IE 336 Seat # Name (clearly) < KEY > Open book and notes. No calculators. 60 minutes. Cover page and five pages of exam.

Size: px
Start display at page:

Download "IE 336 Seat # Name (clearly) < KEY > Open book and notes. No calculators. 60 minutes. Cover page and five pages of exam."

Transcription

1 Open book and notes. No calculators. 60 minutes. Cover page and five pages of exam. This test covers through Chapter 2 of Solberg (August 2005). All problems are worth five points. To receive full credit, show enough work to indicate your logic. Do not spend time calculating. You will receive full credit if someone with no understanding of probability could simplify your answer to obtain the correct numerical solution. Both A and A denote the complement of A. Score Exam #1, Fall 2005 Schmeiser

2 Open book and notes. 60 minutes. 1. Suppose that C and D are events, with P(D C )=0.3 and P(C )=0.3. Are C and D independent, dependent, or not enough information to know? Independence would be implied by P(D C ) = P(D ). Because P(D ) is unknown, there is not enough information. < NEITK > 2. Suppose that A, B, C, and D are mutually exclusive events, with P(A )=0.4, P(B )=0.2, P(C )=0.3, and P(D )=0.1. Determine the value of P(A B C D). P[ A B C D ]=P[ A B C D ] = P(S)=P( )=0, where S is the sample space. < 0 > 3. Consider a particular class of IE336 students. Of those who took IE230 with the current instructor, 20% expect an "A" grade in IE336. Of the other students, 30% expect an "A" grade. If seventy percent of the class took IE230 with the current instructor, what fraction of the class expects an "A" grade? Let A denote that the randomly chosen student expects an "A". Let C denote that the randomly chosen student had the current instructor for IE230. We know that P(C )=0.7, P(A C )=0.2, and P(A C)=0.3. The total probability yields P(A )=P(A C ) P(C )+P(A C) P(C)=(0.2)(0.7)+(0.3)(0.3). < 0.23 > 4. Suppose that 30% of all Purdue students celebrate Constitution Day. Twenty percent of all Purdue students are graduate students; 10% of them celebrate Constitution Day. What fraction of undergraduate students celebrate Constitution Day? Let C denote that the randomly chosen student celebrates Constitution Day. Let G denote that the randomly chosen student is a grad student. We know that P(C )=0.3, P(G )=0.2, and P(C G )=0.1. Then total probability yields P(C )=P(C G ) P(G )+P(C G) P(G). Therefore, 0.3=(0.1)(0.2)+P(C G)(0.8), which yields P(C G)=[0.3 (0.1)(0.2)] / 0.8 < 0.35 > Exam #1, Fall 2005 Page 1 of 5 Schmeiser

3 IE 336 Seat # Name (clearly) < KEY > For Problems 5 8, consider the joint distribution given by Y X Determine the marginal distribution of X. Sum the rows to obtain P(X = 1)= =0.3 P(X = 3)= =0.7 P(X = x )=0for other values of x. 6. Determine the value of F X (2.5), the cumulative distribution function of X evaluated at 2.5. F X (2.5)=P(X 2.5)=P(X = 1) < 0.3 > 7. Determine the conditional distribution of X given that Y = 4. P(X = 1 Y = 4)=P(X = 1, Y = 4) / P(Y = 4)=0.10 / 0.35=2/7 P(X = 3 Y = 4)=P(X = 3, Y = 4) / P(Y = 4)=0.25 / 0.35=5/7 P(X = x Y = 4)=P(X = x, Y = 4) / P(Y = 4)=0.0 / 0.35=0elsewhere. 8. Determine the value of E(X 2 Y ). E(X 2 Y )=(1 2 )(2)(0.05)+(1 2 )(4)(0.10)+(1 2 )(6)(0.15). + (3 2 )(2)(0.20)+(3 2 )(4)(0.25)+(3 2 )(6)(0.25) < 27.5 > Exam #1, Fall 2005 Page 2 of 5 Schmeiser

4 IE 336 Seat # Name (clearly) < KEY > For Problems 9 10, consider the joint distribution Y X ? 9. What is the value of P(X = 3, Y = 6)? The joint probabilities must sum to one, so P(X = 3, Y = 6)=1 [ ] < 0 > 10. Determine the value of the covariance of X and Y. Cov(X, Y )=E(XY ) E(X ) E(Y ), where E(X)=(1)(0.6)+(3)(0.4)=1.8, E(Y)=(2)(0.25)+(4)(0.45)+(6)(0.3)=4.1, and E(XY)=(1)(2)(0.1)+(1)(4)(0.2)+(1)(6)(0.3)+(3)(2)(0.15)+(3)(4)(0.25)+(3)(6)(0). < 0.68 > 11. Suppose that customer service for the Federal Income Tax answers 90% of all questions correctly. What is the probability that a set of ten questions, answered by ten different agents, yields no more than one error? Assume independence, because the questions are answered by different agents. Let X denote the number of questions answered correctly. Then X is binomial with n = 10 and p = Therefore, P(X 9)=P(X = 9)+P(X = 10)=C 9 p 9 (1 p) 1 + C p 10 (1 p) 0 = (10)(0.9) 9 (0.1) 1 + (1)(0.9) 10 (0.1) 0 = (0.9) 9 + (0.9) 10 = (0.9) 9 (1.9) < > 12. Your instructor bets (with his son) that he can serve a volleyball 100 times without error. For him to have a 50% chance of winning the bet, what is the probability of each serve being successful? (You may assume that the serves are Bernoulli trials.) Let X denote the number of successful serves. We want P(X = 100)=0.5. If X is binomial with n = 100 and probability of success p, then P(X=100)=p 100 = 0.5, which implies that p = / 100. < > Exam #1, Fall 2005 Page 3 of 5 Schmeiser

