we obtain ) ( ) Pt+ ( t+ = +4Q+ 4 Pt t +Q Pt t +Q Pt t Letting t we get ( P = P +4Q )( ) P +4Q+ 4 P +Q ( ) ( ) P(P +4Q+) = 4 P +Q (P +4Q+) (P +4Q) 4 P +Q eksdesl juni 3 Side 4

5 TMA485 Time Series Models P Q Figur : Plot of P as a function of Q in Problem 3b P(P +4Q+) = 4 P +Q P +4QP +P 4 P Q = ( P + 4Q+ 3 ) Q = 4 P = ( 4Q+ 3 ) (4Q+ 4 ± 3 4) +4Q As we must have P, the root with minus in front of the square root is invalid Thus, P = ( 4Q+ 3 4 ) (4Q+ + 3 ( 4) +4Q = Q+ 3 ) ( + Q+ Q ) Plot of P as a function of Q is given in Figure When Q = the x t process is deterministic Note however, that we do not know the initial value of the x t process and our observations are noisy (since > ), so P t t > for all (finite) t When t grows we get more and more information about the (deterministic) process and in the limit when t we know exactly what it is, thus P = in this case When Q > the x t process is random and, for any t, the available information about w t is only y t Thus, the larger the w t s tend to be, the more uncertain we are about the value of x t Thus, P will grow as a function of Q In the limit when Q the x t process is a white noise process (with a very large variance) and our only source of information about x t at time t is y t As the observation noise does not change with Q, P will converge to a finite value when Q eksdesl juni 3 Side 5

6 TMA485 Time Series Models c) We have that and x t+ = Φx t +w t+ = Φ(Φx t +w t )+w t+ = Φ x t +Φw t +w t+ = = Φ t+ x +Φ t w ++Φw t +w t+ y s = Ax s +v s = AΦ s x +AΦ s w ++AΦw s +Aw s +v s Thereby the vectors x t+ y y y t T and x t+ y y y t+ T are linear combinations of independent normally distributed random variables Thus, the two vectors are multi-normally distributed Then also x t+ y,,y t and x t+ y,,y t+ are normal We have x t+ y,,y t N ( x t t+,p t t+), (3) x t+ y,,y t+ N ( x t+ t+,pt+ t+), (3) y t+ x t N(Ax t+,) (33) Using (3) and (33) we get (where proportionalities are as a function of x t+ ) { exp { exp Pt+ t f(x t y,,y t+ ) f(x t+,y t+ y,,y t ) = f(x t+ y,,y t ) f(y t+ x t+,y,,y t ) = f(x t+ y,,y t ) f(y t+ x t+ ) } { exp (x t+ x t t+ ) P t t+ (y t+ Ax t+ ) } x t+ xt t+ Pt+ t x t+ Ay t+ x t+ + A x t+ } From (3) we get (where again the proportionalities are as a function of x t+ ) { } f(x t+ y,,y t+ ) exp (x t+ x t+ t+ ) Pt+ t+ { } exp x t+ xt+ x t+ P t+ t+ Pt+ t+ Thereby we must have that the coefficients in front of x t+ in the two expressions we have found for f(x t+ y,,y t+ ) must be equal, and correspondingly for the linear terms Thus, Pt+ t+ = Pt+ t + A Pt+ = P t+ t+ = P t t+ +A P t t+ P t t+ + A and x t+ t+ P t+ t+ = xt t+ P t t+ + Ay t+ ( x x t+ t t+ = t+ Pt+ Pt+ t + Ay ) t+ eksdesl juni 3 Side 6

Examination paper for Solution: TMA4285 Time series models

Examination paper for Solution: TMA4285 Time series models Department of Mathematical Sciences Examination paper for Solution: TMA4285 Time series models Academic contact during examination: Håkon Tjelmeland Phone: 4822 1896 Examination date: December 7th 2013

More information

TMA4285 December 2015 Time series models, solution.

