Sparsity in system identification and data-driven control

Size: px
Start display at page:

Download "Sparsity in system identification and data-driven control"

Transcription

1 1 / 40 Sparsity in system identification and data-driven control Ivan Markovsky

2 This signal is not sparse in the "time domain" 2 / 40

3 But it is sparse in the "frequency domain" (it is weighted sum of six damped sines) 3 / 40

4 Problem: find sparse representation (small number of basis signals) 4 / 40 existence representation approximation

5 System theory offers alternative methods based on low-rank approximation 5 / 40 y(1) y(2) y(3) y(2) y(3) y(4) rank of y(3) y(4) y(5) y(l) y(l + 1) y(l + 3)

6 6 / 40 Plan Sparse signals and linear-time invariant systems System identification as sparse approximation Solution methods and generalizations

7 Sum-of-damped-exponentials signals are solutions of linear constant coefficient ODE 7 / 40 y = α 1 exp z1 + + α n exp zn exp z (t) := z t p 0 y + p 1 σy + + p n σ n y = 0 (σy)(t) := y(t + 1) y = Cx, σx = Ax x(t) R n state

8 The solution set of linear constant coefficient ODE is linear time-invariant (LTI) system 8 / 40 n-th order autonomous LTI system B := {y = Cx σx = Ax, x(0) R n } dim(b) = n complexity of B L n LTI systems with order n

9 9 / 40 y B L n is constrained/structured/sparse belongs to n-dimensional subspace is linear combination of n signals described by 2n parameters

10 We assume that sparse representation exists, but we do not know the basis 10 / 40 classical definition of sparse signal y y has a few nonzero values (we don t know which ones) basis: unit vectors y B L n with n # of samples y is sum of a few damped sines (their frequencies and dampings are unknown) basis: damped complex exponentials

11 The assumption y B L n makes ill-posed problems well-posed 11 / 40 noise filtering given y = ȳ + ỹ, ỹ noise find ȳ true value forecasting given "past" samples ( y( t + 1),...,y(0) ) find "future" samples ( y(1),...,y(t) ) missing data estimation given samples y(t), t Tgiven find missing samples y(t), t Tgiven

12 Noise filtering: given y = ȳ + ỹ, find ȳ with prior knowledge ȳ B L n, ỹ N(0,νI) 12 / 40

13 Heuristic: smooth the data by low-pass filter 13 / 40

14 Optimal/Kalman filtering requires a model The best (but unrealistic) option is to use B 14 / 40

15 Kalman filtering using identified model B, (i.e., prior knowledge B L n ) 15 / 40

16 16 / 40 Summary the assumption y B L n imposes sparsity the basis is sum-of-damped-exponentials with unknown dampings and frequencies y B L n "regularizes" ill-posed problems

17 17 / 40 Plan Sparse signals and linear-time invariant systems System identification as sparse approximation Solution methods and generalizations

18 18 / 40 System identification is an inverse problem simulation B y given model B Ln and initial conditions find the response y B identification y B given response y and model class Ln find model B Ln that "fits well" y

19 19 / 40 "fits well" is often defined in stochastic setting assumption y = ȳ + ỹ where ȳ B L n is the true signal ỹ N(0,νI) is noise (zero mean white Gaussian) maximum likelihood estimator minimize over ŷ and B y ŷ subject to ŷ B L n "The noise model is just an alibi for determining the cost function." L. Ljung

20 Example: monthly airline passenger data fit by 6th order LTI model 20 / 40

21 21 / 40 How well a given model B fits the data y? error(y,b) := min ŷ B y ŷ likelihood of y, given B projection of y on B validation error identification problem: minimize over B Ln error(y,b)

22 The link between system identification and sparse approximation is low rank 22 / 40 y B L n y(1) y(2) y(t n) y(2) y(3) y(t n + 1) rank... n y(n + 1) y(n + 2) y(t ) Hankel structured matrix H n+1 (y)

23 LTI system identification is equivalent to Hankel structured low-rank approximation minimize over ŷ and B y ŷ subject to ŷ B L n minimize over ŷ y ŷ subject to rank ( H n+1 (ŷ) ) n 23 / 40

24 24 / 40 Summary system identification aims at a map y B the map is defined through optimization problem equivalent problem: Hankel low-rank approx. (impose sparsity on the singular values)

25 25 / 40 Plan Sparse signals and linear-time invariant systems System identification as sparse approximation Solution methods and generalizations

26 26 / 40 Three solution approaches: nuclear norm heuristic subspace methods local optimization

27 The nuclear norm heuristic induces sparsity on the singular values 27 / 40 rank: number of nonzero singular values : l 1 -norm of the singular values vector minimization of the nuclear norm tends to increase sparsity = reduce rank leads to a convex optimization problem

