Time Series Analysis

Size: px
Start display at page:

Download "Time Series Analysis"

Transcription

1 Time Series Analysis Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1

2 Outline of the lecture State space models, 1st part: Model: Sec The Kalman filter: Sec Cursory material: Sec (Empirical-Bayesian description) 2

3 State space models System model; A full description of the dynamical system (i.e. including the parameters) Observations; Noisy measurements on some parts (states) of the system Goal; reconstruct and predict the state of the system Input u t System State: X t Output Y t 3

4 State space models; examples Estimate the temperature inside a solid block of material when we measure the temperature on the surface (with noise) Noisy measurements of the position of a ship; give a better estimate of the current position A model of a car engine: Input; fuel. State; Fuel and temperature in various parts. Observarions: Sensor output PK/PD-modeling: State: Amount of drug in blood, liver, muscules,... Observations: Amount in blood (with noise), Input: Drug. 4

5 Determining the model structure The system model is often based on physical considerations; this often leads to dynamical models consisting of differential equations An m th order differential equation can be formulated as m 1st order differential equations Sampling such a system leads to a linear state space model and there exist a way of coming from the coefficients in continuous time to the coefficients in discrete time 5

6 The linear stochastic state space model System equation: X t = AX t 1 + Bu t 1 + e 1,t Observation equation: Y t = CX t + e 2,t X: State vector Y : Observation vector u: Input vector e 1 : System noise e 2 : Observation noise dim(x t ) = m is called the order of the system {e 1,t } and {e 2,t } mutually independent white noise V [e 1 = Σ 1, V [e 2 = Σ 2 A, B, C, Σ 1, and Σ 2 are known matrices The state vector contains all information available for future evaluation; the state vector is a Markov process 6

7 Example a falling body Height above ground: z(t) Initial conditions: Position z(t 0 ) and velocity z (t 0 ) Physical considerations: d2 z dt 2 = g States: Position x 1 (t) = z(t) and velocity x 2 (t) = z (t) Only the position is measured y(t) = x 1 (t) Continuous time description x(t) = [x 1 (t) x 2 (t) T : x (t) = [ [ x(t) + y(t) = [ 1 0 x(t) 0 1 g 7

8 Example a falling body (cont nd) Solving the equations: x 2 (t) = g(t t 0 ) + x 2 (t 0 ) x 1 (t) = g 2 (t t 0) 2 + (t t 0 )x 2 (t 0 ) + x 1 (t 0 ) Sampling: t = st, t 0 = (s 1)T, and T = 1 [ [ 1 1 1/2 x s = x s g y s = [ 1 0 x s Adding disturbances and measurement noise: [ [ 1 1 1/2 x s = x s 1 + g + e 1,s y s = [ 1 0 x s + e 2,s 8

9 Example a falling body (cont nd) Given measurements of the position at time points 1,2,...,s we could: Predict the future position and velocity x s+k s (k > 0) Reconstruct the current position and velocity from noisy measurements x s s Interpolate to find the best estimate of the position and velocity at a previous time point x s+k s (k < 0) (estimate the path in the state space; vary k so that s + k varied from 1 to s) we will focus on reconstruction and prediction 9

10 Requirement In order to predict, reconstruct or interpolate the m-dimensional state in the system X t = AX t 1 + Bu t 1 + e 1,t Y t = CX t + e 2,t the system must be observable, i.e. rank [ C T.(CA) T.. ( CA m 1) T = m. For the falling body (S-PLUS): > qr( cbind(t(c), t(c %*% A)) )$rank [1 2 Where A and C is taken from the discrete time description of the system. 10

11 The Kalman filter Initialization: X1 0 = E [X 1 = µ 0, 1 0 = V [X 1 = V 0, and thereby Σ yy 1 0 = CΣxx 1 0 CT + Σ 2 For: t = 1,2,3,... Reconstruction: ( ) 1 K t = t t 1 CT Σ yy t t 1 X t t = X ( t t 1 + K t Y t C X ) t t 1 t t = t t 1 K tσ yy t t 1 KT t Prediction: X t+1 t t+1 t Σ yy t+1 t = A X t t + Bu t = A t t AT + Σ 1 = C t+1 t CT + Σ 2 11

12 Multi step predictions Not part of the Kalman filter as stated above Can be calculated recursively for a given t starting with k = 1 for which X t+k t and Σ t+k t are calculated as part of the Kalman filter X t+k+1 t t+k+1 t = A X t+k t + Bu t+k = A t+k t AT + Σ 1 The future input must be decided 12

13 Naming and history The filter is named after Rudolf E. Kalman, though Thorvald Nicolai Thiele and Peter Swerling actually developed a similar algorithm earlier. It was during a visit of Kalman to the NASA Ames Research Center that he saw the applicability of his ideas to the problem of trajectory estimation for the Apollo program, leading to its incorporation in the Apollo navigation computer. From 13