TMA4285 December 2015 Time series models, solution. Norwegian University of Science and Technology Department of Mathematical Sciences Page of 5 TMA4285 December 205 Time series models, solution. Problem a) (i) The slow decay of the ACF of z t suggest that

More information

Module 4. Stationary Time Series Models Part 1 MA Models and Their Properties

Module 4. Stationary Time Series Models Part 1 MA Models and Their Properties Module 4 Stationary Time Series Models Part 1 MA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14, 2016 20h

More information

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay. Solutions to Midterm

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay. Solutions to Midterm Booth School of Business, University of Chicago Business 41914, Spring Quarter 017, Mr Ruey S Tsay Solutions to Midterm Problem A: (51 points; 3 points per question) Answer briefly the following questions

More information

Circle a single answer for each multiple choice question. Your choice should be made clearly.

Circle a single answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 4, 215 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 31 questions. Circle

More information

We use the centered realization z t z in the computation. Also used in computing sample autocovariances and autocorrelations.

We use the centered realization z t z in the computation. Also used in computing sample autocovariances and autocorrelations. Stationary Time Series Models Part 1 MA Models and Their Properties Class notes for Statistics 41: Applied Time Series Ioa State University Copyright 1 W. Q. Meeker. Segment 1 ARMA Notation, Conventions,

More information

ARMA (and ARIMA) models are often expressed in backshift notation.

ARMA (and ARIMA) models are often expressed in backshift notation. Backshift Notation ARMA (and ARIMA) models are often expressed in backshift notation. B is the backshift operator (also called the lag operator ). It operates on time series, and means back up by one time

More information

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay. Midterm

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay. Midterm Booth School of Business, University of Chicago Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay Midterm Chicago Booth Honor Code: I pledge my honor that I have not violated the Honor Code during

More information

Circle the single best answer for each multiple choice question. Your choice should be made clearly.

Circle the single best answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 6, 2017 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 32 multiple choice

More information

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn }

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn } Stochastic processes Time series are an example of a stochastic or random process Models for time series A stochastic process is 'a statistical phenomenon that evolves in time according to probabilistic

More information

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay Midterm

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay Midterm Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay Midterm Chicago Booth Honor Code: I pledge my honor that I have not violated the Honor Code during

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

Time Series I Time Domain Methods

Time Series I Time Domain Methods Astrostatistics Summer School Penn State University University Park, PA 16802 May 21, 2007 Overview Filtering and the Likelihood Function Time series is the study of data consisting of a sequence of DEPENDENT

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

UNIVARIATE TIME SERIES ANALYSIS BRIEFING 1970

UNIVARIATE TIME SERIES ANALYSIS BRIEFING 1970 UNIVARIATE TIME SERIES ANALYSIS BRIEFING 1970 Joseph George Caldwell, PhD (Statistics) 1432 N Camino Mateo, Tucson, AZ 85745-3311 USA Tel. (001)(520)222-3446, E-mail jcaldwell9@yahoo.com (File converted

More information

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models Module 3 Descriptive Time Series Statistics and Introduction to Time Series Models Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W Q Meeker November 11, 2015

More information

7. Forecasting with ARIMA models

7. Forecasting with ARIMA models 7. Forecasting with ARIMA models 309 Outline: Introduction The prediction equation of an ARIMA model Interpreting the predictions Variance of the predictions Forecast updating Measuring predictability

More information

6 NONSEASONAL BOX-JENKINS MODELS

6 NONSEASONAL BOX-JENKINS MODELS 6 NONSEASONAL BOX-JENKINS MODELS In this section, we will discuss a class of models for describing time series commonly referred to as Box-Jenkins models. There are two types of Box-Jenkins models, seasonal

More information

Time Series Analysis. Solutions to problems in Chapter 5 IMM

Time Series Analysis. Solutions to problems in Chapter 5 IMM Time Series Analysis Solutions to problems in Chapter 5 IMM Solution 5.1 Question 1. [ ] V [X t ] = V [ǫ t + c(ǫ t 1 + ǫ t + )] = 1 + c 1 σǫ = The variance of {X t } is not limited and therefore {X t }

More information

EASTERN MEDITERRANEAN UNIVERSITY ECON 604, FALL 2007 DEPARTMENT OF ECONOMICS MEHMET BALCILAR ARIMA MODELS: IDENTIFICATION