28 Nuclear norm minimization methods involve a hyper-parameter minimize over ŷ y ŷ subject to H n+1 (ŷ) γ minimize over ŷ α y ŷ + H n+1 (ŷ) γ/α determines the rank of H n+1 (ŷ) we want α opt = max{α rank ( H n+1 (ŷ) ) n} α opt can be found by bijection 28 / 40

29 Originally the subspace identification methods were developed for exact data 29 / 40 L n class of LTI systems of order n state space representation B := {y = Cx σx = Ax, x(0) R n } exact identification problem y (A, C) given y B Ln exact data find (A,C) model parameters

30 Two steps solution method 1. rank revealing factorization C CA [ H L (y) =. CA L+1 } {{ } O ] x(0) Ax(0) A 2 x(0) A T L x(0) }{{} C 2. shift equation C CA. CA L 1 CA A = CA 2. CA L O(1:L 1,:)A = O(2:L,:) T = 2n + 1 samples suffice, L [n + 1,T n] 30 / 40

31 For noisy data, subspace methods involve unstructured low-rank approximation 31 / 40 do steps 1 and 2 approximately: 1. singular value decomposition of H L (y) 2. least squares solution of the shift equation L is hyper-parameter that affects the solution B

32 32 / 40 Local optimization using variable projections "double" optimization min B L n ( min ŷ B ) y ŷ "inner" minimization "outer" minimization error(y, B) = Π By min B L n error(y, B)

33 Representation of an LTI system as kernel of polynomial operator 33 / 40 p 0 y + p 1 σy + + p n σ n y = 0 (σy)(t) := y(t + 1) p(σ)y = 0, where p(z) = p 0 + p 1 z + + p n z n ] model parameter p = [p 0 p 1 p n

34 34 / 40 Parameter optimization problem optimization over a manifold min error(y, B) B L n min error(y,p) p = optimization over Euclidean spaces [ ] p = x 1 Π p 0 Π permutation Π fixed total least-squares Π can be changed during the optimization

35 35 / 40 Three generalizations systems with inputs missing data estimation nonlinear system identification

36 36 / 40 Dealing with missing data minimize over ŷ y ŷ v subject to rank ( H n+1 (ŷ) ) n weighted 2-norm approximation y ŷ v := k,t v k (t) ( y k (t) ŷ k (t) ) 2 with element-wise weights v k (t) (0, ) if y k (t) is noisy approximate y k (t) v k (t) = 0 if y k (t) is missing interpolate y k (t) v k (t) = if y k (t) is exact ŷ k (t) = y k (t)

37 Example: piecewise cubic interpolation vs LTI identification on the "airline passenger data" 37 / 40

38 38 / 40 Conclusion y is response of LTI system y sparse LTI identification low-rank approx. solution methods convex relaxation (nuclear norm) subspace (SVD + least squares) local optimization

39 39 / 40 DFT analysis suffers from the "leakage" 0 0

40 Gridding the frequency axis and using l 1 -norm minimization has limited resulution 40 / 40 given signal y select "dictionary" Φ(t) = [ ] sin(ω 1 t) sin(ω N t) minimize over a a 1 subject to y = Φa

Data-driven signal processing

Data-driven signal processing 1 / 35 Data-driven signal processing Ivan Markovsky 2 / 35 Modern signal processing is model-based 1. system identification prior information model structure 2. model-based design identification data parameter

More information

Using Hankel structured low-rank approximation for sparse signal recovery

Using Hankel structured low-rank approximation for sparse signal recovery Using Hankel structured low-rank approximation for sparse signal recovery Ivan Markovsky 1 and Pier Luigi Dragotti 2 Department ELEC Vrije Universiteit Brussel (VUB) Pleinlaan 2, Building K, B-1050 Brussels,

More information

Dynamic measurement: application of system identification in metrology

Dynamic measurement: application of system identification in metrology 1 / 25 Dynamic measurement: application of system identification in metrology Ivan Markovsky Dynamic measurement takes into account the dynamical properties of the sensor 2 / 25 model of sensor as dynamical

More information

Two well known examples. Applications of structured low-rank approximation. Approximate realisation = Model reduction. System realisation

Two well known examples. Applications of structured low-rank approximation. Approximate realisation = Model reduction. System realisation Two well known examples Applications of structured low-rank approximation Ivan Markovsky System realisation Discrete deconvolution School of Electronics and Computer Science University of Southampton The

More information

A software package for system identification in the behavioral setting

A software package for system identification in the behavioral setting 1 / 20 A software package for system identification in the behavioral setting Ivan Markovsky Vrije Universiteit Brussel 2 / 20 Outline Introduction: system identification in the behavioral setting Solution