14 The Foundation of the Kalman filter Theorem 2.6 (Linear projection) The theorem is concerned with the random vectors X and Y for which the means, variances and covariances are used The state is called X t and the observation is called Y t and we could write down the theorem for these We have additional information; Y T t 1 = (Y T 1,...,Y T t 1) We include this information by considering the random vectors X t Y t 1 and Y t Y t 1 instead E[(X t Y t 1 ) (Y t Y t 1 ) = E[X t Y t, Y t 1 = E[X t Y t 1 + C[X t,y t Y t 1 V 1 [Y t Y t 1 (Y t E[Y t Y t 1 ) V [(X t Y t 1 ) (Y t Y t 1 ) = V [X t Y t, Y t 1 = V [X t Y t 1 C[X t,y t Y t 1 V 1 [Y t Y t 1 C T [X t,y t Y t 1 14

15 The Foundation of the Kalman filter (cont nd) E[X t Y t, Y t 1 = E[X t Y t 1 + C[X t,y t Y t 1 V 1 [Y t Y t 1 (Y t E[Y t Y t 1 ) V [X t Y t, Y t 1 = V [X t Y t 1 C[X t,y t Y t 1 V 1 [Y t Y t 1 C T [X t,y t Y t 1 X t t = X t t 1 + Σ xy t t 1 t t = t t 1 Σxy t t 1 K t = Σ xy t t 1 ( ) 1 ( ) Σ yy Y t t 1 t Ŷ t t 1 ( Σ yy t t 1 ( ) 1 Σ yy t t 1 ) 1 ( Σ xy t t 1 K t is called the Kalman gain, because it determine how much the 1-step prediction error influence the update of the state estimate ) T 15

16 The Foundation of the Kalman filter (cont nd) The 1-step predictions are obtained directly from the state space model: Xt+1 t = A X t t + Bu t Ŷ t+1 t = C X t+1 t Which results in the prediction errors: X t+1 t = X t+1 X t+1 t = A X t t + e 1,t+1 Ỹ t+1 t = Y t+1 Ŷ t+1 t = C X t+1 t + e 2,t+1 And in therefore: t+1 t Σ yy t+1 t = A t t AT + Σ 1 = C t+1 t CT + Σ 2 Σ xy t+1 t can also be calculated 16

17 Kalman filter applied to a falling body Description of the system: A = [ B = [ 1/2 1 C = [ 1 0 Σ 1 = [ Σ 2 = [ Initialization: Released m above ground at 0 m/s X 1 0 = [ = [ Σ yy 1 0 = [

18 Kalman filter applied to a falling body (cont nd) 1st observation (t = 1): y 1 = Reconstruction: K 1 = [ 0 0 T X 1 1 = Prediction: [ X 2 1 = 9.82 [ = [ = [ Σ yy 2 1 = [

19 Kalman filter applied to a falling body (cont nd) 2nd observation (t = 2): y 2 = Reconstruction: K 2 = [ T X 2 2 = [ = [ Prediction: [ X 3 2 = = [ Σ yy 3 2 = [

20 Kalman filter applied to a falling body (cont nd) 3rd observation (t = 3): y 3 = Reconstruction: K 3 = [ T X 3 3 = [ = [ Prediction: [ X 4 3 = = [ Σ yy 4 3 = [

21 Falling body the 10 first time points Position (m) Observed position Reconstructed position Reconstructed velocity Velocity (m/s) 21

22 Falling body wrong initial state Position (m) Observed position Reconstructed position Reconstructed velocity Velocity (m/s)

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Regression based methods, 1st part: Introduction (Sec.

More information

Lecture Note 12: Kalman Filter

Lecture Note 12: Kalman Filter ECE 645: Estimation Theory Spring 2015 Instructor: Prof. Stanley H. Chan Lecture Note 12: Kalman Filter LaTeX prepared by Stylianos Chatzidakis) May 4, 2015 This lecture note is based on ECE 645Spring

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Input-Output systems The z-transform important issues

More information

1 Kalman Filter Introduction

1 Kalman Filter Introduction 1 Kalman Filter Introduction You should first read Chapter 1 of Stochastic models, estimation, and control: Volume 1 by Peter S. Maybec (available here). 1.1 Explanation of Equations (1-3) and (1-4) Equation

More information

Linear Discrete-time State Space Realization of a Modified Quadruple Tank System with State Estimation using Kalman Filter

Linear Discrete-time State Space Realization of a Modified Quadruple Tank System with State Estimation using Kalman Filter Journal of Physics: Conference Series PAPER OPEN ACCESS Linear Discrete-time State Space Realization of a Modified Quadruple Tank System with State Estimation using Kalman Filter To cite this article:

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Chapter 9 Multivariate time series 2 Transfer function

More information

Nonlinear Observers. Jaime A. Moreno. Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México

Nonlinear Observers. Jaime A. Moreno. Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México Nonlinear Observers Jaime A. Moreno JMorenoP@ii.unam.mx Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México XVI Congreso Latinoamericano de Control Automático October

More information

Lecture 6: Bayesian Inference in SDE Models

Lecture 6: Bayesian Inference in SDE Models Lecture 6: Bayesian Inference in SDE Models Bayesian Filtering and Smoothing Point of View Simo Särkkä Aalto University Simo Särkkä (Aalto) Lecture 6: Bayesian Inference in SDEs 1 / 45 Contents 1 SDEs

More information

Kalman Filter. Man-Wai MAK

Kalman Filter. Man-Wai MAK Kalman Filter Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak References: S. Gannot and A. Yeredor,

More information

The Kalman Filter (part 1) Definition. Rudolf Emil Kalman. Why do we need a filter? Definition. HCI/ComS 575X: Computational Perception.

The Kalman Filter (part 1) Definition. Rudolf Emil Kalman. Why do we need a filter? Definition. HCI/ComS 575X: Computational Perception. The Kalman Filter (part 1) HCI/ComS 575X: Computational Perception Instructor: Alexander Stoytchev http://www.cs.iastate.edu/~alex/classes/2007_spring_575x/ March 5, 2007 HCI/ComS 575X: Computational Perception

More information

ECEN 605 LINEAR SYSTEMS. Lecture 8 Invariant Subspaces 1/26

ECEN 605 LINEAR SYSTEMS. Lecture 8 Invariant Subspaces 1/26 1/26 ECEN 605 LINEAR SYSTEMS Lecture 8 Invariant Subspaces Subspaces Let ẋ(t) = A x(t) + B u(t) y(t) = C x(t) (1a) (1b) denote a dynamic system where X, U and Y denote n, r and m dimensional vector spaces,

More information

Stochastic Processes

Stochastic Processes Elements of Lecture II Hamid R. Rabiee with thanks to Ali Jalali Overview Reading Assignment Chapter 9 of textbook Further Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A First Course in Stochastic

More information

Lecture 19 Observability and state estimation

Lecture 19 Observability and state estimation EE263 Autumn 2007-08 Stephen Boyd Lecture 19 Observability and state estimation state estimation discrete-time observability observability controllability duality observers for noiseless case continuous-time

More information

Kalman Filter Computer Vision (Kris Kitani) Carnegie Mellon University

Kalman Filter Computer Vision (Kris Kitani) Carnegie Mellon University Kalman Filter 16-385 Computer Vision (Kris Kitani) Carnegie Mellon University Examples up to now have been discrete (binary) random variables Kalman filtering can be seen as a special case of a temporal

More information

Lecture 10 Linear Quadratic Stochastic Control with Partial State Observation

Lecture 10 Linear Quadratic Stochastic Control with Partial State Observation EE363 Winter 2008-09 Lecture 10 Linear Quadratic Stochastic Control with Partial State Observation partially observed linear-quadratic stochastic control problem estimation-control separation principle

More information

A Theoretical Overview on Kalman Filtering

A Theoretical Overview on Kalman Filtering A Theoretical Overview on Kalman Filtering Constantinos Mavroeidis Vanier College Presented to professors: IVANOV T. IVAN STAHN CHRISTIAN Email: cmavroeidis@gmail.com June 6, 208 Abstract Kalman filtering

More information

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier Miscellaneous Regarding reading materials Reading materials will be provided as needed If no assigned reading, it means I think the material from class is sufficient Should be enough for you to do your

More information

Nonlinear State Estimation! Extended Kalman Filters!

Nonlinear State Estimation! Extended Kalman Filters! Nonlinear State Estimation! Extended Kalman Filters! Robert Stengel! Optimal Control and Estimation, MAE 546! Princeton University, 2017!! Deformation of the probability distribution!! Neighboring-optimal

More information

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL 1. Optimal regulator with noisy measurement Consider the following system: ẋ = Ax + Bu + w, x(0) = x 0 where w(t) is white noise with Ew(t) = 0, and x 0 is a stochastic

More information

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Kalman Filter Kalman Filter Predict: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Update: K = P k k 1 Hk T (H k P k k 1 Hk T + R) 1 x k k = x k k 1 + K(z k H k x k k 1 ) P k k =(I

More information

Kalman Filter and Parameter Identification. Florian Herzog

Kalman Filter and Parameter Identification. Florian Herzog Kalman Filter and Parameter Identification Florian Herzog 2013 Continuous-time Kalman Filter In this chapter, we shall use stochastic processes with independent increments w 1 (.) and w 2 (.) at the input