EASTERN MEDITERRANEAN UNIVERSITY ECON 604, FALL 2007 DEPARTMENT OF ECONOMICS MEHMET BALCILAR ARIMA MODELS: IDENTIFICATION ARIMA MODELS: IDENTIFICATION A. Autocorrelations and Partial Autocorrelations 1. Summary of What We Know So Far: a) Series y t is to be modeled by Box-Jenkins methods. The first step was to convert y t

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

Exercises - Time series analysis

Exercises - Time series analysis Descriptive analysis of a time series (1) Estimate the trend of the series of gasoline consumption in Spain using a straight line in the period from 1945 to 1995 and generate forecasts for 24 months. Compare

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 IX. Vector Time Series Models VARMA Models A. 1. Motivation: The vector

More information

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION MAS451/MTH451 Time Series Analysis TIME ALLOWED: 2 HOURS

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION MAS451/MTH451 Time Series Analysis TIME ALLOWED: 2 HOURS NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION 2012-2013 MAS451/MTH451 Time Series Analysis May 2013 TIME ALLOWED: 2 HOURS INSTRUCTIONS TO CANDIDATES 1. This examination paper contains FOUR (4)

More information

STAT STOCHASTIC PROCESSES. Contents

STAT STOCHASTIC PROCESSES. Contents STAT 3911 - STOCHASTIC PROCESSES ANDREW TULLOCH Contents 1. Stochastic Processes 2 2. Classification of states 2 3. Limit theorems for Markov chains 4 4. First step analysis 5 5. Branching processes 5

More information

Notes on the Book: Time Series Analysis: Forecasting and Control by George E. P. Box and Gwilym M. Jenkins

Notes on the Book: Time Series Analysis: Forecasting and Control by George E. P. Box and Gwilym M. Jenkins Notes on the Book: Time Series Analysis: Forecasting and Control by George E. P. Box and Gwilym M. Jenkins John L. Weatherwax June 20, 2008 Introduction Here you ll find some notes that I wrote up as I

More information

Examination paper for TMA4285 Time Series Models

Examination paper for TMA4285 Time Series Models Department of Mathematical Sciences Examination paper for TMA4285 Series Models Academic contact during examination: Professor Jarle Tufto Phone: 99 70 55 19 Examination date: December 8, 2016 Examination

More information

Ross Bettinger, Analytical Consultant, Seattle, WA

Ross Bettinger, Analytical Consultant, Seattle, WA ABSTRACT DYNAMIC REGRESSION IN ARIMA MODELING Ross Bettinger, Analytical Consultant, Seattle, WA Box-Jenkins time series models that contain exogenous predictor variables are called dynamic regression

More information

MCMC analysis of classical time series algorithms.

MCMC analysis of classical time series algorithms. MCMC analysis of classical time series algorithms. mbalawata@yahoo.com Lappeenranta University of Technology Lappeenranta, 19.03.2009 Outline Introduction 1 Introduction 2 3 Series generation Box-Jenkins

More information

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation University of Oxford Statistical Methods Autocorrelation Identification and Estimation Dr. Órlaith Burke Michaelmas Term, 2011 Department of Statistics, 1 South Parks Road, Oxford OX1 3TG Contents 1 Model

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 4 - Estimation in the time Domain Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 46 Agenda 1 Introduction 2 Moment Estimates 3 Autoregressive Models (AR

More information

Cointegrated VARIMA models: specification and. simulation

Cointegrated VARIMA models: specification and. simulation Cointegrated VARIMA models: specification and simulation José L. Gallego and Carlos Díaz Universidad de Cantabria. Abstract In this note we show how specify cointegrated vector autoregressive-moving average

More information

MULTIVARIATE TIME SERIES ANALYSIS LECTURE NOTES. Version without figures. 9 August 2018

MULTIVARIATE TIME SERIES ANALYSIS LECTURE NOTES. Version without figures. 9 August 2018 MULTIVARIATE TIME SERIES ANALYSIS LECTURE NOTES Version without figures. 9 August 2018 Joseph George Caldwell, PhD (Statistics) 1432 N Camino Mateo, Tucson, AZ 85745-3311 USA Tel. (001)(520)222-3446, E-mail