More information

ELEC 3035, Lecture 3: Autonomous systems Ivan Markovsky

ELEC 3035, Lecture 3: Autonomous systems Ivan Markovsky ELEC 3035, Lecture 3: Autonomous systems Ivan Markovsky Equilibrium points and linearization Eigenvalue decomposition and modal form State transition matrix and matrix exponential Stability ELEC 3035 (Part

More information

Sum-of-exponentials modeling via Hankel low-rank approximation with palindromic kernel structure

Sum-of-exponentials modeling via Hankel low-rank approximation with palindromic kernel structure Sum-of-exponentials modeling via Hankel low-rank approximation with palindromic kernel structure Ivan Markovsky and Dieter Toon Verbeke Vrije Universiteit Brussel Pleinlaan 2, 1050 Brussels, Belgium Email:

More information

A structured low-rank approximation approach to system identification. Ivan Markovsky

A structured low-rank approximation approach to system identification. Ivan Markovsky 1 / 35 A structured low-rank approximation approach to system identification Ivan Markovsky Main message: system identification SLRA minimize over B dist(a,b) subject to rank(b) r and B structured (SLRA)

More information

ELEC system identification workshop. Behavioral approach

ELEC system identification workshop. Behavioral approach 1 / 33 ELEC system identification workshop Behavioral approach Ivan Markovsky 2 / 33 The course consists of lectures and exercises Session 1: behavioral approach to data modeling Session 2: subspace identification

More information

Chapter 3. Tohru Katayama

Chapter 3. Tohru Katayama Subspace Methods for System Identification Chapter 3 Tohru Katayama Subspace Methods Reading Group UofA, Edmonton Barnabás Póczos May 14, 2009 Preliminaries before Linear Dynamical Systems Hidden Markov

More information

ELEC system identification workshop. Subspace methods

ELEC system identification workshop. Subspace methods 1 / 33 ELEC system identification workshop Subspace methods Ivan Markovsky 2 / 33 Plan 1. Behavioral approach 2. Subspace methods 3. Optimization methods 3 / 33 Outline Exact modeling Algorithms 4 / 33

More information

Low-rank approximation and its applications for data fitting

Low-rank approximation and its applications for data fitting Low-rank approximation and its applications for data fitting Ivan Markovsky K.U.Leuven, ESAT-SISTA A line fitting example b 6 4 2 0 data points Classical problem: Fit the points d 1 = [ 0 6 ], d2 = [ 1

More information

Autonomous system = system without inputs

Autonomous system = system without inputs Autonomous system = system without inputs State space representation B(A,C) = {y there is x, such that σx = Ax, y = Cx } x is the state, n := dim(x) is the state dimension, y is the output Polynomial representation

More information

Introduction to Sparsity in Signal Processing

Introduction to Sparsity in Signal Processing 1 Introduction to Sparsity in Signal Processing Ivan Selesnick Polytechnic Institute of New York University Brooklyn, New York selesi@poly.edu 212 2 Under-determined linear equations Consider a system

More information

FINITE-DIMENSIONAL LINEAR ALGEBRA

FINITE-DIMENSIONAL LINEAR ALGEBRA DISCRETE MATHEMATICS AND ITS APPLICATIONS Series Editor KENNETH H ROSEN FINITE-DIMENSIONAL LINEAR ALGEBRA Mark S Gockenbach Michigan Technological University Houghton, USA CRC Press Taylor & Francis Croup

More information

Computational Methods. Eigenvalues and Singular Values

Computational Methods. Eigenvalues and Singular Values Computational Methods Eigenvalues and Singular Values Manfred Huber 2010 1 Eigenvalues and Singular Values Eigenvalues and singular values describe important aspects of transformations and of data relations

More information

Review of some mathematical tools

Review of some mathematical tools MATHEMATICAL FOUNDATIONS OF SIGNAL PROCESSING Fall 2016 Benjamín Béjar Haro, Mihailo Kolundžija, Reza Parhizkar, Adam Scholefield Teaching assistants: Golnoosh Elhami, Hanjie Pan Review of some mathematical

More information

System Identification by Nuclear Norm Minimization

System Identification by Nuclear Norm Minimization Dept. of Information Engineering University of Pisa (Italy) System Identification by Nuclear Norm Minimization eng. Sergio Grammatico grammatico.sergio@gmail.com Class of Identification of Uncertain Systems

More information

Subspace Identification

Subspace Identification Chapter 10 Subspace Identification Given observations of m 1 input signals, and p 1 signals resulting from those when fed into a dynamical system under study, can we estimate the internal dynamics regulating

More information

Introduction to Sparsity in Signal Processing

Introduction to Sparsity in Signal Processing 1 Introduction to Sparsity in Signal Processing Ivan Selesnick Polytechnic Institute of New York University Brooklyn, New York selesi@poly.edu 212 2 Under-determined linear equations Consider a system