5 13. The infinite series (1)(0.6)(0.4 0 )+(2)(0.6)(0.4 1 )+(3)(0.6)(0.4 2 )+(4)(0.6)(0.4 3 )+... is the expected value of a random variable X. Determine the value of P(X 2). We know that, by definition, E(X )=Σall x x P(X = x ). Therefore, P(X 2)=P(X = 1)+P(X = 2)=(0.6)(0.4 0 )+(0.6)(0.4 1 ). < 0.84 > For Problems 14 16, consider this situation. From past experience, an airline knows that forty percent of passengers request a chicken dinner. The airline loads forty chicken dinners on a flight having one-hundred passengers. (You may assume that customer preferences are independent.) 14. What is the expected number of disappointed passengers? Let X denote the number of chicken-dinner requests. Then X is binomial with n = 100 and p = 0.4. Let Y = max{0, X 40}, the number of disappointed passengers. Then E(Y )=Σx=0 100 max{0, x 40} P(X = x ) 100 (x 40) P(X = x ), =Σx=41 where P(X = x )=C x 100 (0.4) x (0.6) 100 x. 15. Let µ D denote the expected number of disappointed passengers (the answer to Problem 14). Suppose that the goodwill cost of not meeting a customer s chicken-dinner preference is $10. What is the expected goodwill cost for the flight? E($ 10Y )=$ 10E(Y )=$ 10µ D. 16. Determine the standard deviation of the number of requests for a chicken dinner. State the units. Because X is binomial with n = 100 and p = 0.4, V(X )=n p (1 p)=(100)(0.4)(0.6)=24. Therefore, std(x )= 24 requests. < 4.9 requests > Exam #1, Fall 2005 Page 4 of 5 Schmeiser

6 For problems 17 18, suppose that world-wide commercial airline accidents occur according to a Poisson process with rate one accident per week. 17. If there have been no accidents during the past two weeks, what is the probability that there will be no accidents during the next two weeks? Let X denote the number of accidents during the next two weeks. Because accidents form a Poisson process, the previous two weeks are irrelevant and X is Poisson, with meanµ=λ t, whereλ=1accident per week and t = 2 weeks. Therefore, P(X = 0)=e µ µ 0 / 0!=e 2. < > 18. What family of distributions models the time until three accidents occur? Time until the next accident is exponential, with rateλ=1accident per week. The time until the third accident is the sum of three independent exponentials. < Erlang > 19. Identify an appropriate family of distributions to model the number of named storms in a single year. The possible number of hurricanes is the set {0, 1,...}. The two families that we have studied with this range are geometric and Poisson. The mode of the geometric is zero, which doesn t seem reasonable. If hurricanes are independent of each other, then the number would be Poisson. < Poisson > 20. Let X denote temperature in degrees Fahrenheit; let Y denote temperature in degrees Celsius. (Recall: Given Fahrenheit degrees, compute Celsius degrees by subtracting 32 and then dividing by 1.8.) Write std(y ) in terms of std(x ). The conversion formula yields Y = (X 32) / 1.8. Therefore, V(Y )=V[(X 32) / 1.8]=V(X / 1.8)=V(X ) / Taking the square root yields < std(y )=std(x ) / 1.8 > Exam #1, Fall 2005 Page 5 of 5 Schmeiser

7 Exam #1, Fall 2005 Page 6 of 5 Schmeiser

Review. A Bernoulli Trial is a very simple experiment:

Review. A Bernoulli Trial is a very simple experiment: Review A Bernoulli Trial is a very simple experiment: Review A Bernoulli Trial is a very simple experiment: two possible outcomes (success or failure) probability of success is always the same (p) the

More information

Math 218 Supplemental Instruction Spring 2008 Final Review Part A

Math 218 Supplemental Instruction Spring 2008 Final Review Part A Spring 2008 Final Review Part A SI leaders: Mario Panak, Jackie Hu, Christina Tasooji Chapters 3, 4, and 5 Topics Covered: General probability (probability laws, conditional, joint probabilities, independence)

More information

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators.

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. IE 230 Seat # Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. Score Exam #3a, Spring 2002 Schmeiser Closed book and notes. 60 minutes. 1. True or false. (for each,

More information

Closed book and notes. 120 minutes. Cover page, five pages of exam. No calculators.