More information

Stationary Stochastic Time Series Models

Stationary Stochastic Time Series Models Stationary Stochastic Time Series Models When modeling time series it is useful to regard an observed time series, (x 1,x,..., x n ), as the realisation of a stochastic process. In general a stochastic

More information

Estimation of Parameters of Multiplicative Seasonal Autoregressive Integrated Moving Average Model Using Multiple Regression

Estimation of Parameters of Multiplicative Seasonal Autoregressive Integrated Moving Average Model Using Multiple Regression International Journal of Statistics and Applications 2015, 5(2): 91-97 DOI: 10.5923/j.statistics.20150502.07 Estimation of Parameters of Multiplicative Seasonal Autoregressive Integrated Moving Average

More information

Chapter 2: Unit Roots

Chapter 2: Unit Roots Chapter 2: Unit Roots 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and undeconometrics II. Unit Roots... 3 II.1 Integration Level... 3 II.2 Nonstationarity

More information

Statistics 910, #15 1. Kalman Filter

Statistics 910, #15 1. Kalman Filter Statistics 910, #15 1 Overview 1. Summary of Kalman filter 2. Derivations 3. ARMA likelihoods 4. Recursions for the variance Kalman Filter Summary of Kalman filter Simplifications To make the derivations

More information

MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS)

MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS) MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS) 15 April 2016 (180 minutes) Professor: R. Kulik Student Number: Name: This is closed book exam. You are allowed to use one double-sided A4 sheet of notes.

More information

at least 50 and preferably 100 observations should be available to build a proper model

at least 50 and preferably 100 observations should be available to build a proper model III Box-Jenkins Methods 1. Pros and Cons of ARIMA Forecasting a) need for data at least 50 and preferably 100 observations should be available to build a proper model used most frequently for hourly or

More information

Ch 6. Model Specification. Time Series Analysis

Ch 6. Model Specification. Time Series Analysis We start to build ARIMA(p,d,q) models. The subjects include: 1 how to determine p, d, q for a given series (Chapter 6); 2 how to estimate the parameters (φ s and θ s) of a specific ARIMA(p,d,q) model (Chapter

More information

Stochastic Modelling Solutions to Exercises on Time Series

Stochastic Modelling Solutions to Exercises on Time Series Stochastic Modelling Solutions to Exercises on Time Series Dr. Iqbal Owadally March 3, 2003 Solutions to Elementary Problems Q1. (i) (1 0.5B)X t = Z t. The characteristic equation 1 0.5z = 0 does not have

More information

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA CHAPTER 6 TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA 6.1. Introduction A time series is a sequence of observations ordered in time. A basic assumption in the time series analysis

More information

Ch 9. FORECASTING. Time Series Analysis

Ch 9. FORECASTING. Time Series Analysis In this chapter, we assume the model is known exactly, and consider the calculation of forecasts and their properties for both deterministic trend models and ARIMA models. 9.1 Minimum Mean Square Error

More information

Introduction to ARMA and GARCH processes

Introduction to ARMA and GARCH processes Introduction to ARMA and GARCH processes Fulvio Corsi SNS Pisa 3 March 2010 Fulvio Corsi Introduction to ARMA () and GARCH processes SNS Pisa 3 March 2010 1 / 24 Stationarity Strict stationarity: (X 1,

More information

Chapter 6: Model Specification for Time Series

Chapter 6: Model Specification for Time Series Chapter 6: Model Specification for Time Series The ARIMA(p, d, q) class of models as a broad class can describe many real time series. Model specification for ARIMA(p, d, q) models involves 1. Choosing

More information

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27 ARIMA Models Jamie Monogan University of Georgia January 16, 2018 Jamie Monogan (UGA) ARIMA Models January 16, 2018 1 / 27 Objectives By the end of this meeting, participants should be able to: Argue why

More information

Scenario 5: Internet Usage Solution. θ j

Scenario 5: Internet Usage Solution. θ j Scenario : Internet Usage Solution Some more information would be interesting about the study in order to know if we can generalize possible findings. For example: Does each data point consist of the total

