TMA4240 Statistikk Autumn 2013

Size: px
Start display at page:

Download "TMA4240 Statistikk Autumn 2013"

Transcription

1 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5, blokk I Løsningsskisse Oppgave 1 We are looking at a randomly chosen night and define the following events: A = Anne is on duty, B = Bernt is on duty, C = Cecilie is on duty, D = a case of death occurs. And assume that every death happens naturally. a Venn diagram of the four events: C B A D Since only Anne, Bernt and Cecilie have night shifts, the events A, B and C will constitute a partition of the sample space, and we must have that P (A + P (B + P (C = 1. We also see this from the venn diagram. Since Bernt and Cecilie works equally frequently, P (B = P (C. Since Anne works twice as often as each of Bernt and Cecilie, P (A = 2 P (B = 2 P (C. We express everything by P (B. P (A + P (B + P (C = 1 2 P (B + P (B + P (B = 1 P (B =.25 Therefor we have that P (A =.5 P (B =.25 P (C =.25 ov5-lsf-e. oktober 213 Side 1

2 To calculate P (D we can use the law of total probability. We know that A, B, C is a partition of the sample space. P (D = P (D A + P (D B + P (D C = P (D A P (A + P (D B P (B + P (D C P (C =.6 ( =.6 The definition of independence gives that C and D are two independent events if and only if P (D C = P (D, which means that the additional information doesn t change the situation. We see from the calculations above that P (D C = P (D =.6, and C and D is therefore independent events. Intuitively the independence of C and D follows from the assumption of naturally caused deaths. b X is a stochastic variable which describes the amount of deaths happening on Cecilie s duties, out of a total of n = 1 natural deaths. Conditions for X being binomially distributed: We look at n = 1 dødsfall. For every death we check if Cecilie was on duty or not. The probability of Cecilie being on duty given that a death has occurred is P (C D = P (C =.25, and this probability is the same for all the n deaths. The n deaths are independent since they are natural (and we assume thus that contagious diseases or epidemics are not the causes. Under these 4 conditions X= amount of natural deaths at Cecilie s duties is binomially distributed with parameters n = 1 and p =.25. Therefore the probability distribution of X is given by f(x, ( n f(x = p x (1 p n x, x =, 1,..., n x The probability that or more out of 1 deaths at night time happens on Cecilie s duties, is most easily found by using the table (page 13 in the book of formulas, P (X = = 1 P (X 6 = =.4 Let Y be a stochastic variable which represents the amount of nurses among the 3 nurses, which experiences more than deaths on their duties out of a total of 1 deaths. Y will thus be binomially distributed with n = 3 and p =.4. The probability that at least one out of the 3 nurses experiences that or more out of 1 natural deaths happen on their duties, is given by P (Y 1. ( 3 P (Y 1 = 1 P (Y = = 1.4 (1.4 3 = = 1.3 =. ov5-lsf-e. oktober 213 Side 2

3 Even if there is a small probability (only.4 that there is out of 1 deaths occurring at Cecilie s duties, there is a large probability ( percent that at least out of 1 deaths can happen on the duty of any of the nurses in norway working the same type of position as Cecilie. These observations does not strengthen the suspicion towards Cecilie. Analogy: Every week there is (usually someone who achieves right numbers in Lotto, even if this has a remarkably low probability for each Lotto-player. Oppgave 2 X and Y are independent Poisson distributed stochastic variables, X p(x;5 and Y p(y;1. From table A.2 we find P (X 5 = 5 x= p(x; 5 =.616 and P (X 3 X 5 = P (X 3 X 5 P (X 5 = P (X 3 P (X 5 =.43. Let Z = X + Y. X and Y are Poisson distributed, and therefore the variable Z will also be Poisson distributed, with parameter λ = 5+1 = 15, which means Z Poisson(15. By using table A.2 we find P (X + Y > 1 = P (Z > 1 = 1 P (Z 1 = 1 1 x= = =.882. Oppgave 3 Define X : amount of tankers (ships arriving the harbour during one day where with X poisson (λ, λ = E (X = 2. The harbor can serve a maximum of 3 tankers per day. a Because X is Poisson distributed we have that With inserted values for X we have that P (X = x = λx x! e λ = 2x x! e 2, x =, 1, 2,.... ov5-lsf-e. oktober 213 Side 3

4 x P (X = x Thus we see that, for a given day, the probability of one or two tankers is the greatest. Tankers must be directed to other harbors if more than three tankers arrive on any given day. Thus we have P (One or more tankers must be redirected = P (X > 3 = 1 P (X 3 tabell = =.1429 b Definer Y : amount of ships that is served one day. Because Y 3 we have that P (Y = y = P (X = x, y =, 1, 2 P (Y = 3 = P (X 3 = 1 P (X 2. We therefore get 3 E [Y ] = y P (Y = y y= = P (X = + 1 P (X = P (X = (1 P (X 2 = (1.66 = c Define k : capacity. We wish to find k such that P (X k.9. With inserted values for k we get Thus we have k P (X k P (X 4 =.944 >.9, and therefore we must expand the harbor to have a capacity on four ships, to be able to serve every ship arriving a given day with 9% probability. Oppgave 4 A set of lotto numbers can be regarded as an unordered selection of elements among the numbers 1 to 34, where the selection happens without replacement. ov5-lsf-e. oktober 213 Side 4