Closed book and notes. 120 minutes. Cover page, five pages of exam. No calculators. IE 230 Seat # Closed book and notes. 120 minutes. Cover page, five pages of exam. No calculators. Score Final Exam, Spring 2005 (May 2) Schmeiser Closed book and notes. 120 minutes. Consider an experiment

More information

IE 336 Seat # Name (one point) < KEY > Closed book. Two pages of hand-written notes, front and back. No calculator. 60 minutes.

IE 336 Seat # Name (one point) < KEY > Closed book. Two pages of hand-written notes, front and back. No calculator. 60 minutes. Closed book. Two pages of hand-written notes, front and back. No calculator. 6 minutes. Cover page and four pages of exam. Four questions. To receive full credit, show enough work to indicate your logic.

More information

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 60 minutes.

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 60 minutes. Closed book and notes. 60 minutes. A summary table of some univariate continuous distributions is provided. Four Pages. In this version of the Key, I try to be more complete than necessary to receive full

More information

IE 336 Seat # Name (clearly) Closed book. One page of hand-written notes, front and back. No calculator. 60 minutes.

IE 336 Seat # Name (clearly) Closed book. One page of hand-written notes, front and back. No calculator. 60 minutes. Closed book. One page of hand-written notes, front and back. No calculator. 6 minutes. Cover page and four pages of exam. Fifteen questions. Each question is worth seven points. To receive full credit,

More information

IE 230 Seat # (1 point) Name (clearly) < KEY > Closed book and notes. No calculators. Designed for 60 minutes, but time is essentially unlimited.

IE 230 Seat # (1 point) Name (clearly) < KEY > Closed book and notes. No calculators. Designed for 60 minutes, but time is essentially unlimited. Closed book and notes. No calculators. Designed for 60 minutes, but time is essentially unlimited. Cover page, four pages of exam. This test covers through Section 2.7 of Montgomery and Runger, fourth

More information

18.05 Exam 1. Table of normal probabilities: The last page of the exam contains a table of standard normal cdf values.

18.05 Exam 1. Table of normal probabilities: The last page of the exam contains a table of standard normal cdf values. Name 18.05 Exam 1 No books or calculators. You may have one 4 6 notecard with any information you like on it. 6 problems, 8 pages Use the back side of each page if you need more space. Simplifying expressions:

More information

ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172.

ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172. ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172. 1. Enter your name, student ID number, e-mail address, and signature in the space provided on this page, NOW! 2. This is a closed book exam.

More information

MATH 3510: PROBABILITY AND STATS June 15, 2011 MIDTERM EXAM

MATH 3510: PROBABILITY AND STATS June 15, 2011 MIDTERM EXAM MATH 3510: PROBABILITY AND STATS June 15, 2011 MIDTERM EXAM YOUR NAME: KEY: Answers in Blue Show all your work. Answers out of the blue and without any supporting work may receive no credit even if they

More information

University of Illinois ECE 313: Final Exam Fall 2014

University of Illinois ECE 313: Final Exam Fall 2014 University of Illinois ECE 313: Final Exam Fall 2014 Monday, December 15, 2014, 7:00 p.m. 10:00 p.m. Sect. B, names A-O, 1013 ECE, names P-Z, 1015 ECE; Section C, names A-L, 1015 ECE; all others 112 Gregory

More information

IE 336 Seat # Name. Closed book. One page of hand-written notes, front and back. No calculator. 60 minutes.

IE 336 Seat # Name. Closed book. One page of hand-written notes, front and back. No calculator. 60 minutes. Closed book. One page of hand-written notes, front and back. No calculator. 60 minutes. Cover page and five pages of exam. Four questions. To receive full credit, show enough work to indicate your logic.

More information

No books, no notes, only SOA-approved calculators. Please put your answers in the spaces provided!

No books, no notes, only SOA-approved calculators. Please put your answers in the spaces provided! Math 447 Final Exam Fall 2015 No books, no notes, only SOA-approved calculators. Please put your answers in the spaces provided! Name: Section: Question Points Score 1 8 2 6 3 10 4 19 5 9 6 10 7 14 8 14

More information

Page Max. Possible Points Total 100

Page Max. Possible Points Total 100 Math 3215 Exam 2 Summer 2014 Instructor: Sal Barone Name: GT username: 1. No books or notes are allowed. 2. You may use ONLY NON-GRAPHING and NON-PROGRAMABLE scientific calculators. All other electronic

More information

STA 584 Supplementary Examples (not to be graded) Fall, 2003

STA 584 Supplementary Examples (not to be graded) Fall, 2003 Page 1 of 8 Central Michigan University Department of Mathematics STA 584 Supplementary Examples (not to be graded) Fall, 003 1. (a) If A and B are independent events, P(A) =.40 and P(B) =.70, find (i)

More information

Quick review on Discrete Random Variables

Quick review on Discrete Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 2017 Néhémy Lim Quick review on Discrete Random Variables Notations. Z = {..., 2, 1, 0, 1, 2,...}, set of all integers; N = {0, 1, 2,...}, set of natural

More information

Discrete random variables and probability distributions

Discrete random variables and probability distributions Discrete random variables and probability distributions random variable is a mapping from the sample space to real numbers. notation: X, Y, Z,... Example: Ask a student whether she/he works part time or

