Conditional Probability

Size: px
Start display at page:

Download "Conditional Probability"

Transcription

1 Conditional Probability Idea have performed a chance experiment but don t know the outcome (ω), but have some partial information (event A) about ω. Question: given this partial information what s the probability that the outcome is in some event B? Example: Toss a coin 3 times. We are interested in event B that there are 2 or more heads. The sample space has 8 equally likely outcomes. Ω = { HHH, HHT, HTH, THH, HTT, THT, TTH, TTT} The probability of the event B is Suppose we know that the first coin came up H. Let A be the event the first outcome is H. Then A { HHH, HHT, HTH, HTT} and A B = HHH, HHT, The conditional probability of B given A is P( A B) = = P A = { HTH} ( ) week 2 1

2 Given a probability space (Ω, F, P) and events A, B F with P(A) > 0 The conditional probability of B given the information that A has occurred is P ( ) ( A B) P B A = P A Example: ( ) We toss a die. What is the probability of observing the number 6 given that the outcome is even? Does this give rise to a valid probability measure? Theorem If A F and P(A) > 0 then (Ω, F, Q) is a probability space where Q : is defined by Q(B) = P(B A). Proof: F R week 2 2

3 The fact that conditional probability is a valid probability measure allows the following: ( ) ( ) P B A = 1 P B A, A, B F, P(A) >0 P ( B B A) = P( B A) + P( B A) P( B B A) for any A, B 1, B 2 F, P(A) >0. week 2 3

4 Multiplication rule For any two events A and B, For any 3 events A, B and C, P ( A B) = P P ( B A) P( A) ( A B C) = P( A) P( B A) P( C A B) In general, P n I i= 1 A i = P n 1 ( A ) P( A A ) P( A A A ) P A A n I i= 1 i Example: An urn initially contains 10 balls, 3 blue and 7 white. We draw a ball and note its colure; then we replace it and add one more of the same colure. We repeat this process 3 times. What is the probability that the first 2 balls drawn are blue and the third one is white? Solution: week 2 4

5 Law of total probability Definition: For a probability space (Ω, F, P), a partition of Ω is a countable collection { B i } of events such that B i F, B B = Φ and B = Ω. Theorem: If { B, B, } is a partition of Ω such that P B i > 0 then Proof: ( A) P( A B ) P( ) i j U i for any A. P = i B i F i i ( ) i week 2 5

6 Examples 1. Calculation of for the Urn example. P ( ) B 2 2. In a certain population 5% of the females and 8% of the males are lefthanded; 48% of the population are males. What proportion of the population is left-handed? Suppose 1 person from the population is chosen at random; what is the probability that this person is left-handed? week 2 6

7 { } Bayes Rule Let B, 2,... be a partition of Ω such that P( ) > 0 for all i then 1 B for any A F. P ( B A) j = P( A B j ) P( B j ) P A Bi P Bi i ( ) ( ) Example: A test for a disease correctly diagnoses a diseased person as having the disease with probability The test incorrectly diagnoses someone without the disease as having the disease with probability 0.1 If 1% of the people in a population have the disease, what is the probability that a person from this population who tests positive for the disease actually has it? (a) (b) (c) (d) (e) B i week 2 7

8 Independence Example: Roll a 6-sided die twice. Define the following events A : 3 or less on first roll B : Sum is odd. If occurrence of one event does not affect the probability that the other occurs than A, B are independent. week 2 8

9 Definition Events A and B are independent if Note: Independence disjoint. Two disjoint events are independent if and only if the probability of one of them is zero. Generalized to more than 2 events: A collection of events 1, 2 is (mutually) independent if for any subcollection P ( A B) P( A) P( B) P = { A A,... A } i, 1 i2 { A A,... } i m A n ( A A A ) = P( A ) P( A ) P( A ) i 1 i2 im i1 i 2 im Note: pairwize independence does not guarantee mutual independence. week 2 9