More information

Filtering via Rank-Reduced Hankel Matrix CEE 690, ME 555 System Identification Fall, 2013 c H.P. Gavin, September 24, 2013

Filtering via Rank-Reduced Hankel Matrix CEE 690, ME 555 System Identification Fall, 2013 c H.P. Gavin, September 24, 2013 Filtering via Rank-Reduced Hankel Matrix CEE 690, ME 555 System Identification Fall, 2013 c H.P. Gavin, September 24, 2013 This method goes by the terms Structured Total Least Squares and Singular Spectrum

More information

A missing data approach to data-driven filtering and control

A missing data approach to data-driven filtering and control 1 A missing data approach to data-driven filtering and control Ivan Markovsky Abstract In filtering, control, and other mathematical engineering areas it is common to use a model-based approach, which

More information

Accelerated Block-Coordinate Relaxation for Regularized Optimization

Accelerated Block-Coordinate Relaxation for Regularized Optimization Accelerated Block-Coordinate Relaxation for Regularized Optimization Stephen J. Wright Computer Sciences University of Wisconsin, Madison October 09, 2012 Problem descriptions Consider where f is smooth

More information

Structured matrix factorizations. Example: Eigenfaces

Structured matrix factorizations. Example: Eigenfaces Structured matrix factorizations Example: Eigenfaces An extremely large variety of interesting and important problems in machine learning can be formulated as: Given a matrix, find a matrix and a matrix

More information

Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation

Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation UIUC CSL Mar. 24 Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation Yuejie Chi Department of ECE and BMI Ohio State University Joint work with Yuxin Chen (Stanford).

More information

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS First the X, then the AR, finally the MA Jan C. Willems, K.U. Leuven Workshop on Observation and Estimation Ben Gurion University, July 3, 2004 p./2 Joint

More information

Optimization-based sparse recovery: Compressed sensing vs. super-resolution

Optimization-based sparse recovery: Compressed sensing vs. super-resolution Optimization-based sparse recovery: Compressed sensing vs. super-resolution Carlos Fernandez-Granda, Google Computational Photography and Intelligent Cameras, IPAM 2/5/2014 This work was supported by a

More information

Sparse linear models

Sparse linear models Sparse linear models Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 2/22/2016 Introduction Linear transforms Frequency representation Short-time

More information

Optimization on the Grassmann manifold: a case study

Optimization on the Grassmann manifold: a case study Optimization on the Grassmann manifold: a case study Konstantin Usevich and Ivan Markovsky Department ELEC, Vrije Universiteit Brussel 28 March 2013 32nd Benelux Meeting on Systems and Control, Houffalize,

More information

Geometric Modeling Summer Semester 2012 Linear Algebra & Function Spaces

Geometric Modeling Summer Semester 2012 Linear Algebra & Function Spaces Geometric Modeling Summer Semester 2012 Linear Algebra & Function Spaces (Recap) Announcement Room change: On Thursday, April 26th, room 024 is occupied. The lecture will be moved to room 021, E1 4 (the

More information

Lecture Notes 5: Multiresolution Analysis

Lecture Notes 5: Multiresolution Analysis Optimization-based data analysis Fall 2017 Lecture Notes 5: Multiresolution Analysis 1 Frames A frame is a generalization of an orthonormal basis. The inner products between the vectors in a frame and

More information

Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization

Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization Shuyang Ling Department of Mathematics, UC Davis Oct.18th, 2016 Shuyang Ling (UC Davis) 16w5136, Oaxaca, Mexico Oct.18th, 2016

More information

Improved initial approximation for errors-in-variables system identification

Improved initial approximation for errors-in-variables system identification Improved initial approximation for errors-in-variables system identification Konstantin Usevich Abstract Errors-in-variables system identification can be posed and solved as a Hankel structured low-rank

More information

Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm

Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm J. K. Pant, W.-S. Lu, and A. Antoniou University of Victoria August 25, 2011 Compressive Sensing 1 University

More information

Statistical Geometry Processing Winter Semester 2011/2012

Statistical Geometry Processing Winter Semester 2011/2012 Statistical Geometry Processing Winter Semester 2011/2012 Linear Algebra, Function Spaces & Inverse Problems Vector and Function Spaces 3 Vectors vectors are arrows in space classically: 2 or 3 dim. Euclidian

More information

Vector Space Concepts

Vector Space Concepts Vector Space Concepts ECE 174 Introduction to Linear & Nonlinear Optimization Ken Kreutz-Delgado ECE Department, UC San Diego Ken Kreutz-Delgado (UC San Diego) ECE 174 Fall 2016 1 / 25 Vector Space Theory