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Chapter 06 McGraw-Hill/Irwin Copyright 2013 by The McGraw-Hill Companies, Inc. All rights reserved. LEARNING OBJECTIVES LO 6-1 Identify the characteristics of a probability

More information

Statistics for Managers Using Microsoft Excel (3 rd Edition)

Statistics for Managers Using Microsoft Excel (3 rd Edition) Statistics for Managers Using Microsoft Excel (3 rd Edition) Chapter 4 Basic Probability and Discrete Probability Distributions 2002 Prentice-Hall, Inc. Chap 4-1 Chapter Topics Basic probability concepts

More information

Math SL Day 66 Probability Practice [196 marks]

Math SL Day 66 Probability Practice [196 marks] Math SL Day 66 Probability Practice [96 marks] Events A and B are independent with P(A B) = 0.2 and P(A B) = 0.6. a. Find P(B). valid interpretation (may be seen on a Venn diagram) P(A B) + P(A B), 0.2

More information

Prince Sultan University STAT 101 Final Examination Fall Semester 2008, Term 081 Saturday, February 7, 2009 Dr. Quazi Abdus Samad

Prince Sultan University STAT 101 Final Examination Fall Semester 2008, Term 081 Saturday, February 7, 2009 Dr. Quazi Abdus Samad Prince Sultan University STAT 101 Final Examination Fall Semester 2008, Term 081 Saturday, February 7, 2009 Dr. Quazi Abdus Samad Name: (First) (Middle) ( Last) ID Number: Section No.: Important Instructions:

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 10: Expectation and Variance Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin www.cs.cmu.edu/ psarkar/teaching

More information

STAT 516 Midterm Exam 2 Friday, March 7, 2008

STAT 516 Midterm Exam 2 Friday, March 7, 2008 STAT 516 Midterm Exam 2 Friday, March 7, 2008 Name Purdue student ID (10 digits) 1. The testing booklet contains 8 questions. 2. Permitted Texas Instruments calculators: BA-35 BA II Plus BA II Plus Professional

More information

Review of Basic Probability Theory

Review of Basic Probability Theory Review of Basic Probability Theory James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 35 Review of Basic Probability Theory

More information

Ch. 5 Joint Probability Distributions and Random Samples

Ch. 5 Joint Probability Distributions and Random Samples Ch. 5 Joint Probability Distributions and Random Samples 5. 1 Jointly Distributed Random Variables In chapters 3 and 4, we learned about probability distributions for a single random variable. However,

More information

Lecture 10: Bayes' Theorem, Expected Value and Variance Lecturer: Lale Özkahya

Lecture 10: Bayes' Theorem, Expected Value and Variance Lecturer: Lale Özkahya BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/ bbm205 Lecture 10: Bayes' Theorem, Expected Value and Variance Lecturer: Lale Özkahya Resources: Kenneth Rosen, Discrete

More information

Lecture 16 : Independence, Covariance and Correlation of Discrete Random Variables

Lecture 16 : Independence, Covariance and Correlation of Discrete Random Variables Lecture 6 : Independence, Covariance and Correlation of Discrete Random Variables 0/ 3 Definition Two discrete random variables X and Y defined on the same sample space are said to be independent if for

More information

Random Variables and Expectations

Random Variables and Expectations Inside ECOOMICS Random Variables Introduction to Econometrics Random Variables and Expectations A random variable has an outcome that is determined by an experiment and takes on a numerical value. A procedure

More information

Joint Probability Distributions, Correlations

Joint Probability Distributions, Correlations Joint Probability Distributions, Correlations What we learned so far Events: Working with events as sets: union, intersection, etc. Some events are simple: Head vs Tails, Cancer vs Healthy Some are more

More information

Math Key Homework 3 (Chapter 4)

Math Key Homework 3 (Chapter 4) Math 3339 - Key Homework 3 (Chapter 4) Name: PeopleSoft ID: Instructions: Homework will NOT be accepted through email or in person. Homework must be submitted through CourseWare BEFORE the deadline. Print

More information

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 120 minutes.

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 120 minutes. Closed book and notes. 10 minutes. Two summary tables from the concise notes are attached: Discrete distributions and continuous distributions. Eight Pages. Score _ Final Exam, Fall 1999 Cover Sheet, Page

More information

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions Introduction to Statistical Data Analysis Lecture 3: Probability Distributions James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis

More information

Problem #1 #2 #3 #4 Total Points /5 /7 /8 /4 /24

Problem #1 #2 #3 #4 Total Points /5 /7 /8 /4 /24 STAT/MATH 395 A - Winter Quarter 17 - Midterm - February 17, 17 Name: Student ID Number: Problem #1 # #3 #4 Total Points /5 /7 /8 /4 /4 Directions. Read directions carefully and show all your work. Define

More information

b. ( ) ( ) ( ) ( ) ( ) 5. Independence: Two events (A & B) are independent if one of the conditions listed below is satisfied; ( ) ( ) ( )

b. ( ) ( ) ( ) ( ) ( ) 5. Independence: Two events (A & B) are independent if one of the conditions listed below is satisfied; ( ) ( ) ( ) 1. Set a. b. 2. Definitions a. Random Experiment: An experiment that can result in different outcomes, even though it is performed under the same conditions and in the same manner. b. Sample Space: This