More information

Econ 623 Econometrics II Topic 2: Stationary Time Series

Econ 623 Econometrics II Topic 2: Stationary Time Series 1 Introduction Econ 623 Econometrics II Topic 2: Stationary Time Series In the regression model we can model the error term as an autoregression AR(1) process. That is, we can use the past value of the

More information

AR(p) + I(d) + MA(q) = ARIMA(p, d, q)

AR(p) + I(d) + MA(q) = ARIMA(p, d, q) AR(p) + I(d) + MA(q) = ARIMA(p, d, q) Outline 1 4.1: Nonstationarity in the Mean 2 ARIMA Arthur Berg AR(p) + I(d)+ MA(q) = ARIMA(p, d, q) 2/ 19 Deterministic Trend Models Polynomial Trend Consider the

More information

Regression of Time Series

Regression of Time Series Mahlerʼs Guide to Regression of Time Series CAS Exam S prepared by Howard C. Mahler, FCAS Copyright 2016 by Howard C. Mahler. Study Aid 2016F-S-9Supplement Howard Mahler hmahler@mac.com www.howardmahler.com/teaching

More information

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong STAT 443 Final Exam Review L A TEXer: W Kong 1 Basic Definitions Definition 11 The time series {X t } with E[X 2 t ] < is said to be weakly stationary if: 1 µ X (t) = E[X t ] is independent of t 2 γ X

More information

Introduction Dual Representations Kernel Design RBF Linear Reg. GP Regression GP Classification Summary. Kernel Methods. Henrik I Christensen

Introduction Dual Representations Kernel Design RBF Linear Reg. GP Regression GP Classification Summary. Kernel Methods. Henrik I Christensen Kernel Methods Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I Christensen (RIM@GT) Kernel Methods 1 / 37 Outline

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Chapter 9 Multivariate time series 2 Transfer function

More information

Stationary and nonstationary variables

Stationary and nonstationary variables Stationary and nonstationary variables Stationary variable: 1. Finite and constant in time expected value: E (y t ) = µ < 2. Finite and constant in time variance: Var (y t ) = σ 2 < 3. Covariance dependent

More information

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis Chapter 12: An introduction to Time Series Analysis Introduction In this chapter, we will discuss forecasting with single-series (univariate) Box-Jenkins models. The common name of the models is Auto-Regressive

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture State space models, 1st part: Model: Sec. 10.1 The

More information

Lecture 16: State Space Model and Kalman Filter Bus 41910, Time Series Analysis, Mr. R. Tsay

Lecture 16: State Space Model and Kalman Filter Bus 41910, Time Series Analysis, Mr. R. Tsay Lecture 6: State Space Model and Kalman Filter Bus 490, Time Series Analysis, Mr R Tsay A state space model consists of two equations: S t+ F S t + Ge t+, () Z t HS t + ɛ t (2) where S t is a state vector

More information

Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting)

Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting) Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting) (overshort example) White noise H 0 : Let Z t be the stationary

More information

MATH 5075: Time Series Analysis

MATH 5075: Time Series Analysis NAME: MATH 5075: Time Series Analysis Final For the entire test {Z t } WN(0, 1)!!! 1 1) Let {Y t, t Z} be a stationary time series with EY t = 0 and autocovariance function γ Y (h). Assume that a) Show

More information

Ch 5. Models for Nonstationary Time Series. Time Series Analysis

Ch 5. Models for Nonstationary Time Series. Time Series Analysis We have studied some deterministic and some stationary trend models. However, many time series data cannot be modeled in either way. Ex. The data set oil.price displays an increasing variation from the

More information

A Data-Driven Model for Software Reliability Prediction

A Data-Driven Model for Software Reliability Prediction A Data-Driven Model for Software Reliability Prediction Author: Jung-Hua Lo IEEE International Conference on Granular Computing (2012) Young Taek Kim KAIST SE Lab. 9/4/2013 Contents Introduction Background

More information

TMA4240 Statistikk Autumn 2013

TMA4240 Statistikk Autumn 2013 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5, blokk I Løsningsskisse Oppgave 1 We are looking at a randomly chosen night and define the following events:

More information

γ 0 = Var(X i ) = Var(φ 1 X i 1 +W i ) = φ 2 1γ 0 +σ 2, which implies that we must have φ 1 < 1, and γ 0 = σ2 . 1 φ 2 1 We may also calculate for j 1