5 a There is different sets of lotto numbers. ( 34 = We are to find the probability that the set of lotto numbers contains the number 34. This can be calculated as P ( the set contains the number 34 = 1 P ( the set does NOT contain the number 34 ( 34 where the number of possible sets of lotto numbers is and the number of possible ( 33 sets of lotto numbers without the number 34 is such that ( 33 P ( the set contains the number 34 = 1 ( 34 = = 34. Define X : amount of correct numbers in the set, where X follows a Hypergeometric distribution ( ( k N k x n x h(x; N, n, k = ( N n with N = 34, n = and k =. The probability that a set of lotto numbers wil achieve correct numbers is given by ( ( 2 p = P ( correct = h(; 34,, = ( 34 = 1 ( 34 = b Every week, n = 19 sets of lotto numbers are delivered. Define X : amount out of the the n delivered sets which achieves correct numbers in this week s lotto draw ov5-lsf-e. oktober 213 Side 5

6 X is binomially distributed, but can with good approximation be regarded as Poisson distributed, because the Poisson distribution is the limiting distribution of the Binomial distribution when n and p. According to theorem 5.6 we have that n p µ when n such that the parameter in the Poisson distribution is given by µ = n p = = The probability density of X is now given by and we have f X (x = µx x! e µ P ( none of the delivered sets has correct = P (X = = 3.53 e 3.53 = e 3.53 =.29.! Observe that we get the same answer without the Poisson approximation, meaning that if X is binomially distributed with parameters n = 19 and p = given by f X (x = ( n x p x (1 p n x. We then have that P ( none of the delivered sets has correct numbers ( n = P (X = = p (1 p n = (1 p n = ( =.29. Define Y : number of Golden lotto rounds per year where we assume that there are 52 weeks per year. Y here follows a binomial distribution with n = 52 and p =.29. We therefore have that and E(Y = n p = = 1.5 P (Y = = f Y ( = ( 52 p (1 p 52 = ( =.22. ov5-lsf-e. oktober 213 Side 6

7 c Example of possible code for Poisson distribution density function: function funcval = poisson(x,mean funcval = ((meanˆx/(factorial(x*(exp( mean; TMA424 Statistikk A plot of the values from the Poisson density function for x-values from to 12 is shown in Fig 1. Here we have used µ = np = 3.53, as found in exercise 5b. We use integers, as the Poisson density function is a discrete probability distribution that is only defined for integer values of x. Figur 1: Poisson density function, f X (x = µx x! e µ for integer values of x from to 12 with µ = d Example of possible code for the binomial probability density function: function funcval = binomial(n,x,p funcval = nchoosek(n, x (pˆx ((1 pˆ(n x; A plot of the values from the binomial density function for x-values from to 12 is shown in Fig 2. Here we have used n = 19 and p = as found in exercise 5b. Figur 2: Binomial density function, f X (x = ( n x p x (1 p n x for integer values of x from to 12 with n = 19 and p = in Fig 3 we have plotted the two density functions, Poisson and binomial, against each other. We see that the density functions are approximately identical since they overlap ov5-lsf-e. oktober 213 Side

8 almost perfectly. Figur 3: Poisson density function from b plotted against the binomial density function. e We will now increase the amount of choosable numbers from 34 to m, where m > 34 such that with probability at least.1 there are no sets achieving correct numbers in a week where n = 19 sets are delivered. In this exercise we must use the equations defined earlier. We have that P ( none of the delivered sets have correct numbers = P (X = = (1 p 19.1 We have further that p is the probability that a set will achieve correct numbers, and this is given by such that p = P ( correct = h(; m,, = try with inserted values of m: 1 1 ( m ( 19 ( m k ( = m.1 m ( m 1 1 m ov5-lsf-e. oktober 213 Side 8

9 We see from the table that the inequality is satisfied for m = 36, and therefore have that m 36 if, with probability.1, there are not to exist any sets with correct numbers in a week where n = 19 sets are delivered. ov5-lsf-e. oktober 213 Side 9

EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013 Time: 9:00 13:00

EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013 Time: 9:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Page 1 of 7 English Contact: Håkon Tjelmeland 48 22 18 96 EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013

More information

TMA 4265 Stochastic Processes

TMA 4265 Stochastic Processes TMA 4265 Stochastic Processes Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Solution - Exercise 9 Exercises from the text book 5.29 Kidney transplant T A exp( A ) T B exp(

More information

EXAM TMA4240 STATISTICS Thursday 20 Dec 2012 Tid: 09:00 13:00

EXAM TMA4240 STATISTICS Thursday 20 Dec 2012 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Mathematical Sciences Page 1 of 5 EXAM TMA4240 STATISTICS Thursday 20 Dec 2012 Tid: 09:00 13:00 Permitted aids: Yellow sheet, A5 size, with handwritten notes.