More information

Stat 2300 International, Fall 2006 Sample Midterm. Friday, October 20, Your Name: A Number:

Stat 2300 International, Fall 2006 Sample Midterm. Friday, October 20, Your Name: A Number: Stat 2300 International, Fall 2006 Sample Midterm Friday, October 20, 2006 Your Name: A Number: The Midterm consists of 35 questions: 20 multiple-choice questions (with exactly 1 correct answer) and 15

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER / Probability

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER / Probability ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER 2 2017/2018 DR. ANTHONY BROWN 5.1. Introduction to Probability. 5. Probability You are probably familiar with the elementary

More information

Page 0 of 5 Final Examination Name. Closed book. 120 minutes. Cover page plus five pages of exam.

Page 0 of 5 Final Examination Name. Closed book. 120 minutes. Cover page plus five pages of exam. Final Examination Closed book. 120 minutes. Cover page plus five pages of exam. To receive full credit, show enough work to indicate your logic. Do not spend time calculating. You will receive full credit

More information

MATH 250 / SPRING 2011 SAMPLE QUESTIONS / SET 3

MATH 250 / SPRING 2011 SAMPLE QUESTIONS / SET 3 MATH 250 / SPRING 2011 SAMPLE QUESTIONS / SET 3 1. A four engine plane can fly if at least two engines work. a) If the engines operate independently and each malfunctions with probability q, what is the

More information

Exam 3, Math Fall 2016 October 19, 2016

Exam 3, Math Fall 2016 October 19, 2016 Exam 3, Math 500- Fall 06 October 9, 06 This is a 50-minute exam. You may use your textbook, as well as a calculator, but your work must be completely yours. The exam is made of 5 questions in 5 pages,

More information

Notes for Math 324, Part 17

Notes for Math 324, Part 17 126 Notes for Math 324, Part 17 Chapter 17 Common discrete distributions 17.1 Binomial Consider an experiment consisting by a series of trials. The only possible outcomes of the trials are success and

More information

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z).

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z). Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z). For example P(X.04) =.8508. For z < 0 subtract the value from,

More information

1. I had a computer generate the following 19 numbers between 0-1. Were these numbers randomly selected?

1. I had a computer generate the following 19 numbers between 0-1. Were these numbers randomly selected? Activity #10: Continuous Distributions Uniform, Exponential, Normal) 1. I had a computer generate the following 19 numbers between 0-1. Were these numbers randomly selected? 0.12374454, 0.19609266, 0.44248450,

More information

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009.

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009. NAME: ECE 32 Division 2 Exam 2 Solutions, /4/29. You will be required to show your student ID during the exam. This is a closed-book exam. A formula sheet is provided. No calculators are allowed. Total

More information

IE 581 Introduction to Stochastic Simulation

IE 581 Introduction to Stochastic Simulation 1. List criteria for choosing the majorizing density r (x) when creating an acceptance/rejection random-variate generator for a specified density function f (x). 2. Suppose the rate function of a nonhomogeneous

More information

Exercises in Probability Theory Paul Jung MA 485/585-1C Fall 2015 based on material of Nikolai Chernov

Exercises in Probability Theory Paul Jung MA 485/585-1C Fall 2015 based on material of Nikolai Chernov Exercises in Probability Theory Paul Jung MA 485/585-1C Fall 2015 based on material of Nikolai Chernov Many of the exercises are taken from two books: R. Durrett, The Essentials of Probability, Duxbury

More information

II. The Binomial Distribution

II. The Binomial Distribution 88 CHAPTER 4 PROBABILITY DISTRIBUTIONS 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKDSE Mathematics M1 II. The Binomial Distribution 1. Bernoulli distribution A Bernoulli eperiment results in any one of two possible

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

Homework 10 (due December 2, 2009)

Homework 10 (due December 2, 2009) Homework (due December, 9) Problem. Let X and Y be independent binomial random variables with parameters (n, p) and (n, p) respectively. Prove that X + Y is a binomial random variable with parameters (n

More information

Notes 12 Autumn 2005

Notes 12 Autumn 2005 MAS 08 Probability I Notes Autumn 005 Conditional random variables Remember that the conditional probability of event A given event B is P(A B) P(A B)/P(B). Suppose that X is a discrete random variable.