10 Example Roll a die twice. Define the following events; A: 1st die odd B: 2nd die odd C: sum is odd. week 2 10

11 Example Let R, S and T be independent, equally likely events with common ( ) probability 1/3. What is P R S T? Solution: week 2 11

12 Claim If A, B are independent so are A, B and A, B and A, B. Proof: week 2 12

13 Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the 56 elements of our 66 elements of Ω. X = 1 corresponds to the elements etc. X is an example of a random variable. Probability models often stated terms of random variables. E.g. - model for the # of H s in 10 flips of a coin. - model for the height of a randomly chosen person. - model for size of a queue. week 2 13

14 Discrete Probability Spaces (Ω, F, P) week 2 14

15 Discrete Random Variable Definition: A random variable X is said to be discrete if it can take only a finite or countably infinite number of distinct values. A discrete random variable X maps the sample space Ω onto a countable set. Define a probability mass function (pmf) or frequency function on X such that Where the sum is taken over all possible values of X. Note that there is a theorem that states that there exists a probability triple and random variable whenever we have a function p such that Definition: The probability distribution of a discrete random variable X is represented by a formula, a table or a graph which provides the list of all possible values that X can take and the pmf for each value week 2 15

16 Examples of Discrete Random Variables Discrete Uniform Distribution We roll a fair die. Let X = the # that comes up. We have that This is an example of equiprobable outcomes, that is X ( ω ) = ω To state the probability distribution of X we need to give its possible values and its pmf X is a discrete Uniform random variable. X has a uniform distribution. week 2 16

17 Bernoulli Distribution week 2 17

18 Binomial Distribution Roll a die n time and count the number of times 6 came up. Let X be the number of 6 s in n rolls. X has image {1, 2,, n} The probability distribution of X is given by the following formula In general, if identical Bernoulli trail is repeated n times independently and X is a random variable that count the number of success in the n trails then the probability distribution of X is given by Where p is the probability of success on any one experiment. X is a Binomial random variable. X has a Binomial Distribution. Question: is this a valid pmf? Prove! week 2 18

19 Geometric Distribution We roll a fair die until the first 6 comes up. Let X = the number of rolls until we get the first 6. Possible values of X: {1, 2, 3,..} The probability distribution of X is given by the following formula In general, if identical Bernoulli trail is repeated independently until the first success is obtained and X is a random variable that count the number of trials until the first success then the probability distribution of X is given by X is a Geometric random variable. X has a Geometric Distribution. Question: is this a valid pmf? Prove! week 2 19

20 In general for a Geometric distribution: Memory-less property of geometric random variable: for i > j week 2 20

21 Negative Binomial Distribution We roll a fair die until the second 6 comes up. This is the waiting time for the second 6. Let X = the number of rolls until we get two 6 s. Possible values of X: {2, 3, 4,..} The probability distribution of X is given by the following formula Is this a valid pmf? Prove! In general, X is the total number of experiments when waiting for rth success in a sequence of independent Bernoulli trails. The probability distribution of X is given by X has a Negative Binomial random Distribution. week 2 21

22 Hypergeometric Distribution A hat contains 12 tickets, 7 black and 5 white. Three tickets are drawn at random. Let X = the # of black tickets drawn. X could be 0, 1, 2, 3. The probability mass for each value can be calculated using combinatorics. For example, week 2 22

23 Poisson Distribution Model for the number of events occurring in a time (or space) interval where λ (a parameter of the distribution) is the rate of the occurrence of the events per one unit of time (or space). A Poisson random variable X = number of events per one unit of time (space). Possible values for X: {0, 1, 2, } The probability distribution of X is given by Is this a valid pmf? Prove! week 2 23

Random Variables Example:

Random Variables Example: Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

Rules of Probability

Rules of Probability ( ) ( ) = for all Corollary: Rules of robablty The probablty of the unon of any two events and B s roof: ( Φ) = 0. F. ( B) = ( ) + ( B) ( B) If B then, ( ) ( B). roof: week 2 week 2 2 Incluson / Excluson