More information

TMA4285 Time Series Models Exam December

TMA4285 Time Series Models Exam December Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA485 Time Series Models Solution Oppgave a) A process {z t } is invertible if it can be represented as an A( ) process, z

More information

Statistics for Economists. Lectures 3 & 4

Statistics for Economists. Lectures 3 & 4 Statistics for Economists Lectures 3 & 4 Asrat Temesgen Stockholm University 1 CHAPTER 2- Discrete Distributions 2.1. Random variables of the Discrete Type Definition 2.1.1: Given a random experiment with

More information

EXAM IN TMA4255 EXPERIMENTAL DESIGN AND APPLIED STATISTICAL METHODS

EXAM IN TMA4255 EXPERIMENTAL DESIGN AND APPLIED STATISTICAL METHODS Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Contact during exam: Bo Lindqvist Tel. 975 89 418 EXAM IN TMA4255 EXPERIMENTAL DESIGN AND APPLIED STATISTICAL METHODS

More information

MATH 3670 First Midterm February 17, No books or notes. No cellphone or wireless devices. Write clearly and show your work for every answer.

MATH 3670 First Midterm February 17, No books or notes. No cellphone or wireless devices. Write clearly and show your work for every answer. No books or notes. No cellphone or wireless devices. Write clearly and show your work for every answer. Name: Question: 1 2 3 4 Total Points: 30 20 20 40 110 Score: 1. The following numbers x i, i = 1,...,

More information

Mathematical Statistics 1 Math A 6330

Mathematical Statistics 1 Math A 6330 Mathematical Statistics 1 Math A 6330 Chapter 3 Common Families of Distributions Mohamed I. Riffi Department of Mathematics Islamic University of Gaza September 28, 2015 Outline 1 Subjects of Lecture 04

More information

Probability Distributions

Probability Distributions EXAMPLE: Consider rolling a fair die twice. Probability Distributions Random Variables S = {(i, j : i, j {,...,6}} Suppose we are interested in computing the sum, i.e. we have placed a bet at a craps table.

More information

8. Limit Laws. lim(f g)(x) = lim f(x) lim g(x), (x) = lim x a f(x) g lim x a g(x)

8. Limit Laws. lim(f g)(x) = lim f(x) lim g(x), (x) = lim x a f(x) g lim x a g(x) 8. Limit Laws 8.1. Basic Limit Laws. If f and g are two functions and we know the it of each of them at a given point a, then we can easily compute the it at a of their sum, difference, product, constant

More information

14.2 THREE IMPORTANT DISCRETE PROBABILITY MODELS

14.2 THREE IMPORTANT DISCRETE PROBABILITY MODELS 14.2 THREE IMPORTANT DISCRETE PROBABILITY MODELS In Section 14.1 the idea of a discrete probability model was introduced. In the examples of that section the probability of each basic outcome of the experiment

More information

Poisson distributions Mixed exercise 2

Poisson distributions Mixed exercise 2 Poisson distributions Mixed exercise 2 1 a Let X be the number of accidents in a one-month period. Assume a Poisson distribution. So X ~Po(0.7) P(X =0)=e 0.7 =0.4966 (4 d.p.) b Let Y be the number of accidents

More information

Probability Theory and Simulation Methods. April 6th, Lecture 19: Special distributions

Probability Theory and Simulation Methods. April 6th, Lecture 19: Special distributions April 6th, 2018 Lecture 19: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

Statistics 2. The Normal Distribution

Statistics 2. The Normal Distribution Chapter assessment Statistics The Normal Distribution 1. Soup tins have a capacity of 65 ml. The volume of soup, X ml, dispensed into each tin is Normally distributed with mean 610 and standard deviation.

More information

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or Expectations Expectations Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or µ X, is E(X ) = µ X = x D x p(x) Expectations

More information

Random Variables Example:

Random Variables Example: Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

December 2010 Mathematics 302 Name Page 2 of 11 pages

December 2010 Mathematics 302 Name Page 2 of 11 pages December 2010 Mathematics 302 Name Page 2 of 11 pages [9] 1. An urn contains red balls, 10 green balls and 1 yellow balls. You randomly select balls, without replacement. (a What ( is( the probability

More information

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014 Lecture 13 Text: A Course in Probability by Weiss 5.5 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 13.1 Agenda 1 2 3 13.2 Review So far, we have seen discrete

More information

Lecture 3. Discrete Random Variables

Lecture 3. Discrete Random Variables Math 408 - Mathematical Statistics Lecture 3. Discrete Random Variables January 23, 2013 Konstantin Zuev (USC) Math 408, Lecture 3 January 23, 2013 1 / 14 Agenda Random Variable: Motivation and Definition

More information

(n 3) 3 + n 3 = (n + 3) 3, ( ) (n 6) 3 + n 3 = (n + 6) 3, ( ) then n is even. Deduce that there is no integer n which satisfies the equation ( ).