γ 0 = Var(X i ) = Var(φ 1 X i 1 +W i ) = φ 2 1γ 0 +σ 2, which implies that we must have φ 1 < 1, and γ 0 = σ2 . 1 φ 2 1 We may also calculate for j 1 4.2 Autoregressive (AR) Moving average models are causal linear processes by definition. There is another class of models, based on a recursive formulation similar to the exponentially weighted moving

More information

Nonlinear Time Series Modeling

Nonlinear Time Series Modeling Nonlinear Time Series Modeling Part II: Time Series Models in Finance Richard A. Davis Colorado State University (http://www.stat.colostate.edu/~rdavis/lectures) MaPhySto Workshop Copenhagen September

More information

Discrete time processes

Discrete time processes Discrete time processes Predictions are difficult. Especially about the future Mark Twain. Florian Herzog 2013 Modeling observed data When we model observed (realized) data, we encounter usually the following

More information

A time series is called strictly stationary if the joint distribution of every collection (Y t

A time series is called strictly stationary if the joint distribution of every collection (Y t 5 Time series A time series is a set of observations recorded over time. You can think for example at the GDP of a country over the years (or quarters) or the hourly measurements of temperature over a

More information

3 Theory of stationary random processes

3 Theory of stationary random processes 3 Theory of stationary random processes 3.1 Linear filters and the General linear process A filter is a transformation of one random sequence {U t } into another, {Y t }. A linear filter is a transformation

More information

A SARIMAX coupled modelling applied to individual load curves intraday forecasting

A SARIMAX coupled modelling applied to individual load curves intraday forecasting A SARIMAX coupled modelling applied to individual load curves intraday forecasting Frédéric Proïa Workshop EDF Institut Henri Poincaré - Paris 05 avril 2012 INRIA Bordeaux Sud-Ouest Institut de Mathématiques

More information

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 )

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 ) Covariance Stationary Time Series Stochastic Process: sequence of rv s ordered by time {Y t } {...,Y 1,Y 0,Y 1,...} Defn: {Y t } is covariance stationary if E[Y t ]μ for all t cov(y t,y t j )E[(Y t μ)(y

More information

Ch 4. Models For Stationary Time Series. Time Series Analysis

Ch 4. Models For Stationary Time Series. Time Series Analysis This chapter discusses the basic concept of a broad class of stationary parametric time series models the autoregressive moving average (ARMA) models. Let {Y t } denote the observed time series, and {e

More information

ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models

ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models Patrick Herb Brandeis University Spring 2016 Patrick Herb (Brandeis University) Standard Univariate Models ECON/FIN

More information

MAT 3379 (Winter 2016) FINAL EXAM (PRACTICE)

MAT 3379 (Winter 2016) FINAL EXAM (PRACTICE) MAT 3379 (Winter 2016) FINAL EXAM (PRACTICE) 15 April 2016 (180 minutes) Professor: R. Kulik Student Number: Name: This is closed book exam. You are allowed to use one double-sided A4 sheet of notes. Only

More information

Topic 4 Unit Roots. Gerald P. Dwyer. February Clemson University

Topic 4 Unit Roots. Gerald P. Dwyer. February Clemson University Topic 4 Unit Roots Gerald P. Dwyer Clemson University February 2016 Outline 1 Unit Roots Introduction Trend and Difference Stationary Autocorrelations of Series That Have Deterministic or Stochastic Trends

More information

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each)

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) GROUND RULES: This exam contains two parts: Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) The maximum number of points on this exam is

More information

APPLIED ECONOMETRIC TIME SERIES 4TH EDITION

APPLIED ECONOMETRIC TIME SERIES 4TH EDITION APPLIED ECONOMETRIC TIME SERIES 4TH EDITION Chapter 2: STATIONARY TIME-SERIES MODELS WALTER ENDERS, UNIVERSITY OF ALABAMA Copyright 2015 John Wiley & Sons, Inc. Section 1 STOCHASTIC DIFFERENCE EQUATION

More information

Chapter 4: Models for Stationary Time Series

Chapter 4: Models for Stationary Time Series Chapter 4: Models for Stationary Time Series Now we will introduce some useful parametric models for time series that are stationary processes. We begin by defining the General Linear Process. Let {Y t

More information

The Multivariate Normal Distribution 1

The Multivariate Normal Distribution 1 The Multivariate Normal Distribution 1 STA 302 Fall 2017 1 See last slide for copyright information. 1 / 40 Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ 2 and t distributions 2

More information

Circle the single best answer for each multiple choice question. Your choice should be made clearly.