More information

Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

Three Generalizations of Compressed Sensing

Three Generalizations of Compressed Sensing Thomas Blumensath School of Mathematics The University of Southampton June, 2010 home prev next page Compressed Sensing and beyond y = Φx + e x R N or x C N x K is K-sparse and x x K 2 is small y R M or

More information

Realization and identification of autonomous linear periodically time-varying systems

Realization and identification of autonomous linear periodically time-varying systems Realization and identification of autonomous linear periodically time-varying systems Ivan Markovsky, Jan Goos, Konstantin Usevich, and Rik Pintelon Department ELEC, Vrije Universiteit Brussel, Pleinlaan

More information

Linear Models for Regression. Sargur Srihari

Linear Models for Regression. Sargur Srihari Linear Models for Regression Sargur srihari@cedar.buffalo.edu 1 Topics in Linear Regression What is regression? Polynomial Curve Fitting with Scalar input Linear Basis Function Models Maximum Likelihood

More information

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University PRINCIPAL COMPONENT ANALYSIS DIMENSIONALITY

More information

Towards a Mathematical Theory of Super-resolution

Towards a Mathematical Theory of Super-resolution Towards a Mathematical Theory of Super-resolution Carlos Fernandez-Granda www.stanford.edu/~cfgranda/ Information Theory Forum, Information Systems Laboratory, Stanford 10/18/2013 Acknowledgements This

More information

homogeneous 71 hyperplane 10 hyperplane 34 hyperplane 69 identity map 171 identity map 186 identity map 206 identity matrix 110 identity matrix 45

homogeneous 71 hyperplane 10 hyperplane 34 hyperplane 69 identity map 171 identity map 186 identity map 206 identity matrix 110 identity matrix 45 address 12 adjoint matrix 118 alternating 112 alternating 203 angle 159 angle 33 angle 60 area 120 associative 180 augmented matrix 11 axes 5 Axiom of Choice 153 basis 178 basis 210 basis 74 basis test

More information

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3.0 INTRODUCTION The purpose of this chapter is to introduce estimators shortly. More elaborated courses on System Identification, which are given

More information

Nonlinear Observers. Jaime A. Moreno. Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México

Nonlinear Observers. Jaime A. Moreno. Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México Nonlinear Observers Jaime A. Moreno JMorenoP@ii.unam.mx Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México XVI Congreso Latinoamericano de Control Automático October

More information

A Constraint Generation Approach to Learning Stable Linear Dynamical Systems

A Constraint Generation Approach to Learning Stable Linear Dynamical Systems A Constraint Generation Approach to Learning Stable Linear Dynamical Systems Sajid M. Siddiqi Byron Boots Geoffrey J. Gordon Carnegie Mellon University NIPS 2007 poster W22 steam Application: Dynamic Textures

More information

REGULARIZED STRUCTURED LOW-RANK APPROXIMATION WITH APPLICATIONS

REGULARIZED STRUCTURED LOW-RANK APPROXIMATION WITH APPLICATIONS REGULARIZED STRUCTURED LOW-RANK APPROXIMATION WITH APPLICATIONS MARIYA ISHTEVA, KONSTANTIN USEVICH, AND IVAN MARKOVSKY Abstract. We consider the problem of approximating an affinely structured matrix,

More information

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

4 Bias-Variance for Ridge Regression (24 points)

4 Bias-Variance for Ridge Regression (24 points) Implement Ridge Regression with λ = 0.00001. Plot the Squared Euclidean test error for the following values of k (the dimensions you reduce to): k = {0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500,

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

Regularizing inverse problems. Damping and smoothing and choosing...

Regularizing inverse problems. Damping and smoothing and choosing... Regularizing inverse problems Damping and smoothing and choosing... 141 Regularization The idea behind SVD is to limit the degree of freedom in the model and fit the data to an acceptable level. Retain

More information

A6523 Modeling, Inference, and Mining Jim Cordes, Cornell University

A6523 Modeling, Inference, and Mining Jim Cordes, Cornell University A6523 Modeling, Inference, and Mining Jim Cordes, Cornell University Lecture 19 Modeling Topics plan: Modeling (linear/non- linear least squares) Bayesian inference Bayesian approaches to spectral esbmabon;

More information

NON-LINEAR APPROXIMATION OF BAYESIAN UPDATE

NON-LINEAR APPROXIMATION OF BAYESIAN UPDATE tifica NON-LINEAR APPROXIMATION OF BAYESIAN UPDATE Alexander Litvinenko 1, Hermann G. Matthies 2, Elmar Zander 2 http://sri-uq.kaust.edu.sa/ 1 Extreme Computing Research Center, KAUST, 2 Institute of Scientific

More information

An Overview of Sparsity with Applications to Compression, Restoration, and Inverse Problems