(n 3) 3 + n 3 = (n + 3) 3, ( ) (n 6) 3 + n 3 = (n + 6) 3, ( ) then n is even. Deduce that there is no integer n which satisfies the equation ( ). Section A: Pure Mathematics 1 Show that, if n is an integer such that (n 3) 3 + n 3 = (n + 3) 3, ( ) then n is even and n 2 is a factor of 54. Deduce that there is no integer n which satisfies the equation

More information

Senior Math Circles November 19, 2008 Probability II

Senior Math Circles November 19, 2008 Probability II University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Senior Math Circles November 9, 2008 Probability II Probability Counting There are many situations where

More information

IUT of Saint-Etienne Sales and Marketing department Mr Ferraris Prom /10/2015

IUT of Saint-Etienne Sales and Marketing department Mr Ferraris Prom /10/2015 IUT of Saint-Etienne Sales and Marketing department Mr Ferraris Prom 2014-2016 22/10/2015 MATHEMATICS 3 rd semester, Test 1 length : 2 hours coefficient 1/3 The graphic calculator is allowed. Any personal

More information

Chapter 1: Revie of Calculus and Probability

Chapter 1: Revie of Calculus and Probability Chapter 1: Revie of Calculus and Probability Refer to Text Book: Operations Research: Applications and Algorithms By Wayne L. Winston,Ch. 12 Operations Research: An Introduction By Hamdi Taha, Ch. 12 OR441-Dr.Khalid

More information

Lecture 12: Mathematics Marvellous Matrices. TMA4115 Matematikk 3. Key Points. Detailed Recap. Obvious manipulations of processes

Lecture 12: Mathematics Marvellous Matrices. TMA4115 Matematikk 3. Key Points. Detailed Recap. Obvious manipulations of processes TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Spring 2010 Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet 19th February 2010 Key Points Detailed

More information

Known probability distributions

Known probability distributions Known probability distributions Engineers frequently wor with data that can be modeled as one of several nown probability distributions. Being able to model the data allows us to: model real systems design

More information

Applied Probability. School of Mathematics and Statistics, University of Sheffield. (University of Sheffield) Applied Probability / 8

Applied Probability. School of Mathematics and Statistics, University of Sheffield. (University of Sheffield) Applied Probability / 8 Applied Probability School of Mathematics and Statistics, University of Sheffield 2018 19 (University of Sheffield) Applied Probability 2018 19 1 / 8 Introduction You will have seen probability models.

More information

Discrete Probability Distribution

Discrete Probability Distribution Shapes of binomial distributions Discrete Probability Distribution Week 11 For this activity you will use a web applet. Go to http://socr.stat.ucla.edu/htmls/socr_eperiments.html and choose Binomial coin

More information

2. AXIOMATIC PROBABILITY

2. AXIOMATIC PROBABILITY IA Probability Lent Term 2. AXIOMATIC PROBABILITY 2. The axioms The formulation for classical probability in which all outcomes or points in the sample space are equally likely is too restrictive to develop

More information

Conditional distributions (discrete case)

Conditional distributions (discrete case) Conditional distributions (discrete case) The basic idea behind conditional distributions is simple: Suppose (XY) is a jointly-distributed random vector with a discrete joint distribution. Then we can

More information

Discrete random variables and probability distributions

Discrete random variables and probability distributions Discrete random variables and probability distributions random variable is a mapping from the sample space to real numbers. notation: X, Y, Z,... Example: Ask a student whether she/he works part time or

More information

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis Lecture 8 Class URL: http://vlsicad.ucsd.edu/courses/cse21-s14/ Lecture 8 Notes Goals for Today Counting Partitions

More information

Notes Week 2 Chapter 3 Probability WEEK 2 page 1

Notes Week 2 Chapter 3 Probability WEEK 2 page 1 Notes Week 2 Chapter 3 Probability WEEK 2 page 1 The sample space of an experiment, sometimes denoted S or in probability theory, is the set that consists of all possible elementary outcomes of that experiment

More information

BINOMIAL DISTRIBUTION

BINOMIAL DISTRIBUTION BINOMIAL DISTRIBUTION The binomial distribution is a particular type of discrete pmf. It describes random variables which satisfy the following conditions: 1 You perform n identical experiments (called

More information

STAT/MA 416 Midterm Exam 2 Thursday, October 18, Circle the section you are enrolled in:

STAT/MA 416 Midterm Exam 2 Thursday, October 18, Circle the section you are enrolled in: STAT/MA 46 Midterm Exam 2 Thursday, October 8, 27 Name Purdue student ID ( digits) Circle the section you are enrolled in: STAT/MA 46-- STAT/MA 46-2- 9: AM :5 AM 3: PM 4:5 PM REC 4 UNIV 23. The testing

More information

4. Discrete Probability Distributions. Introduction & Binomial Distribution

4. Discrete Probability Distributions. Introduction & Binomial Distribution 4. Discrete Probability Distributions Introduction & Binomial Distribution Aim & Objectives 1 Aims u Introduce discrete probability distributions v Binomial distribution v Poisson distribution 2 Objectives