More information

Data assimilation with and without a model

Data assimilation with and without a model Data assimilation with and without a model Tim Sauer George Mason University Parameter estimation and UQ U. Pittsburgh Mar. 5, 2017 Partially supported by NSF Most of this work is due to: Tyrus Berry,

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.241 Dynamic Systems and Control Lecture 24: H2 Synthesis Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology May 4, 2011 E. Frazzoli (MIT) Lecture 24: H 2 Synthesis May

More information

ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER. The Kalman Filter. We will be concerned with state space systems of the form

ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER. The Kalman Filter. We will be concerned with state space systems of the form ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER KRISTOFFER P. NIMARK The Kalman Filter We will be concerned with state space systems of the form X t = A t X t 1 + C t u t 0.1 Z t

More information

Kalman Filters, Dynamic Bayesian Networks

Kalman Filters, Dynamic Bayesian Networks Course 16:198:520: Introduction To Artificial Intelligence Lecture 12 Kalman Filters, Dynamic Bayesian Networks Abdeslam Boularias Monday, November 16, 2015 1 / 40 Example: Tracking the trajectory of a

More information

COS Lecture 16 Autonomous Robot Navigation

COS Lecture 16 Autonomous Robot Navigation COS 495 - Lecture 16 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 05 SUBJECT NAME : Probability & Random Process SUBJECT CODE : MA6 MATERIAL NAME : University Questions MATERIAL CODE : JM08AM004 REGULATION : R008 UPDATED ON : Nov-Dec 04 (Scan

More information

Modeling and state estimation Examples State estimation Probabilities Bayes filter Particle filter. Modeling. CSC752 Autonomous Robotic Systems

Modeling and state estimation Examples State estimation Probabilities Bayes filter Particle filter. Modeling. CSC752 Autonomous Robotic Systems Modeling CSC752 Autonomous Robotic Systems Ubbo Visser Department of Computer Science University of Miami February 21, 2017 Outline 1 Modeling and state estimation 2 Examples 3 State estimation 4 Probabilities

More information

EE 565: Position, Navigation, and Timing

EE 565: Position, Navigation, and Timing EE 565: Position, Navigation, and Timing Kalman Filtering Example Aly El-Osery Kevin Wedeward Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA In Collaboration with Stephen Bruder

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters. Lecturer: Drew Bagnell Scribe:Greydon Foil 1

Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters. Lecturer: Drew Bagnell Scribe:Greydon Foil 1 Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters Lecturer: Drew Bagnell Scribe:Greydon Foil 1 1 Gauss Markov Model Consider X 1, X 2,...X t, X t+1 to be

More information

Observability and state estimation

Observability and state estimation EE263 Autumn 2015 S Boyd and S Lall Observability and state estimation state estimation discrete-time observability observability controllability duality observers for noiseless case continuous-time observability

More information

Lecture 16: State Space Model and Kalman Filter Bus 41910, Time Series Analysis, Mr. R. Tsay

Lecture 16: State Space Model and Kalman Filter Bus 41910, Time Series Analysis, Mr. R. Tsay Lecture 6: State Space Model and Kalman Filter Bus 490, Time Series Analysis, Mr R Tsay A state space model consists of two equations: S t+ F S t + Ge t+, () Z t HS t + ɛ t (2) where S t is a state vector

More information

Data assimilation with and without a model

Data assimilation with and without a model Data assimilation with and without a model Tyrus Berry George Mason University NJIT Feb. 28, 2017 Postdoc supported by NSF This work is in collaboration with: Tim Sauer, GMU Franz Hamilton, Postdoc, NCSU

More information

PROBABILISTIC REASONING OVER TIME

PROBABILISTIC REASONING OVER TIME PROBABILISTIC REASONING OVER TIME In which we try to interpret the present, understand the past, and perhaps predict the future, even when very little is crystal clear. Outline Time and uncertainty Inference:

More information

E190Q Lecture 11 Autonomous Robot Navigation

E190Q Lecture 11 Autonomous Robot Navigation E190Q Lecture 11 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 013 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

More information

Incorporation of Time Delayed Measurements in a. Discrete-time Kalman Filter. Thomas Dall Larsen, Nils A. Andersen & Ole Ravn

Incorporation of Time Delayed Measurements in a. Discrete-time Kalman Filter. Thomas Dall Larsen, Nils A. Andersen & Ole Ravn Incorporation of Time Delayed Measurements in a Discrete-time Kalman Filter Thomas Dall Larsen, Nils A. Andersen & Ole Ravn Department of Automation, Technical University of Denmark Building 326, DK-2800