An Overview of Sparsity with Applications to Compression, Restoration, and Inverse Problems An Overview of Sparsity with Applications to Compression, Restoration, and Inverse Problems Justin Romberg Georgia Tech, School of ECE ENS Winter School January 9, 2012 Lyon, France Applied and Computational

More information

ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

More information

Wavelet Footprints: Theory, Algorithms, and Applications

Wavelet Footprints: Theory, Algorithms, and Applications 1306 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 5, MAY 2003 Wavelet Footprints: Theory, Algorithms, and Applications Pier Luigi Dragotti, Member, IEEE, and Martin Vetterli, Fellow, IEEE Abstract

More information

Generalized Pencil Of Function Method

Generalized Pencil Of Function Method Generalized Pencil Of Function Method In recent times, the methodology of approximating a function by a sum of complex exponentials has found applications in many areas of electromagnetics For example

More information

arxiv: v1 [math.st] 1 Dec 2014

arxiv: v1 [math.st] 1 Dec 2014 HOW TO MONITOR AND MITIGATE STAIR-CASING IN L TREND FILTERING Cristian R. Rojas and Bo Wahlberg Department of Automatic Control and ACCESS Linnaeus Centre School of Electrical Engineering, KTH Royal Institute

More information

IDL Advanced Math & Stats Module

IDL Advanced Math & Stats Module IDL Advanced Math & Stats Module Regression List of Routines and Functions Multiple Linear Regression IMSL_REGRESSORS IMSL_MULTIREGRESS IMSL_MULTIPREDICT Generates regressors for a general linear model.

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture State space models, 1st part: Model: Sec. 10.1 The

More information

Linear Regression and Its Applications

Linear Regression and Its Applications Linear Regression and Its Applications Predrag Radivojac October 13, 2014 Given a data set D = {(x i, y i )} n the objective is to learn the relationship between features and the target. We usually start

More information

Sparse Approximation and Variable Selection

Sparse Approximation and Variable Selection Sparse Approximation and Variable Selection Lorenzo Rosasco 9.520 Class 07 February 26, 2007 About this class Goal To introduce the problem of variable selection, discuss its connection to sparse approximation

More information

LECTURE NOTE #11 PROF. ALAN YUILLE

LECTURE NOTE #11 PROF. ALAN YUILLE LECTURE NOTE #11 PROF. ALAN YUILLE 1. NonLinear Dimension Reduction Spectral Methods. The basic idea is to assume that the data lies on a manifold/surface in D-dimensional space, see figure (1) Perform

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Lecture 7: Matrix completion Yuejie Chi The Ohio State University Page 1 Reference Guaranteed Minimum-Rank Solutions of Linear

More information

Lecture 2. Linear Systems

Lecture 2. Linear Systems Lecture 2. Linear Systems Ivan Papusha CDS270 2: Mathematical Methods in Control and System Engineering April 6, 2015 1 / 31 Logistics hw1 due this Wed, Apr 8 hw due every Wed in class, or my mailbox on

More information

McGill University Department of Mathematics and Statistics. Ph.D. preliminary examination, PART A. PURE AND APPLIED MATHEMATICS Paper BETA

McGill University Department of Mathematics and Statistics. Ph.D. preliminary examination, PART A. PURE AND APPLIED MATHEMATICS Paper BETA McGill University Department of Mathematics and Statistics Ph.D. preliminary examination, PART A PURE AND APPLIED MATHEMATICS Paper BETA 17 August, 2018 1:00 p.m. - 5:00 p.m. INSTRUCTIONS: (i) This paper

More information

Least Squares with Examples in Signal Processing 1. 2 Overdetermined equations. 1 Notation. The sum of squares of x is denoted by x 2 2, i.e.

Least Squares with Examples in Signal Processing 1. 2 Overdetermined equations. 1 Notation. The sum of squares of x is denoted by x 2 2, i.e. Least Squares with Eamples in Signal Processing Ivan Selesnick March 7, 3 NYU-Poly These notes address (approimate) solutions to linear equations by least squares We deal with the easy case wherein the

More information

Higher-Order Singular Value Decomposition (HOSVD) for structured tensors

Higher-Order Singular Value Decomposition (HOSVD) for structured tensors Higher-Order Singular Value Decomposition (HOSVD) for structured tensors Definition and applications Rémy Boyer Laboratoire des Signaux et Système (L2S) Université Paris-Sud XI GDR ISIS, January 16, 2012

More information

Super-resolution via Convex Programming

Super-resolution via Convex Programming Super-resolution via Convex Programming Carlos Fernandez-Granda (Joint work with Emmanuel Candès) Structure and Randomness in System Identication and Learning, IPAM 1/17/2013 1/17/2013 1 / 44 Index 1 Motivation

More information

CSCI5654 (Linear Programming, Fall 2013) Lectures Lectures 10,11 Slide# 1

CSCI5654 (Linear Programming, Fall 2013) Lectures Lectures 10,11 Slide# 1 CSCI5654 (Linear Programming, Fall 2013) Lectures 10-12 Lectures 10,11 Slide# 1 Today s Lecture 1. Introduction to norms: L 1,L 2,L. 2. Casting absolute value and max operators. 3. Norm minimization problems.