Circle the single best answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 6, 2017 Name: Please read the followig directios. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directios This exam is closed book ad closed otes. There are 32 multiple choice questios.

More information

THE UNIVERSITY OF CHICAGO Booth School of Business Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay

THE UNIVERSITY OF CHICAGO Booth School of Business Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay THE UNIVERSITY OF CHICAGO Booth School of Business Business 494, Spring Quarter 03, Mr. Ruey S. Tsay Unit-Root Nonstationary VARMA Models Unit root plays an important role both in theory and applications

More information

LECTURE 10 LINEAR PROCESSES II: SPECTRAL DENSITY, LAG OPERATOR, ARMA. In this lecture, we continue to discuss covariance stationary processes.

LECTURE 10 LINEAR PROCESSES II: SPECTRAL DENSITY, LAG OPERATOR, ARMA. In this lecture, we continue to discuss covariance stationary processes. MAY, 0 LECTURE 0 LINEAR PROCESSES II: SPECTRAL DENSITY, LAG OPERATOR, ARMA In this lecture, we continue to discuss covariance stationary processes. Spectral density Gourieroux and Monfort 990), Ch. 5;

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: ony Jebara Kalman Filtering Linear Dynamical Systems and Kalman Filtering Structure from Motion Linear Dynamical Systems Audio: x=pitch y=acoustic waveform Vision: x=object

More information

Generalized Method of Moments (GMM) Estimation

Generalized Method of Moments (GMM) Estimation Econometrics 2 Fall 2004 Generalized Method of Moments (GMM) Estimation Heino Bohn Nielsen of29 Outline of the Lecture () Introduction. (2) Moment conditions and methods of moments (MM) estimation. Ordinary

More information

Econometrics II Heij et al. Chapter 7.1

Econometrics II Heij et al. Chapter 7.1 Chapter 7.1 p. 1/2 Econometrics II Heij et al. Chapter 7.1 Linear Time Series Models for Stationary data Marius Ooms Tinbergen Institute Amsterdam Chapter 7.1 p. 2/2 Program Introduction Modelling philosophy

More information

MAT3379 (Winter 2016)

MAT3379 (Winter 2016) MAT3379 (Winter 2016) Assignment 4 - SOLUTIONS The following questions will be marked: 1a), 2, 4, 6, 7a Total number of points for Assignment 4: 20 Q1. (Theoretical Question, 2 points). Yule-Walker estimation

More information

On 1.9, you will need to use the facts that, for any x and y, sin(x+y) = sin(x) cos(y) + cos(x) sin(y). cos(x+y) = cos(x) cos(y) - sin(x) sin(y).

On 1.9, you will need to use the facts that, for any x and y, sin(x+y) = sin(x) cos(y) + cos(x) sin(y). cos(x+y) = cos(x) cos(y) - sin(x) sin(y). On 1.9, you will need to use the facts that, for any x and y, sin(x+y) = sin(x) cos(y) + cos(x) sin(y). cos(x+y) = cos(x) cos(y) - sin(x) sin(y). (sin(x)) 2 + (cos(x)) 2 = 1. 28 1 Characteristics of Time

More information

Part II. Time Series

Part II. Time Series Part II Time Series 12 Introduction This Part is mainly a summary of the book of Brockwell and Davis (2002). Additionally the textbook Shumway and Stoffer (2010) can be recommended. 1 Our purpose is to

More information

Lecture 1: Fundamental concepts in Time Series Analysis (part 2)

Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEA-Nice) Sept. 2011 - Jan. 2012 Florian Pelgrin (HEC)