More information

What is Probability? Probability. Sample Spaces and Events. Simple Event

What is Probability? Probability. Sample Spaces and Events. Simple Event What is Probability? Probability Peter Lo Probability is the numerical measure of likelihood that the event will occur. Simple Event Joint Event Compound Event Lies between 0 & 1 Sum of events is 1 1.5

More information

Mathematics. ( : Focus on free Education) (Chapter 16) (Probability) (Class XI) Exercise 16.2

Mathematics. (  : Focus on free Education) (Chapter 16) (Probability) (Class XI) Exercise 16.2 ( : Focus on free Education) Exercise 16.2 Question 1: A die is rolled. Let E be the event die shows 4 and F be the event die shows even number. Are E and F mutually exclusive? Answer 1: When a die is

More information

Expected Value 7/7/2006

Expected Value 7/7/2006 Expected Value 7/7/2006 Definition Let X be a numerically-valued discrete random variable with sample space Ω and distribution function m(x). The expected value E(X) is defined by E(X) = x Ω x m(x), provided

More information

CS206 Review Sheet 3 October 24, 2018

CS206 Review Sheet 3 October 24, 2018 CS206 Review Sheet 3 October 24, 2018 After ourintense focusoncounting, wecontinue withthestudyofsomemoreofthebasic notions from Probability (though counting will remain in our thoughts). An important

More information

CSC Discrete Math I, Spring Discrete Probability

CSC Discrete Math I, Spring Discrete Probability CSC 125 - Discrete Math I, Spring 2017 Discrete Probability Probability of an Event Pierre-Simon Laplace s classical theory of probability: Definition of terms: An experiment is a procedure that yields

More information

Probabilistic models

Probabilistic models Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became

More information

Events A and B are said to be independent if the occurrence of A does not affect the probability of B.

Events A and B are said to be independent if the occurrence of A does not affect the probability of B. Independent Events Events A and B are said to be independent if the occurrence of A does not affect the probability of B. Probability experiment of flipping a coin and rolling a dice. Sample Space: {(H,

More information

Discrete Random Variable

Discrete Random Variable Discrete Random Variable Outcome of a random experiment need not to be a number. We are generally interested in some measurement or numerical attribute of the outcome, rather than the outcome itself. n

More information

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary)

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary) Chapter 14 From Randomness to Probability How to measure a likelihood of an event? How likely is it to answer correctly one out of two true-false questions on a quiz? Is it more, less, or equally likely

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 2: Conditional probability Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin www.cs.cmu.edu/ psarkar/teaching

More information

2. Conditional Probability

2. Conditional Probability ENGG 2430 / ESTR 2004: Probability and Statistics Spring 2019 2. Conditional Probability Andrej Bogdanov Coins game Toss 3 coins. You win if at least two come out heads. S = { HHH, HHT, HTH, HTT, THH,

More information

CHAPTER - 16 PROBABILITY Random Experiment : If an experiment has more than one possible out come and it is not possible to predict the outcome in advance then experiment is called random experiment. Sample

More information

Lecture 3 - Axioms of Probability

Lecture 3 - Axioms of Probability Lecture 3 - Axioms of Probability Sta102 / BME102 January 25, 2016 Colin Rundel Axioms of Probability What does it mean to say that: The probability of flipping a coin and getting heads is 1/2? 3 What

More information

MODULE 2 RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES DISTRIBUTION FUNCTION AND ITS PROPERTIES

MODULE 2 RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES DISTRIBUTION FUNCTION AND ITS PROPERTIES MODULE 2 RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES 7-11 Topics 2.1 RANDOM VARIABLE 2.2 INDUCED PROBABILITY MEASURE 2.3 DISTRIBUTION FUNCTION AND ITS PROPERTIES 2.4 TYPES OF RANDOM VARIABLES: DISCRETE,

More information

STAT 430/510 Probability

STAT 430/510 Probability STAT 430/510 Probability Hui Nie Lecture 3 May 28th, 2009 Review We have discussed counting techniques in Chapter 1. Introduce the concept of the probability of an event. Compute probabilities in certain

More information

(i) Given that a student is female, what is the probability of having a GPA of at least 3.0?