More information

Chapter 3 Discrete Random Variables

Chapter 3 Discrete Random Variables MICHIGAN STATE UNIVERSITY STT 351 SECTION 2 FALL 2008 LECTURE NOTES Chapter 3 Discrete Random Variables Nao Mimoto Contents 1 Random Variables 2 2 Probability Distributions for Discrete Variables 3 3 Expected

More information

For Your Notebook E XAMPLE 1. Factor when b and c are positive KEY CONCEPT. CHECK (x 1 9)(x 1 2) 5 x 2 1 2x 1 9x Factoring x 2 1 bx 1 c

For Your Notebook E XAMPLE 1. Factor when b and c are positive KEY CONCEPT. CHECK (x 1 9)(x 1 2) 5 x 2 1 2x 1 9x Factoring x 2 1 bx 1 c 9.5 Factor x2 1 bx 1 c Before You factored out the greatest common monomial factor. Now You will factor trinomials of the form x 2 1 bx 1 c. Why So you can find the dimensions of figures, as in Ex. 61.

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

POISSON RANDOM VARIABLES

POISSON RANDOM VARIABLES POISSON RANDOM VARIABLES Suppose a random phenomenon occurs with a mean rate of occurrences or happenings per unit of time or length or area or volume, etc. Note: >. Eamples: 1. Cars passing through an

More information

Tutorial 1 : Probabilities

Tutorial 1 : Probabilities Lund University ETSN01 Advanced Telecommunication Tutorial 1 : Probabilities Author: Antonio Franco Emma Fitzgerald Tutor: Farnaz Moradi January 11, 2016 Contents I Before you start 3 II Exercises 3 1

More information

ECON 4130 Supplementary Exercises 1-4

ECON 4130 Supplementary Exercises 1-4 HG Set. 0 ECON 430 Sulementary Exercises - 4 Exercise Quantiles (ercentiles). Let X be a continuous random variable (rv.) with df f( x ) and cdf F( x ). For 0< < we define -th quantile (or 00-th ercentile),

More information

Math 218 Supplemental Instruction Spring 2008 Final Review Part A

Math 218 Supplemental Instruction Spring 2008 Final Review Part A Spring 2008 Final Review Part A SI leaders: Mario Panak, Jackie Hu, Christina Tasooji Chapters 3, 4, and 5 Topics Covered: General probability (probability laws, conditional, joint probabilities, independence)

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 11: Geometric Distribution Poisson Process Poisson Distribution Geometric Distribution The Geometric

More information

Math Bootcamp 2012 Miscellaneous

Math Bootcamp 2012 Miscellaneous Math Bootcamp 202 Miscellaneous Factorial, combination and permutation The factorial of a positive integer n denoted by n!, is the product of all positive integers less than or equal to n. Define 0! =.

More information

Question Points Score Total: 137

Question Points Score Total: 137 Math 447 Test 1 SOLUTIONS Fall 2015 No books, no notes, only SOA-approved calculators. true/false or fill-in-the-blank question. You must show work, unless the question is a Name: Section: Question Points

More information

STAT/MA 416 Answers Homework 6 November 15, 2007 Solutions by Mark Daniel Ward PROBLEMS

STAT/MA 416 Answers Homework 6 November 15, 2007 Solutions by Mark Daniel Ward PROBLEMS STAT/MA 4 Answers Homework November 5, 27 Solutions by Mark Daniel Ward PROBLEMS Chapter Problems 2a. The mass p, corresponds to neither of the first two balls being white, so p, 8 7 4/39. The mass p,

More information

Solutions to Problem Set 4

Solutions to Problem Set 4 UC Berkeley, CS 174: Combinatorics and Discrete Probability (Fall 010 Solutions to Problem Set 4 1. (MU 5.4 In a lecture hall containing 100 people, you consider whether or not there are three people in

More information

STAT 516 Midterm Exam 2 Friday, March 7, 2008

STAT 516 Midterm Exam 2 Friday, March 7, 2008 STAT 516 Midterm Exam 2 Friday, March 7, 2008 Name Purdue student ID (10 digits) 1. The testing booklet contains 8 questions. 2. Permitted Texas Instruments calculators: BA-35 BA II Plus BA II Plus Professional

More information

IE 336 Seat # Name (clearly) < KEY > Open book and notes. No calculators. 60 minutes. Cover page and five pages of exam.

IE 336 Seat # Name (clearly) < KEY > Open book and notes. No calculators. 60 minutes. Cover page and five pages of exam. Open book and notes. No calculators. 60 minutes. Cover page and five pages of exam. This test covers through Chapter 2 of Solberg (August 2005). All problems are worth five points. To receive full credit,

More information

STAT 430/510 Probability Lecture 12: Central Limit Theorem and Exponential Distribution

STAT 430/510 Probability Lecture 12: Central Limit Theorem and Exponential Distribution STAT 430/510 Probability Lecture 12: Central Limit Theorem and Exponential Distribution Pengyuan (Penelope) Wang June 15, 2011 Review Discussed Uniform Distribution and Normal Distribution Normal Approximation

More information

Review Basic Probability Concept

Review Basic Probability Concept Economic Risk and Decision Analysis for Oil and Gas Industry CE81.9008 School of Engineering and Technology Asian Institute of Technology January Semester Presented by Dr. Thitisak Boonpramote Department

More information

Probability Models. 4. What is the definition of the expectation of a discrete random variable?