More information

Işık University Math 230 Exam I Exam Duration : 1 hr 30 min Nov. 12, Last Name : First Name : Student Number : Section :

Işık University Math 230 Exam I Exam Duration : 1 hr 30 min Nov. 12, Last Name : First Name : Student Number : Section : Işık University Math 230 Exam I Exam Duration : 1 hr 30 min Nov. 12, 2012 Last Name : First Name : Student Number : Section : 1 2 3 Instructor :Deniz Karlı Row #: / Sinan Özeren Directions. Please read

More information

MgtOp 215 Chapter 5 Dr. Ahn

MgtOp 215 Chapter 5 Dr. Ahn MgtOp 215 Chapter 5 Dr. Ahn Random variable: a variable that assumes its values corresponding to a various outcomes of a random experiment, therefore its value cannot be predicted with certainty. Discrete

More information

Business Statistics Midterm Exam Fall 2015 Russell. Please sign here to acknowledge

Business Statistics Midterm Exam Fall 2015 Russell. Please sign here to acknowledge Business Statistics Midterm Exam Fall 5 Russell Name Do not turn over this page until you are told to do so. You will have hour and 3 minutes to complete the exam. There are a total of points divided into

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions

Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions 1999 Prentice-Hall, Inc. Chap. 4-1 Chapter Topics Basic Probability Concepts: Sample

More information

Test 2 VERSION A STAT 3090 Fall 2017

Test 2 VERSION A STAT 3090 Fall 2017 Multiple Choice: (Questions 1 20) Answer the following questions on the scantron provided using a #2 pencil. Bubble the response that best answers the question. Each multiple choice correct response is

More information

Joint probability distributions: Discrete Variables. Two Discrete Random Variables. Example 1. Example 1

Joint probability distributions: Discrete Variables. Two Discrete Random Variables. Example 1. Example 1 Joint probability distributions: Discrete Variables Two Discrete Random Variables Probability mass function (pmf) of a single discrete random variable X specifies how much probability mass is placed on

More information

An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211)

An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211) An-Najah National University Faculty of Engineering Industrial Engineering Department Course : Quantitative Methods (65211) Instructor: Eng. Tamer Haddad 2 nd Semester 2009/2010 Chapter 3 Discrete Random

More information

Solutions - Final Exam

Solutions - Final Exam Solutions - Final Exam Instructors: Dr. A. Grine and Dr. A. Ben Ghorbal Sections: 170, 171, 172, 173 Total Marks Exercise 1 7 Exercise 2 6 Exercise 3 6 Exercise 4 6 Exercise 5 6 Exercise 6 9 Total 40 Score

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2018 Kannan Ramchandran February 14, 2018.

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2018 Kannan Ramchandran February 14, 2018. EECS 6 Probability and Random Processes University of California, Berkeley: Spring 08 Kannan Ramchandran February 4, 08 Midterm Last Name First Name SID You have 0 minutes to read the exam and 90 minutes

More information

STAT 2507 H Assignment # 2 (Chapters 4, 5, and 6) Due: Monday, March 2, 2015, in class

STAT 2507 H Assignment # 2 (Chapters 4, 5, and 6) Due: Monday, March 2, 2015, in class STAT 2507 H Assignment # 2 (Chapters 4, 5, and 6) Due: Monday, March 2, 2015, in class Last Name First Name - Student # LAB Section - Note: Use spaces left to answer all questions. The total of marks for

More information

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed.

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. STAT 302 Introduction to Probability Learning Outcomes Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. Chapter 1: Combinatorial Analysis Demonstrate the ability to solve combinatorial

More information

Answers to selected exercises

Answers to selected exercises Answers to selected exercises A First Course in Stochastic Models, Henk C. Tijms 1.1 ( ) 1.2 (a) Let waiting time if passengers already arrived,. Then,, (b) { (c) Long-run fraction for is (d) Let waiting

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter Five Jesse Crawford Department of Mathematics Tarleton State University Spring 2011 (Tarleton State University) Chapter Five Notes Spring 2011 1 / 37 Outline 1

More information

Lecture Notes for BUSINESS STATISTICS - BMGT 571. Chapters 1 through 6. Professor Ahmadi, Ph.D. Department of Management

Lecture Notes for BUSINESS STATISTICS - BMGT 571. Chapters 1 through 6. Professor Ahmadi, Ph.D. Department of Management Lecture Notes for BUSINESS STATISTICS - BMGT 571 Chapters 1 through 6 Professor Ahmadi, Ph.D. Department of Management Revised May 005 Glossary of Terms: Statistics Chapter 1 Data Data Set Elements Variable

More information

Dept. of Linguistics, Indiana University Fall 2015

Dept. of Linguistics, Indiana University Fall 2015 L645 Dept. of Linguistics, Indiana University Fall 2015 1 / 34 To start out the course, we need to know something about statistics and This is only an introduction; for a fuller understanding, you would

More information

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 16 Notes. Class URL:

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 16 Notes. Class URL: Notes slides from before lecture CSE 21, Winter 2017, Section A00 Lecture 16 Notes Class URL: http://vlsicad.ucsd.edu/courses/cse21-w17/ Notes slides from before lecture Notes March 8 (1) This week: Days

More information

Topic 5: Discrete Random Variables & Expectations Reference Chapter 4

Topic 5: Discrete Random Variables & Expectations Reference Chapter 4 Page 1 Topic 5: Discrete Random Variables & Epectations Reference Chapter 4 In Chapter 3 we studied rules for associating a probability value with a single event or with a subset of events in an eperiment.

More information

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 60 minutes. Four Pages.

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 60 minutes. Four Pages. Closed book and notes. 60 minutes. Four Pages. Score Closed book and notes. 60 minutes. 1. True or false. (for each, 2 points if correct, 1 point if left blank.) T F If P(B) = 0, then P(B A) is undefined.