More information

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28 Sparsity Models Tong Zhang Rutgers University T. Zhang (Rutgers) Sparsity Models 1 / 28 Topics Standard sparse regression model algorithms: convex relaxation and greedy algorithm sparse recovery analysis:

More information

Lesson 2: Analysis of time series

Lesson 2: Analysis of time series Lesson 2: Analysis of time series Time series Main aims of time series analysis choosing right model statistical testing forecast driving and optimalisation Problems in analysis of time series time problems

More information

CSC 576: Variants of Sparse Learning

CSC 576: Variants of Sparse Learning CSC 576: Variants of Sparse Learning Ji Liu Department of Computer Science, University of Rochester October 27, 205 Introduction Our previous note basically suggests using l norm to enforce sparsity in

More information

Preliminary Examination in Numerical Analysis

Preliminary Examination in Numerical Analysis Department of Applied Mathematics Preliminary Examination in Numerical Analysis August 7, 06, 0 am pm. Submit solutions to four (and no more) of the following six problems. Show all your work, and justify

More information

Applied Linear Algebra

Applied Linear Algebra Applied Linear Algebra Peter J. Olver School of Mathematics University of Minnesota Minneapolis, MN 55455 olver@math.umn.edu http://www.math.umn.edu/ olver Chehrzad Shakiban Department of Mathematics University

More information

Frequency-Domain Rank Reduction in Seismic Processing An Overview

Frequency-Domain Rank Reduction in Seismic Processing An Overview Frequency-Domain Rank Reduction in Seismic Processing An Overview Stewart Trickett Absolute Imaging Inc. Summary Over the last fifteen years, a new family of matrix rank reduction methods has been developed

More information

SPARSE signal representations have gained popularity in recent

SPARSE signal representations have gained popularity in recent 6958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011 Blind Compressed Sensing Sivan Gleichman and Yonina C. Eldar, Senior Member, IEEE Abstract The fundamental principle underlying

More information

Low-rank Promoting Transformations and Tensor Interpolation - Applications to Seismic Data Denoising

Low-rank Promoting Transformations and Tensor Interpolation - Applications to Seismic Data Denoising Low-rank Promoting Transformations and Tensor Interpolation - Applications to Seismic Data Denoising Curt Da Silva and Felix J. Herrmann 2 Dept. of Mathematics 2 Dept. of Earth and Ocean Sciences, University

More information

Spectral Algorithms I. Slides based on Spectral Mesh Processing Siggraph 2010 course

Spectral Algorithms I. Slides based on Spectral Mesh Processing Siggraph 2010 course Spectral Algorithms I Slides based on Spectral Mesh Processing Siggraph 2010 course Why Spectral? A different way to look at functions on a domain Why Spectral? Better representations lead to simpler solutions

More information

4. DATA ASSIMILATION FUNDAMENTALS

4. DATA ASSIMILATION FUNDAMENTALS 4. DATA ASSIMILATION FUNDAMENTALS... [the atmosphere] "is a chaotic system in which errors introduced into the system can grow with time... As a consequence, data assimilation is a struggle between chaotic

More information

Sparse and Low-Rank Matrix Decompositions

Sparse and Low-Rank Matrix Decompositions Forty-Seventh Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 30 - October 2, 2009 Sparse and Low-Rank Matrix Decompositions Venkat Chandrasekaran, Sujay Sanghavi, Pablo A. Parrilo,

More information

Lecture 19 Observability and state estimation

Lecture 19 Observability and state estimation EE263 Autumn 2007-08 Stephen Boyd Lecture 19 Observability and state estimation state estimation discrete-time observability observability controllability duality observers for noiseless case continuous-time

More information

IEOR 265 Lecture 3 Sparse Linear Regression

IEOR 265 Lecture 3 Sparse Linear Regression IOR 65 Lecture 3 Sparse Linear Regression 1 M Bound Recall from last lecture that the reason we are interested in complexity measures of sets is because of the following result, which is known as the M

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 014 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO July 14-16, 014 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

Geometric Modeling Summer Semester 2010 Mathematical Tools (1)

Geometric Modeling Summer Semester 2010 Mathematical Tools (1) Geometric Modeling Summer Semester 2010 Mathematical Tools (1) Recap: Linear Algebra Today... Topics: Mathematical Background Linear algebra Analysis & differential geometry Numerical techniques Geometric