More information

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein Kalman filtering and friends: Inference in time series models Herke van Hoof slides mostly by Michael Rubinstein Problem overview Goal Estimate most probable state at time k using measurement up to time

More information

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018 Linear System Theory Wonhee Kim Lecture 1 March 7, 2018 1 / 22 Overview Course Information Prerequisites Course Outline What is Control Engineering? Examples of Control Systems Structure of Control Systems

More information

L06. LINEAR KALMAN FILTERS. NA568 Mobile Robotics: Methods & Algorithms

L06. LINEAR KALMAN FILTERS. NA568 Mobile Robotics: Methods & Algorithms L06. LINEAR KALMAN FILTERS NA568 Mobile Robotics: Methods & Algorithms 2 PS2 is out! Landmark-based Localization: EKF, UKF, PF Today s Lecture Minimum Mean Square Error (MMSE) Linear Kalman Filter Gaussian

More information

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Many slides adapted from Jur van den Berg Outline POMDPs Separation Principle / Certainty Equivalence Locally Optimal

More information

Online monitoring of MPC disturbance models using closed-loop data

Online monitoring of MPC disturbance models using closed-loop data Online monitoring of MPC disturbance models using closed-loop data Brian J. Odelson and James B. Rawlings Department of Chemical Engineering University of Wisconsin-Madison Online Optimization Based Identification

More information

Pure Random process Pure Random Process or White Noise Process: is a random process {X t, t 0} which has: { σ 2 if k = 0 0 if k 0

Pure Random process Pure Random Process or White Noise Process: is a random process {X t, t 0} which has: { σ 2 if k = 0 0 if k 0 MODULE 9: STATIONARY PROCESSES 7 Lecture 2 Autoregressive Processes 1 Moving Average Process Pure Random process Pure Random Process or White Noise Process: is a random process X t, t 0} which has: E[X

More information

Analog Signals and Systems and their properties

Analog Signals and Systems and their properties Analog Signals and Systems and their properties Main Course Objective: Recall course objectives Understand the fundamentals of systems/signals interaction (know how systems can transform or filter signals)

More information

x 1. x n i + x 2 j (x 1, x 2, x 3 ) = x 1 j + x 3

x 1. x n i + x 2 j (x 1, x 2, x 3 ) = x 1 j + x 3 Version: 4/1/06. Note: These notes are mostly from my 5B course, with the addition of the part on components and projections. Look them over to make sure that we are on the same page as regards inner-products,

More information

= m(0) + 4e 2 ( 3e 2 ) 2e 2, 1 (2k + k 2 ) dt. m(0) = u + R 1 B T P x 2 R dt. u + R 1 B T P y 2 R dt +

= m(0) + 4e 2 ( 3e 2 ) 2e 2, 1 (2k + k 2 ) dt. m(0) = u + R 1 B T P x 2 R dt. u + R 1 B T P y 2 R dt + ECE 553, Spring 8 Posted: May nd, 8 Problem Set #7 Solution Solutions: 1. The optimal controller is still the one given in the solution to the Problem 6 in Homework #5: u (x, t) = p(t)x k(t), t. The minimum

More information

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Financial Econometrics / 49

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Financial Econometrics / 49 State-space Model Eduardo Rossi University of Pavia November 2013 Rossi State-space Model Financial Econometrics - 2013 1 / 49 Outline 1 Introduction 2 The Kalman filter 3 Forecast errors 4 State smoothing

More information

Optimal Control and Estimation MAE 546, Princeton University Robert Stengel, Preliminaries!

Optimal Control and Estimation MAE 546, Princeton University Robert Stengel, Preliminaries! Optimal Control and Estimation MAE 546, Princeton University Robert Stengel, 2017 Copyright 2017 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/mae546.html

More information

A Study of the Kalman Filter applied to Visual Tracking

A Study of the Kalman Filter applied to Visual Tracking A Study of the Kalman Filter applied to Visual Tracking Nathan Funk University of Alberta Project for CMPUT 652 December 7, 2003 Abstract This project analyzes the applicability of the Kalman filter as

More information

Optimal Control and Estimation MAE 546, Princeton University Robert Stengel, Preliminaries!