More information

MAS108 Probability I

MAS108 Probability I 1 BSc Examination 2008 By Course Units 2:30 pm, Thursday 14 August, 2008 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators.

More information

Question Points Score Total: 137

Question Points Score Total: 137 Math 447 Test 1 SOLUTIONS Fall 2015 No books, no notes, only SOA-approved calculators. true/false or fill-in-the-blank question. You must show work, unless the question is a Name: Section: Question Points

More information

Exam 1 - Math Solutions

Exam 1 - Math Solutions Exam 1 - Math 3200 - Solutions Spring 2013 1. Without actually expanding, find the coefficient of x y 2 z 3 in the expansion of (2x y z) 6. (A) 120 (B) 60 (C) 30 (D) 20 (E) 10 (F) 10 (G) 20 (H) 30 (I)

More information

Math 365 Final Exam Review Sheet. The final exam is Wednesday March 18 from 10am - 12 noon in MNB 110.

Math 365 Final Exam Review Sheet. The final exam is Wednesday March 18 from 10am - 12 noon in MNB 110. Math 365 Final Exam Review Sheet The final exam is Wednesday March 18 from 10am - 12 noon in MNB 110. The final is comprehensive and will cover Chapters 1, 2, 3, 4.1, 4.2, 5.2, and 5.3. You may use your

More information

Name of the Student:

Name of the Student: SUBJECT NAME : Probability & Queueing Theory SUBJECT CODE : MA 6453 MATERIAL NAME : Part A questions REGULATION : R2013 UPDATED ON : November 2017 (Upto N/D 2017 QP) (Scan the above QR code for the direct

More information

1 Presessional Probability

1 Presessional Probability 1 Presessional Probability Probability theory is essential for the development of mathematical models in finance, because of the randomness nature of price fluctuations in the markets. This presessional

More information

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014 Lecture 13 Text: A Course in Probability by Weiss 5.5 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 13.1 Agenda 1 2 3 13.2 Review So far, we have seen discrete

More information

Topic 2: Probability & Distributions. Road Map Probability & Distributions. ECO220Y5Y: Quantitative Methods in Economics. Dr.

Topic 2: Probability & Distributions. Road Map Probability & Distributions. ECO220Y5Y: Quantitative Methods in Economics. Dr. Topic 2: Probability & Distributions ECO220Y5Y: Quantitative Methods in Economics Dr. Nick Zammit University of Toronto Department of Economics Room KN3272 n.zammit utoronto.ca November 21, 2017 Dr. Nick

More information

ECE 313: Conflict Final Exam Tuesday, May 13, 2014, 7:00 p.m. 10:00 p.m. Room 241 Everitt Lab

ECE 313: Conflict Final Exam Tuesday, May 13, 2014, 7:00 p.m. 10:00 p.m. Room 241 Everitt Lab University of Illinois Spring 1 ECE 313: Conflict Final Exam Tuesday, May 13, 1, 7: p.m. 1: p.m. Room 1 Everitt Lab 1. [18 points] Consider an experiment in which a fair coin is repeatedly tossed every

More information

FINAL EXAM: 3:30-5:30pm

FINAL EXAM: 3:30-5:30pm ECE 30: Probabilistic Methods in Electrical and Computer Engineering Spring 016 Instructor: Prof. A. R. Reibman FINAL EXAM: 3:30-5:30pm Spring 016, MWF 1:30-1:0pm (May 6, 016) This is a closed book exam.

More information

FINAL EXAM: Monday 8-10am

FINAL EXAM: Monday 8-10am ECE 30: Probabilistic Methods in Electrical and Computer Engineering Fall 016 Instructor: Prof. A. R. Reibman FINAL EXAM: Monday 8-10am Fall 016, TTh 3-4:15pm (December 1, 016) This is a closed book exam.

More information

1. Let X be a random variable with probability density function. 1 x < f(x) = 0 otherwise

1. Let X be a random variable with probability density function. 1 x < f(x) = 0 otherwise Name M36K Final. Let X be a random variable with probability density function { /x x < f(x = 0 otherwise Compute the following. You can leave your answers in integral form. (a ( points Find F X (t = P

More information

Statistics for Economists. Lectures 3 & 4

Statistics for Economists. Lectures 3 & 4 Statistics for Economists Lectures 3 & 4 Asrat Temesgen Stockholm University 1 CHAPTER 2- Discrete Distributions 2.1. Random variables of the Discrete Type Definition 2.1.1: Given a random experiment with

More information

Notes for Math 324, Part 20

Notes for Math 324, Part 20 7 Notes for Math 34, Part Chapter Conditional epectations, variances, etc.. Conditional probability Given two events, the conditional probability of A given B is defined by P[A B] = P[A B]. P[B] P[A B]

More information

STA 2023 EXAM-2 Practice Problems From Chapters 4, 5, & Partly 6. With SOLUTIONS

STA 2023 EXAM-2 Practice Problems From Chapters 4, 5, & Partly 6. With SOLUTIONS STA 2023 EXAM-2 Practice Problems From Chapters 4, 5, & Partly 6 With SOLUTIONS Mudunuru Venkateswara Rao, Ph.D. STA 2023 Fall 2016 Venkat Mu ALL THE CONTENT IN THESE SOLUTIONS PRESENTED IN BLUE AND BLACK