Probability Models. 4. What is the definition of the expectation of a discrete random variable? 1 Probability Models The list of questions below is provided in order to help you to prepare for the test and exam. It reflects only the theoretical part of the course. You should expect the questions

More information

3 Conditional Expectation

3 Conditional Expectation 3 Conditional Expectation 3.1 The Discrete case Recall that for any two events E and F, the conditional probability of E given F is defined, whenever P (F ) > 0, by P (E F ) P (E)P (F ). P (F ) Example.

More information

Week 2. Review of Probability, Random Variables and Univariate Distributions

Week 2. Review of Probability, Random Variables and Univariate Distributions Week 2 Review of Probability, Random Variables and Univariate Distributions Probability Probability Probability Motivation What use is Probability Theory? Probability models Basis for statistical inference

More information

Math 2 Variable Manipulation Part 2 Student

Math 2 Variable Manipulation Part 2 Student Math 2 Variable Manipulation Part 2 Student 1 COMPARING EQUATIONS (EQUAL TO) When comparing two problems, set part of the equations to be the same, then set the rest of the equation to be equal and solve.

More information

Statistics for Managers Using Microsoft Excel (3 rd Edition)

Statistics for Managers Using Microsoft Excel (3 rd Edition) Statistics for Managers Using Microsoft Excel (3 rd Edition) Chapter 4 Basic Probability and Discrete Probability Distributions 2002 Prentice-Hall, Inc. Chap 4-1 Chapter Topics Basic probability concepts

More information

In this context, the thing we call the decision variable is K, the number of beds. Our solution will be done by stating a value for K.

In this context, the thing we call the decision variable is K, the number of beds. Our solution will be done by stating a value for K. STAT-UB.0103 NOTES for Wednesday 2012.FEB.15 Suppose that a hospital has a cardiac care unit which handles heart attac victims on the first day of their problems. The geographic area served by the hospital

More information

Section 2.1. Increasing, Decreasing, and Piecewise Functions; Applications

Section 2.1. Increasing, Decreasing, and Piecewise Functions; Applications Section 2.1 Increasing, Decreasing, and Piecewise Functions; Applications Features of Graphs Intervals of Increase and Decrease A function is increasing when the graph goes up as you travel along it from

More information

TMA4125 Matematikk 4N Spring 2017

TMA4125 Matematikk 4N Spring 2017 Norwegian University of Science and Technology Institutt for matematiske fag TMA15 Matematikk N Spring 17 Solutions to exercise set 1 1 We begin by writing the system as the augmented matrix.139.38.3 6.

More information

POISSON PROCESSES 1. THE LAW OF SMALL NUMBERS

POISSON PROCESSES 1. THE LAW OF SMALL NUMBERS POISSON PROCESSES 1. THE LAW OF SMALL NUMBERS 1.1. The Rutherford-Chadwick-Ellis Experiment. About 90 years ago Ernest Rutherford and his collaborators at the Cavendish Laboratory in Cambridge conducted

More information

Chapter 2: Discrete Distributions. 2.1 Random Variables of the Discrete Type

Chapter 2: Discrete Distributions. 2.1 Random Variables of the Discrete Type Chapter 2: Discrete Distributions 2.1 Random Variables of the Discrete Type 2.2 Mathematical Expectation 2.3 Special Mathematical Expectations 2.4 Binomial Distribution 2.5 Negative Binomial Distribution

More information

Conditional Probability

Conditional Probability Conditional Probability Idea have performed a chance experiment but don t know the outcome (ω), but have some partial information (event A) about ω. Question: given this partial information what s the

More information

Examination paper for TMA4245 Statistikk

Examination paper for TMA4245 Statistikk Department of Mathematical Sciences Examination paper for TMA4245 Statistikk Academic contact during examination: Arvid Næss a, Torstein Fjeldstad b Phone: a 99 53 83 50, b 96 20 97 10 Examination date:

More information

Lesson 1: What s My Rule?

Lesson 1: What s My Rule? Exploratory Activity In Module 2, we looked at an Algebra machine, as shown on the right. There is a rule that is used to determine the output value given any input value. Today, you and your partner will

More information

Solving Equations by Factoring. Solve the quadratic equation x 2 16 by factoring. We write the equation in standard form: x

Solving Equations by Factoring. Solve the quadratic equation x 2 16 by factoring. We write the equation in standard form: x 11.1 E x a m p l e 1 714SECTION 11.1 OBJECTIVES 1. Solve quadratic equations by using the square root method 2. Solve quadratic equations by completing the square Here, we factor the quadratic member of

More information

MATH 250 / SPRING 2011 SAMPLE QUESTIONS / SET 3

MATH 250 / SPRING 2011 SAMPLE QUESTIONS / SET 3 MATH 250 / SPRING 2011 SAMPLE QUESTIONS / SET 3 1. A four engine plane can fly if at least two engines work. a) If the engines operate independently and each malfunctions with probability q, what is the