(i) Given that a student is female, what is the probability of having a GPA of at least 3.0? MATH 382 Conditional Probability Dr. Neal, WKU We now shall consider probabilities of events that are restricted within a subset that is smaller than the entire sample space Ω. For example, let Ω be the

More information

Relationship between probability set function and random variable - 2 -

Relationship between probability set function and random variable - 2 - 2.0 Random Variables A rat is selected at random from a cage and its sex is determined. The set of possible outcomes is female and male. Thus outcome space is S = {female, male} = {F, M}. If we let X be

More information

Homework 4 Solution, due July 23

Homework 4 Solution, due July 23 Homework 4 Solution, due July 23 Random Variables Problem 1. Let X be the random number on a die: from 1 to. (i) What is the distribution of X? (ii) Calculate EX. (iii) Calculate EX 2. (iv) Calculate Var

More information

Part (A): Review of Probability [Statistics I revision]

Part (A): Review of Probability [Statistics I revision] Part (A): Review of Probability [Statistics I revision] 1 Definition of Probability 1.1 Experiment An experiment is any procedure whose outcome is uncertain ffl toss a coin ffl throw a die ffl buy a lottery

More information

What is a random variable

What is a random variable OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE MATH 256 Probability and Random Processes 04 Random Variables Fall 20 Yrd. Doç. Dr. Didem Kivanc Tureli didemk@ieee.org didem.kivanc@okan.edu.tr

More information

Conditional Probability

Conditional Probability Conditional Probability Conditional Probability The Law of Total Probability Let A 1, A 2,..., A k be mutually exclusive and exhaustive events. Then for any other event B, P(B) = P(B A 1 ) P(A 1 ) + P(B

More information

Random Variables. Statistics 110. Summer Copyright c 2006 by Mark E. Irwin

Random Variables. Statistics 110. Summer Copyright c 2006 by Mark E. Irwin Random Variables Statistics 110 Summer 2006 Copyright c 2006 by Mark E. Irwin Random Variables A Random Variable (RV) is a response of a random phenomenon which is numeric. Examples: 1. Roll a die twice

More information

Sec$on Summary. Assigning Probabilities Probabilities of Complements and Unions of Events Conditional Probability

Sec$on Summary. Assigning Probabilities Probabilities of Complements and Unions of Events Conditional Probability Section 7.2 Sec$on Summary Assigning Probabilities Probabilities of Complements and Unions of Events Conditional Probability Independence Bernoulli Trials and the Binomial Distribution Random Variables

More information

9/6/2016. Section 5.1 Probability. Equally Likely Model. The Division Rule: P(A)=#(A)/#(S) Some Popular Randomizers.

9/6/2016. Section 5.1 Probability. Equally Likely Model. The Division Rule: P(A)=#(A)/#(S) Some Popular Randomizers. Chapter 5: Probability and Discrete Probability Distribution Learn. Probability Binomial Distribution Poisson Distribution Some Popular Randomizers Rolling dice Spinning a wheel Flipping a coin Drawing

More information

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events LECTURE 1 1 Introduction The first part of our adventure is a highly selective review of probability theory, focusing especially on things that are most useful in statistics. 1.1 Sample spaces and events

More information

Discrete random variables and probability distributions

Discrete random variables and probability distributions Discrete random variables and probability distributions random variable is a mapping from the sample space to real numbers. notation: X, Y, Z,... Example: Ask a student whether she/he works part time or

More information

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability Lecture Notes 1 Basic Probability Set Theory Elements of Probability Conditional probability Sequential Calculation of Probability Total Probability and Bayes Rule Independence Counting EE 178/278A: Basic

More information

Mean, Median and Mode. Lecture 3 - Axioms of Probability. Where do they come from? Graphically. We start with a set of 21 numbers, Sta102 / BME102