Optimal Control and Estimation MAE 546, Princeton University Robert Stengel, Preliminaries! Optimal Control and Estimation MAE 546, Princeton University Robert Stengel, 2018 Copyright 2018 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/mae546.html

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 08 SUBJECT NAME : Probability & Random Processes SUBJECT CODE : MA645 MATERIAL NAME : University Questions REGULATION : R03 UPDATED ON : November 07 (Upto N/D 07 Q.P) (Scan the

More information

X t = a t + r t, (7.1)

X t = a t + r t, (7.1) Chapter 7 State Space Models 71 Introduction State Space models, developed over the past 10 20 years, are alternative models for time series They include both the ARIMA models of Chapters 3 6 and the Classical

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 6.2: Kalman Filter Jürgen Sturm Technische Universität München Motivation Bayes filter is a useful tool for state

More information

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control Chapter 3 LQ, LQG and Control System H 2 Design Overview LQ optimization state feedback LQG optimization output feedback H 2 optimization non-stochastic version of LQG Application to feedback system design

More information

State Observers and the Kalman filter

State Observers and the Kalman filter Modelling and Control of Dynamic Systems State Observers and the Kalman filter Prof. Oreste S. Bursi University of Trento Page 1 Feedback System State variable feedback system: Control feedback law:u =

More information

State Estimation and Motion Tracking for Spatially Diverse VLC Networks

State Estimation and Motion Tracking for Spatially Diverse VLC Networks State Estimation and Motion Tracking for Spatially Diverse VLC Networks GLOBECOM Optical Wireless Communications Workshop December 3, 2012 Anaheim, CA Michael Rahaim mrahaim@bu.edu Gregary Prince gbprince@bu.edu

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Lecture 5 Linear Quadratic Stochastic Control

Lecture 5 Linear Quadratic Stochastic Control EE363 Winter 2008-09 Lecture 5 Linear Quadratic Stochastic Control linear-quadratic stochastic control problem solution via dynamic programming 5 1 Linear stochastic system linear dynamical system, over

More information

ON ENTRY-WISE ORGANIZED FILTERING. E.A. Suzdaleva

ON ENTRY-WISE ORGANIZED FILTERING. E.A. Suzdaleva ON ENTRY-WISE ORGANIZED FILTERING E.A. Suzdaleva Department of Adaptive Systems Institute of Information Theory and Automation of the Academy of Sciences of the Czech Republic Pod vodárenskou věží 4, 18208

More information

EL2520 Control Theory and Practice

EL2520 Control Theory and Practice EL2520 Control Theory and Practice Lecture 8: Linear quadratic control Mikael Johansson School of Electrical Engineering KTH, Stockholm, Sweden Linear quadratic control Allows to compute the controller

More information

Bearings-Only Tracking in Modified Polar Coordinate System : Initialization of the Particle Filter and Posterior Cramér-Rao Bound

Bearings-Only Tracking in Modified Polar Coordinate System : Initialization of the Particle Filter and Posterior Cramér-Rao Bound Bearings-Only Tracking in Modified Polar Coordinate System : Initialization of the Particle Filter and Posterior Cramér-Rao Bound Thomas Brehard (IRISA/CNRS), Jean-Pierre Le Cadre (IRISA/CNRS). Journée

More information

State Estimation of Linear and Nonlinear Dynamic Systems

State Estimation of Linear and Nonlinear Dynamic Systems State Estimation of Linear and Nonlinear Dynamic Systems Part I: Linear Systems with Gaussian Noise James B. Rawlings and Fernando V. Lima Department of Chemical and Biological Engineering University of

More information

RECURSIVE ESTIMATION AND KALMAN FILTERING

RECURSIVE ESTIMATION AND KALMAN FILTERING Chapter 3 RECURSIVE ESTIMATION AND KALMAN FILTERING 3. The Discrete Time Kalman Filter Consider the following estimation problem. Given the stochastic system with x k+ = Ax k + Gw k (3.) y k = Cx k + Hv

More information

TMA4285 Time Series Models Exam December

TMA4285 Time Series Models Exam December Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA485 Time Series Models Solution Oppgave a) A process {z t } is invertible if it can be represented as an A( ) process, z

More information

unit; 1m The ONJUKU COAST Total number of nodes; 600 Total nimber of elements; 1097 Onjuku Port 5 Iwawada Port No.5 No.2 No.3 No.4 No.

unit; 1m The ONJUKU COAST Total number of nodes; 600 Total nimber of elements; 1097 Onjuku Port 5 Iwawada Port No.5 No.2 No.3 No.4 No. Estimation of Tidal Currents by Kalman Filter with FEM Using Parallel Computing Naeko TAKAHASHI Abstract The purpose of this research is to estimate of tidal currents using Kalman Filter combined with

More information

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53 State-space Model Eduardo Rossi University of Pavia November 2014 Rossi State-space Model Fin. Econometrics - 2014 1 / 53 Outline 1 Motivation 2 Introduction 3 The Kalman filter 4 Forecast errors 5 State

More information

Lecture 5 Least-squares

Lecture 5 Least-squares EE263 Autumn 2008-09 Stephen Boyd Lecture 5 Least-squares least-squares (approximate) solution of overdetermined equations projection and orthogonality principle least-squares estimation BLUE property