More information

BIOSTATISTICS. Lecture 2 Discrete Probability Distributions. dr. Petr Nazarov

BIOSTATISTICS. Lecture 2 Discrete Probability Distributions. dr. Petr Nazarov Microarray Center BIOSTATISTICS Lecture 2 Discrete Probability Distributions dr. Petr Nazarov 28-02-2014 petr.nazarov@crp-sante.lu Lecture 2. Discrete probability distributions OUTLINE Lecture 2 Random

More information

37.3. The Poisson Distribution. Introduction. Prerequisites. Learning Outcomes

37.3. The Poisson Distribution. Introduction. Prerequisites. Learning Outcomes The Poisson Distribution 37.3 Introduction In this Section we introduce a probability model which can be used when the outcome of an experiment is a random variable taking on positive integer values and

More information

IB Math High Level Year 1 Probability Practice 1

IB Math High Level Year 1 Probability Practice 1 IB Math High Level Year Probability Practice Probability Practice. A bag contains red balls, blue balls and green balls. A ball is chosen at random from the bag and is not replaced. A second ball is chosen.

More information

Math/Stat 352 Lecture 8

Math/Stat 352 Lecture 8 Math/Stat 352 Lecture 8 Sections 4.3 and 4.4 Commonly Used Distributions: Poisson, hypergeometric, geometric, and negative binomial. 1 The Poisson Distribution Poisson random variable counts the number

More information

SMAM Exam 1 Name

SMAM Exam 1 Name SMAM 314-04 Exam 1 Name 1. A chemical reaction was run several times using a catalyst to control the yield of an undesireable side product. Results in units of percentage yield are given for 24 runs. 4.4

More information

Figure 10.1: Recording when the event E occurs

Figure 10.1: Recording when the event E occurs 10 Poisson Processes Let T R be an interval. A family of random variables {X(t) ; t T} is called a continuous time stochastic process. We often consider T = [0, 1] and T = [0, ). As X(t) is a random variable

More information

1 of 32 4/29/2018, 7:51 PM

1 of 32 4/29/2018, 7:51 PM 1 of 3 4/9/018, 7:51 PM Student: Date: Instructor: Alfredo Alvarez Course: Math 0410 Spring 018 Assignment: Math 0410 Homework150aleks 1. Insert < or > between the pair of integers to make the statement

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

a zoo of (discrete) random variables

a zoo of (discrete) random variables a zoo of (discrete) random variables 42 uniform random variable Takes each possible value, say {1..n} with equal probability. Say random variable uniform on S Recall envelopes problem on homework... Randomization

More information

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes Lecture Notes 7 Random Processes Definition IID Processes Bernoulli Process Binomial Counting Process Interarrival Time Process Markov Processes Markov Chains Classification of States Steady State Probabilities

More information

Name: 6.4 Polynomial Functions. Polynomial in One Variable

Name: 6.4 Polynomial Functions. Polynomial in One Variable Name: 6.4 Polynomial Functions Polynomial Functions: The expression 3r 2 3r + 1 is a in one variable since it only contains variable, r. KEY CONCEPT Polynomial in One Variable Words A polynomial of degree

More information

Statistics 100A Homework 5 Solutions

Statistics 100A Homework 5 Solutions Chapter 5 Statistics 1A Homework 5 Solutions Ryan Rosario 1. Let X be a random variable with probability density function a What is the value of c? fx { c1 x 1 < x < 1 otherwise We know that for fx to

More information

TMA 4265 Stochastic Processes

TMA 4265 Stochastic Processes TMA 4265 Sochasic Processes Norges eknisk-naurvienskapelige universie Insiu for maemaiske fag Soluion - Exercise 8 Exercises from he ex book 5.2 The expeced service ime for one cusomer is 1/µ, due o he

More information

1 of 32 4/24/2018, 11:38 AM

1 of 32 4/24/2018, 11:38 AM 1 of 3 4/4/018, 11:38 AM Student: Date: Instructor: Alfredo Alvarez Course: Math 0410 Spring 018 Assignment: Math 0410 Homework149aleks 1 Insert < or > between the pair of integers to make the statement

More information

CS 237 Fall 2018, Homework 07 Solution

CS 237 Fall 2018, Homework 07 Solution CS 237 Fall 2018, Homework 07 Solution Due date: Thursday November 1st at 11:59 pm (10% off if up to 24 hours late) via Gradescope General Instructions Please complete this notebook by filling in solutions

More information

b. ( ) ( ) ( ) ( ) ( ) 5. Independence: Two events (A & B) are independent if one of the conditions listed below is satisfied; ( ) ( ) ( )

b. ( ) ( ) ( ) ( ) ( ) 5. Independence: Two events (A & B) are independent if one of the conditions listed below is satisfied; ( ) ( ) ( ) 1. Set a. b. 2. Definitions a. Random Experiment: An experiment that can result in different outcomes, even though it is performed under the same conditions and in the same manner. b. Sample Space: This

More information

December 2010 Mathematics 302 Name Page 2 of 11 pages

December 2010 Mathematics 302 Name Page 2 of 11 pages December 2010 Mathematics 302 Name Page 2 of 11 pages [9] 1. An urn contains 5 red balls, 10 green balls and 15 yellow balls. You randomly select 5 balls, without replacement. What is the probability that

More information

Common Discrete Distributions

Common Discrete Distributions Common Discrete Distributions Statistics 104 Autumn 2004 Taken from Statistics 110 Lecture Notes Copyright c 2004 by Mark E. Irwin Common Discrete Distributions There are a wide range of popular discrete

More information

Applied Statistics and Probability for Engineers. Sixth Edition. Chapter 4 Continuous Random Variables and Probability Distributions.