More information

HYPERBOLIC DECAY TIME SERIES. A.I. McLeod. Department of Statistical & Actuarial Sciences. The University of Western Ontario. London, Ontario N6A 5B7

HYPERBOLIC DECAY TIME SERIES. A.I. McLeod. Department of Statistical & Actuarial Sciences. The University of Western Ontario. London, Ontario N6A 5B7 HYPERBOLIC DECAY TIME SERIES A.I. McLeod Department of Statistical & Actuarial Sciences The University of Western Ontario London, Ontario N6A 5B7 Canada November 1995 2 Abstract Hyperbolic decay time series

More information

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design Marcel Dettling Institute for Data Analysis and Process Design Zurich University of Applied Sciences marcel.dettling@zhaw.ch http://stat.ethz.ch/~dettling ETH Zürich, March 18, 2013 1 Basics of Modeling

More information

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1 Forecasting using R Rob J Hyndman 2.4 Non-seasonal ARIMA models Forecasting using R 1 Outline 1 Autoregressive models 2 Moving average models 3 Non-seasonal ARIMA models 4 Partial autocorrelations 5 Estimation

More information

5 Transfer function modelling

5 Transfer function modelling MSc Further Time Series Analysis 5 Transfer function modelling 5.1 The model Consider the construction of a model for a time series (Y t ) whose values are influenced by the earlier values of a series

More information

Univariate ARIMA Models

Univariate ARIMA Models Univariate ARIMA Models ARIMA Model Building Steps: Identification: Using graphs, statistics, ACFs and PACFs, transformations, etc. to achieve stationary and tentatively identify patterns and model components.

More information

2015 School Year. Graduate School Entrance Examination Problem Booklet. Mathematics

2015 School Year. Graduate School Entrance Examination Problem Booklet. Mathematics 2015 School Year Graduate School Entrance Examination Problem Booklet Mathematics Examination Time: 10:00 to 12:30 Instructions 1. Do not open this problem booklet until the start of the examination is

More information

3. ARMA Modeling. Now: Important class of stationary processes

3. ARMA Modeling. Now: Important class of stationary processes 3. ARMA Modeling Now: Important class of stationary processes Definition 3.1: (ARMA(p, q) process) Let {ɛ t } t Z WN(0, σ 2 ) be a white noise process. The process {X t } t Z is called AutoRegressive-Moving-Average

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 2 - Probability Models Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 34 Agenda 1 Introduction 2 Stochastic Process Definition 1 Stochastic Definition

More information

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends Reliability and Risk Analysis Stochastic process The sequence of random variables {Y t, t = 0, ±1, ±2 } is called the stochastic process The mean function of a stochastic process {Y t} is the function

More information

Time Series Analysis

Time Series Analysis Time Series Analysis Christopher Ting http://mysmu.edu.sg/faculty/christophert/ christopherting@smu.edu.sg Quantitative Finance Singapore Management University March 3, 2017 Christopher Ting Week 9 March

More information

1.4 Properties of the autocovariance for stationary time-series

1.4 Properties of the autocovariance for stationary time-series 1.4 Properties of the autocovariance for stationary time-series In general, for a stationary time-series, (i) The variance is given by (0) = E((X t µ) 2 ) 0. (ii) (h) apple (0) for all h 2 Z. ThisfollowsbyCauchy-Schwarzas

More information

The Multivariate Normal Distribution 1

The Multivariate Normal Distribution 1 The Multivariate Normal Distribution 1 STA 302 Fall 2014 1 See last slide for copyright information. 1 / 37 Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ 2 and t distributions 2

More information

= m(0) + 4e 2 ( 3e 2 ) 2e 2, 1 (2k + k 2 ) dt. m(0) = u + R 1 B T P x 2 R dt. u + R 1 B T P y 2 R dt +

= m(0) + 4e 2 ( 3e 2 ) 2e 2, 1 (2k + k 2 ) dt. m(0) = u + R 1 B T P x 2 R dt. u + R 1 B T P y 2 R dt + ECE 553, Spring 8 Posted: May nd, 8 Problem Set #7 Solution Solutions: 1. The optimal controller is still the one given in the solution to the Problem 6 in Homework #5: u (x, t) = p(t)x k(t), t. The minimum

More information