More information

Sparsity in system identification and data-driven control

Sparsity in system identification and data-driven control 1 / 40 Sparsity in system identification and data-driven control Ivan Markovsky This signal is not sparse in the "time domain" 2 / 40 But it is sparse in the "frequency domain" (it is weighted sum of six

More information

Proton Therapy: 3D Reconstructions from 2D Images

Proton Therapy: 3D Reconstructions from 2D Images Proton Therapy: 3D Reconstructions from 2D Images Ben Herbst Department of Applied Mathematics University of Stellenbosch email: herbst@sun.ac.za Colorado School of Mines 16 September 2005 2 Collaborators

More information

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011 UCSD ECE53 Handout #40 Prof. Young-Han Kim Thursday, May 9, 04 Homework Set #8 Due: Thursday, June 5, 0. Discrete-time Wiener process. Let Z n, n 0 be a discrete time white Gaussian noise (WGN) process,

More information

Statistics 910, #15 1. Kalman Filter

Statistics 910, #15 1. Kalman Filter Statistics 910, #15 1 Overview 1. Summary of Kalman filter 2. Derivations 3. ARMA likelihoods 4. Recursions for the variance Kalman Filter Summary of Kalman filter Simplifications To make the derivations

More information

A Tutorial on Recursive methods in Linear Least Squares Problems

A Tutorial on Recursive methods in Linear Least Squares Problems A Tutorial on Recursive methods in Linear Least Squares Problems by Arvind Yedla 1 Introduction This tutorial motivates the use of Recursive Methods in Linear Least Squares problems, specifically Recursive

More information

Time Series Analysis

Time Series Analysis Time Series Analysis Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of todays lecture Descriptions of (deterministic) linear systems. Chapter 4: Linear

More information

A Crash Course on Kalman Filtering

A Crash Course on Kalman Filtering A Crash Course on Kalman Filtering Dan Simon Cleveland State University Fall 2014 1 / 64 Outline Linear Systems Probability State Means and Covariances Least Squares Estimation The Kalman Filter Unknown

More information

Lecture Notes 4 Vector Detection and Estimation. Vector Detection Reconstruction Problem Detection for Vector AGN Channel

Lecture Notes 4 Vector Detection and Estimation. Vector Detection Reconstruction Problem Detection for Vector AGN Channel Lecture Notes 4 Vector Detection and Estimation Vector Detection Reconstruction Problem Detection for Vector AGN Channel Vector Linear Estimation Linear Innovation Sequence Kalman Filter EE 278B: Random

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

State Estimation using Moving Horizon Estimation and Particle Filtering

State Estimation using Moving Horizon Estimation and Particle Filtering State Estimation using Moving Horizon Estimation and Particle Filtering James B. Rawlings Department of Chemical and Biological Engineering UW Math Probability Seminar Spring 2009 Rawlings MHE & PF 1 /

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Lecture 9. Introduction to Kalman Filtering. Linear Quadratic Gaussian Control (LQG) G. Hovland 2004

Lecture 9. Introduction to Kalman Filtering. Linear Quadratic Gaussian Control (LQG) G. Hovland 2004 MER42 Advanced Control Lecture 9 Introduction to Kalman Filtering Linear Quadratic Gaussian Control (LQG) G. Hovland 24 Announcement No tutorials on hursday mornings 8-9am I will be present in all practical

More information

Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters

Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 204 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012

MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012 MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012 Unit Outline Introduction to the course: Course goals, assessment, etc... What is Control Theory A bit of jargon,

More information

Lecture 7: Optimal Smoothing

Lecture 7: Optimal Smoothing Department of Biomedical Engineering and Computational Science Aalto University March 17, 2011 Contents 1 What is Optimal Smoothing? 2 Bayesian Optimal Smoothing Equations 3 Rauch-Tung-Striebel Smoother

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Sachin Patil Guest Lecture: CS287 Advanced Robotics Slides adapted from Pieter Abbeel, Alex Lee Outline Introduction to POMDPs Locally Optimal Solutions

More information

Manipulators. Robotics. Outline. Non-holonomic robots. Sensors. Mobile Robots

Manipulators. Robotics. Outline. Non-holonomic robots. Sensors. Mobile Robots Manipulators P obotics Configuration of robot specified by 6 numbers 6 degrees of freedom (DOF) 6 is the minimum number required to position end-effector arbitrarily. For dynamical systems, add velocity

More information

Lecture 9. Time series prediction

Lecture 9. Time series prediction Lecture 9 Time series prediction Prediction is about function fitting To predict we need to model There are a bewildering number of models for data we look at some of the major approaches in this lecture