Applied Statistics and Probability for Engineers. Sixth Edition. Chapter 4 Continuous Random Variables and Probability Distributions. Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger Chapter 4 Continuous Random Variables and Probability Distributions 4 Continuous CHAPTER OUTLINE Random

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger Chapter 4 Continuous Random Variables and Probability Distributions 4 Continuous CHAPTER OUTLINE 4-1

More information

Discrete Distributions

Discrete Distributions A simplest example of random experiment is a coin-tossing, formally called Bernoulli trial. It happens to be the case that many useful distributions are built upon this simplest form of experiment, whose

More information

An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211)

An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211) An-Najah National University Faculty of Engineering Industrial Engineering Department Course : Quantitative Methods (65211) Instructor: Eng. Tamer Haddad 2 nd Semester 2009/2010 Chapter 3 Discrete Random

More information

, find P(X = 2 or 3) et) 5. )px (1 p) n x x = 0, 1, 2,..., n. 0 elsewhere = 40

, find P(X = 2 or 3) et) 5. )px (1 p) n x x = 0, 1, 2,..., n. 0 elsewhere = 40 Assignment 4 Fall 07. Exercise 3.. on Page 46: If the mgf of a rom variable X is ( 3 + 3 et) 5, find P(X or 3). Since the M(t) of X is ( 3 + 3 et) 5, X has a binomial distribution with n 5, p 3. The probability

More information

Discrete Distributions

Discrete Distributions Chapter 2 Discrete Distributions 2.1 Random Variables of the Discrete Type An outcome space S is difficult to study if the elements of S are not numbers. However, we can associate each element/outcome

More information

Week 12-13: Discrete Probability

Week 12-13: Discrete Probability Week 12-13: Discrete Probability November 21, 2018 1 Probability Space There are many problems about chances or possibilities, called probability in mathematics. When we roll two dice there are possible

More information

Lecture 2: Discrete Probability Distributions

Lecture 2: Discrete Probability Distributions Lecture 2: Discrete Probability Distributions IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge February 1st, 2011 Rasmussen (CUED) Lecture

More information

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text.

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text. TEST #3 STA 536 December, 00 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. You will have access to a copy

More information

Basic probability. Inferential statistics is based on probability theory (we do not have certainty, but only confidence).

Basic probability. Inferential statistics is based on probability theory (we do not have certainty, but only confidence). Basic probability Inferential statistics is based on probability theory (we do not have certainty, but only confidence). I Events: something that may or may not happen: A; P(A)= probability that A happens;

More information

Math Stochastic Processes & Simulation. Davar Khoshnevisan University of Utah

Math Stochastic Processes & Simulation. Davar Khoshnevisan University of Utah Math 5040 1 Stochastic Processes & Simulation Davar Khoshnevisan University of Utah Module 1 Generation of Discrete Random Variables Just about every programming language and environment has a randomnumber

More information

Stochastic Models of Manufacturing Systems

Stochastic Models of Manufacturing Systems Stochastic Models of Manufacturing Systems Ivo Adan Organization 2/47 7 lectures (lecture of May 12 is canceled) Studyguide available (with notes, slides, assignments, references), see http://www.win.tue.nl/

More information

TMA4265 Stochastic processes ST2101 Stochastic simulation and modelling

TMA4265 Stochastic processes ST2101 Stochastic simulation and modelling Norwegian University of Science and Technology Department of Mathematical Sciences Page of 7 English Contact during examination: Øyvind Bakke Telephone: 73 9 8 26, 99 4 673 TMA426 Stochastic processes

More information

Euclidean Space. This is a brief review of some basic concepts that I hope will already be familiar to you.

Euclidean Space. This is a brief review of some basic concepts that I hope will already be familiar to you. Euclidean Space This is a brief review of some basic concepts that I hope will already be familiar to you. There are three sets of numbers that will be especially important to us: The set of all real numbers,

More information

Chapter 2 Date Compression: Source Coding. 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code

Chapter 2 Date Compression: Source Coding. 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code Chapter 2 Date Compression: Source Coding 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code 2.1 An Introduction to Source Coding Source coding can be seen as an efficient way

More information

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators.

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. IE 230 Seat # Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. Score Exam #3a, Spring 2002 Schmeiser Closed book and notes. 60 minutes. 1. True or false. (for each,

More information