More information

SIGNAL AND IMAGE RESTORATION: SOLVING

SIGNAL AND IMAGE RESTORATION: SOLVING 1 / 55 SIGNAL AND IMAGE RESTORATION: SOLVING ILL-POSED INVERSE PROBLEMS - ESTIMATING PARAMETERS Rosemary Renaut http://math.asu.edu/ rosie CORNELL MAY 10, 2013 2 / 55 Outline Background Parameter Estimation

More information

Control, Stabilization and Numerics for Partial Differential Equations

Control, Stabilization and Numerics for Partial Differential Equations Paris-Sud, Orsay, December 06 Control, Stabilization and Numerics for Partial Differential Equations Enrique Zuazua Universidad Autónoma 28049 Madrid, Spain enrique.zuazua@uam.es http://www.uam.es/enrique.zuazua

More information

The Inversion Problem: solving parameters inversion and assimilation problems

The Inversion Problem: solving parameters inversion and assimilation problems The Inversion Problem: solving parameters inversion and assimilation problems UE Numerical Methods Workshop Romain Brossier romain.brossier@univ-grenoble-alpes.fr ISTerre, Univ. Grenoble Alpes Master 08/09/2016

More information

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones http://www.mpia.de/homes/calj/mlpr_mpia2008.html 1 1 Last week... supervised and unsupervised methods need adaptive

More information

Spectral k-support Norm Regularization

Spectral k-support Norm Regularization Spectral k-support Norm Regularization Andrew McDonald Department of Computer Science, UCL (Joint work with Massimiliano Pontil and Dimitris Stamos) 25 March, 2015 1 / 19 Problem: Matrix Completion Goal:

More information

Fitting Linear Statistical Models to Data by Least Squares: Introduction

Fitting Linear Statistical Models to Data by Least Squares: Introduction Fitting Linear Statistical Models to Data by Least Squares: Introduction Radu Balan, Brian R. Hunt and C. David Levermore University of Maryland, College Park University of Maryland, College Park, MD Math

More information

Resolution of Singularities I

Resolution of Singularities I Resolution of Singularities I The Blow-Up Operation Will Pazner February 12, 2010 1. Set up. k := field of characteristic 0 Defn. Algebraic variety k n X := zeros of f 1,..., f k Pol Defn. Multiplicity

More information

Introduction Dual Representations Kernel Design RBF Linear Reg. GP Regression GP Classification Summary. Kernel Methods. Henrik I Christensen

Introduction Dual Representations Kernel Design RBF Linear Reg. GP Regression GP Classification Summary. Kernel Methods. Henrik I Christensen Kernel Methods Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I Christensen (RIM@GT) Kernel Methods 1 / 37 Outline

More information

Linear Regression (continued)

Linear Regression (continued) Linear Regression (continued) Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 6, 2017 1 / 39 Outline 1 Administration 2 Review of last lecture 3 Linear regression

More information

Provable Alternating Minimization Methods for Non-convex Optimization

Provable Alternating Minimization Methods for Non-convex Optimization Provable Alternating Minimization Methods for Non-convex Optimization Prateek Jain Microsoft Research, India Joint work with Praneeth Netrapalli, Sujay Sanghavi, Alekh Agarwal, Animashree Anandkumar, Rashish

More information

Preliminary Examination, Numerical Analysis, August 2016

Preliminary Examination, Numerical Analysis, August 2016 Preliminary Examination, Numerical Analysis, August 2016 Instructions: This exam is closed books and notes. The time allowed is three hours and you need to work on any three out of questions 1-4 and any

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 A cautionary tale Notes for 2016-10-05 You have been dropped on a desert island with a laptop with a magic battery of infinite life, a MATLAB license, and a complete lack of knowledge of basic geometry.

More information

Robustness of Principal Components

Robustness of Principal Components PCA for Clustering An objective of principal components analysis is to identify linear combinations of the original variables that are useful in accounting for the variation in those original variables.

More information

Lecture Notes 4 Vector Detection and Estimation. Vector Detection Reconstruction Problem Detection for Vector AGN Channel

Lecture Notes 4 Vector Detection and Estimation. Vector Detection Reconstruction Problem Detection for Vector AGN Channel Lecture Notes 4 Vector Detection and Estimation Vector Detection Reconstruction Problem Detection for Vector AGN Channel Vector Linear Estimation Linear Innovation Sequence Kalman Filter EE 278B: Random

More information

Cubic Splines; Bézier Curves

Cubic Splines; Bézier Curves Cubic Splines; Bézier Curves 1 Cubic Splines piecewise approximation with cubic polynomials conditions on the coefficients of the splines 2 Bézier Curves computer-aided design and manufacturing MCS 471

More information