More information

1 Why Recursions for Estimation?

1 Why Recursions for Estimation? Avd. Matematisk statistik TIDSSERIEANALYS SF2945 ON KALMAN RECURSIONS FOR PREDICTION Timo Koski 1 Why Recursions for Estimation? In the preceding lectures of sf2945 we have been dealing with the various

More information

Sequential State Estimation (Crassidas and Junkins, Chapter 5)

Sequential State Estimation (Crassidas and Junkins, Chapter 5) Sequential State Estimation (Crassidas and Junkins, Chapter 5) Please read: 5.1, 5.3-5.6 5.3 The Discrete-Time Kalman Filter The discrete-time Kalman filter is used when the dynamics and measurements are

More information

Summary of lecture 8. FIR Wiener filter: computed by solving a finite number of Wiener-Hopf equations, h(i)r yy (k i) = R sy (k); k = 0; : : : ; m

Summary of lecture 8. FIR Wiener filter: computed by solving a finite number of Wiener-Hopf equations, h(i)r yy (k i) = R sy (k); k = 0; : : : ; m Summar of lecture 8 FIR Wiener filter: computed b solving a finite number of Wiener-Hopf equations, mx i= h(i)r (k i) = R s (k); k = ; : : : ; m Whitening filter: A filter that removes the correlation

More information

5 Kalman filters. 5.1 Scalar Kalman filter. Unit delay Signal model. System model

5 Kalman filters. 5.1 Scalar Kalman filter. Unit delay Signal model. System model 5 Kalman filters 5.1 Scalar Kalman filter 5.1.1 Signal model System model {Y (n)} is an unobservable sequence which is described by the following state or system equation: Y (n) = h(n)y (n 1) + Z(n), n

More information

Problem 1: Ship Path-Following Control System (35%)

Problem 1: Ship Path-Following Control System (35%) Problem 1: Ship Path-Following Control System (35%) Consider the kinematic equations: Figure 1: NTNU s research vessel, R/V Gunnerus, and Nomoto model: T ṙ + r = Kδ (1) with T = 22.0 s and K = 0.1 s 1.

More information

State estimation and the Kalman filter

State estimation and the Kalman filter State estimation and the Kalman filter PhD, David Di Ruscio Telemark university college Department of Technology Systems and Control Engineering N-3914 Porsgrunn, Norway Fax: +47 35 57 52 50 Tel: +47 35

More information

Distributed Real-Time Electric Power Grid Event Detection and Dynamic Characterization

Distributed Real-Time Electric Power Grid Event Detection and Dynamic Characterization Distributed Real-Time Electric Power Grid Event Detection and Dynamic Characterization Raymond de Callafon, Charles H. Wells University of California, San Diego & OSIsoft CIGRE Grid of the Future Symposium,

More information

CS491/691: Introduction to Aerial Robotics

CS491/691: Introduction to Aerial Robotics CS491/691: Introduction to Aerial Robotics Topic: State Estimation Dr. Kostas Alexis (CSE) World state (or system state) Belief state: Our belief/estimate of the world state World state: Real state of

More information

Robot Localization and Kalman Filters

Robot Localization and Kalman Filters Robot Localization and Kalman Filters Rudy Negenborn rudy@negenborn.net August 26, 2003 Outline Robot Localization Probabilistic Localization Kalman Filters Kalman Localization Kalman Localization with

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems. CDS 110b

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems. CDS 110b CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems CDS 110b R. M. Murray Kalman Filters 25 January 2006 Reading: This set of lectures provides a brief introduction to Kalman filtering, following

More information

ECE 636: Systems identification

ECE 636: Systems identification ECE 636: Systems identification Lectures 3 4 Random variables/signals (continued) Random/stochastic vectors Random signals and linear systems Random signals in the frequency domain υ ε x S z + y Experimental

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: ony Jebara Kalman Filtering Linear Dynamical Systems and Kalman Filtering Structure from Motion Linear Dynamical Systems Audio: x=pitch y=acoustic waveform Vision: x=object

More information

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XIII - Nonlinear Observers - A. J. Krener

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XIII - Nonlinear Observers - A. J. Krener NONLINEAR OBSERVERS A. J. Krener University of California, Davis, CA, USA Keywords: nonlinear observer, state estimation, nonlinear filtering, observability, high gain observers, minimum energy estimation,

More information

(q 1)t. Control theory lends itself well such unification, as the structure and behavior of discrete control

(q 1)t. Control theory lends itself well such unification, as the structure and behavior of discrete control My general research area is the study of differential and difference equations. Currently I am working in an emerging field in dynamical systems. I would describe my work as a cross between the theoretical

More information

ENSC327 Communications Systems 19: Random Processes. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 19: Random Processes. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 19: Random Processes Jie Liang School of Engineering Science Simon Fraser University 1 Outline Random processes Stationary random processes Autocorrelation of random processes

More information