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

Joint Probability Distributions, Correlations

Joint Probability Distributions, Correlations Joint Probability Distributions, Correlations What we learned so far Events: Working with events as sets: union, intersection, etc. Some events are simple: Head vs Tails, Cancer vs Healthy Some are more

More information

Mathematics 375 Probability and Statistics I Final Examination Solutions December 14, 2009

Mathematics 375 Probability and Statistics I Final Examination Solutions December 14, 2009 Mathematics 375 Probability and Statistics I Final Examination Solutions December 4, 9 Directions Do all work in the blue exam booklet. There are possible regular points and possible Extra Credit points.

More information

INFORMATION ABOUT SMAM

INFORMATION ABOUT SMAM INFORMATION ABOUT SMAM 351 Course Title: Probability and Statistics Textbook: PROBABILITY AND STATISTICS FOR ENGINEERING AND THE SCIENCES Sixth Edition by Jay L. Devore Duxbury Press Course Content: An

More information

3 PROBABILITY TOPICS

3 PROBABILITY TOPICS Chapter 3 Probability Topics 135 3 PROBABILITY TOPICS Figure 3.1 Meteor showers are rare, but the probability of them occurring can be calculated. (credit: Navicore/flickr) Introduction It is often necessary

More information

6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM. SOLUTIONS

6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM. SOLUTIONS 6.0/6.3 Spring 009 Quiz Wednesday, March, 7:30-9:30 PM. SOLUTIONS Name: Recitation Instructor: Question Part Score Out of 0 all 0 a 5 b c 5 d 5 e 5 f 5 3 a b c d 5 e 5 f 5 g 5 h 5 Total 00 Write your solutions

More information

THE UNIVERSITY OF HONG KONG School of Economics & Finance Answer Keys to st Semester Examination

THE UNIVERSITY OF HONG KONG School of Economics & Finance Answer Keys to st Semester Examination THE UNIVERSITY OF HONG KONG School of Economics & Finance Answer Keys to 2003-2004 1st Semester Examination Economics: ECON1003 Analysis of Economic Data Dr K F Wong 1. (6 points) State and explain briefly

More information

CHAPTER 6. 1, if n =1, 2p(1 p), if n =2, n (1 p) n 1 n p + p n 1 (1 p), if n =3, 4, 5,... var(d) = 4var(R) =4np(1 p).

CHAPTER 6. 1, if n =1, 2p(1 p), if n =2, n (1 p) n 1 n p + p n 1 (1 p), if n =3, 4, 5,... var(d) = 4var(R) =4np(1 p). CHAPTER 6 Solution to Problem 6 (a) The random variable R is binomial with parameters p and n Hence, ( ) n p R(r) = ( p) n r p r, for r =0,,,,n, r E[R] = np, and var(r) = np( p) (b) Let A be the event

More information

STAT 515 MIDTERM 2 EXAM November 14, 2018

STAT 515 MIDTERM 2 EXAM November 14, 2018 STAT 55 MIDTERM 2 EXAM November 4, 28 NAME: Section Number: Instructor: In problems that require reasoning, algebraic calculation, or the use of your graphing calculator, it is not sufficient just to write

More information

Chapter Six. Approaches to Assigning Probabilities

Chapter Six. Approaches to Assigning Probabilities Chapter Six Probability 6.1 Approaches to Assigning Probabilities There are three ways to assign a probability, P(O i ), to an outcome, O i, namely: Classical approach: based on equally likely events.

More information

a zoo of (discrete) random variables

a zoo of (discrete) random variables a zoo of (discrete) random variables 42 uniform random variable Takes each possible value, say {1..n} with equal probability. Say random variable uniform on S Recall envelopes problem on homework... Randomization

More information

Exam III #1 Solutions

Exam III #1 Solutions Department of Mathematics University of Notre Dame Math 10120 Finite Math Fall 2017 Name: Instructors: Basit & Migliore Exam III #1 Solutions November 14, 2017 This exam is in two parts on 11 pages and

More information

A random variable is a quantity whose value is determined by the outcome of an experiment.

A random variable is a quantity whose value is determined by the outcome of an experiment. Random Variables A random variable is a quantity whose value is determined by the outcome of an experiment. Before the experiment is carried out, all we know is the range of possible values. Birthday example

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

STA 256: Statistics and Probability I

STA 256: Statistics and Probability I Al Nosedal. University of Toronto. Fall 2017 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. There are situations where one might be interested

More information

Bivariate distributions

Bivariate distributions Bivariate distributions 3 th October 017 lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Bivariate Distributions of the Discrete Type The Correlation Coefficient

More information

PRACTICE PROBLEMS FOR EXAM 2

PRACTICE PROBLEMS FOR EXAM 2 PRACTICE PROBLEMS FOR EXAM 2 Math 3160Q Fall 2015 Professor Hohn Below is a list of practice questions for Exam 2. Any quiz, homework, or example problem has a chance of being on the exam. For more practice,

More information