Mean, Median and Mode. Lecture 3 - Axioms of Probability. Where do they come from? Graphically. We start with a set of 21 numbers, Sta102 / BME102 Mean, Median and Mode Lecture 3 - Axioms of Probability Sta102 / BME102 Colin Rundel September 1, 2014 We start with a set of 21 numbers, ## [1] -2.2-1.6-1.0-0.5-0.4-0.3-0.2 0.1 0.1 0.2 0.4 ## [12] 0.4

More information

2. AXIOMATIC PROBABILITY

2. AXIOMATIC PROBABILITY IA Probability Lent Term 2. AXIOMATIC PROBABILITY 2. The axioms The formulation for classical probability in which all outcomes or points in the sample space are equally likely is too restrictive to develop

More information

Probability: Terminology and Examples Class 2, Jeremy Orloff and Jonathan Bloom

Probability: Terminology and Examples Class 2, Jeremy Orloff and Jonathan Bloom 1 Learning Goals Probability: Terminology and Examples Class 2, 18.05 Jeremy Orloff and Jonathan Bloom 1. Know the definitions of sample space, event and probability function. 2. Be able to organize a

More information

p. 4-1 Random Variables

p. 4-1 Random Variables Random Variables A Motivating Example Experiment: Sample k students without replacement from the population of all n students (labeled as 1, 2,, n, respectively) in our class. = {all combinations} = {{i

More information

Probability (10A) Young Won Lim 6/12/17

Probability (10A) Young Won Lim 6/12/17 Probability (10A) Copyright (c) 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Dept. of Linguistics, Indiana University Fall 2015

Dept. of Linguistics, Indiana University Fall 2015 L645 Dept. of Linguistics, Indiana University Fall 2015 1 / 34 To start out the course, we need to know something about statistics and This is only an introduction; for a fuller understanding, you would

More information

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution Random Variable Theoretical Probability Distribution Random Variable Discrete Probability Distributions A variable that assumes a numerical description for the outcome of a random eperiment (by chance).

More information

Probability Experiments, Trials, Outcomes, Sample Spaces Example 1 Example 2

Probability Experiments, Trials, Outcomes, Sample Spaces Example 1 Example 2 Probability Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application. However, probability models underlie

More information

Probability, Random Processes and Inference

Probability, Random Processes and Inference INSTITUTO POLITÉCNICO NACIONAL CENTRO DE INVESTIGACION EN COMPUTACION Laboratorio de Ciberseguridad Probability, Random Processes and Inference Dr. Ponciano Jorge Escamilla Ambrosio pescamilla@cic.ipn.mx

More information

Probability Theory. Introduction to Probability Theory. Principles of Counting Examples. Principles of Counting. Probability spaces.

Probability Theory. Introduction to Probability Theory. Principles of Counting Examples. Principles of Counting. Probability spaces. Probability Theory To start out the course, we need to know something about statistics and probability Introduction to Probability Theory L645 Advanced NLP Autumn 2009 This is only an introduction; for

More information

More on Distribution Function

More on Distribution Function More on Distribution Function The distribution of a random variable X can be determined directly from its cumulative distribution function F X. Theorem: Let X be any random variable, with cumulative distribution

More information

27 Binary Arithmetic: An Application to Programming

27 Binary Arithmetic: An Application to Programming 27 Binary Arithmetic: An Application to Programming In the previous section we looked at the binomial distribution. The binomial distribution is essentially the mathematics of repeatedly flipping a coin

More information

CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 7 Probability. Outline. Terminology and background. Arthur G.

CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 7 Probability. Outline. Terminology and background. Arthur G. CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 7 Probability Arthur G. Werschulz Fordham University Department of Computer and Information Sciences Copyright Arthur G. Werschulz, 2017.

More information

ELEG 3143 Probability & Stochastic Process Ch. 1 Experiments, Models, and Probabilities

ELEG 3143 Probability & Stochastic Process Ch. 1 Experiments, Models, and Probabilities Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 1 Experiments, Models, and Probabilities Dr. Jing Yang jingyang@uark.edu OUTLINE 2 Applications

More information

Applied Statistics I

Applied Statistics I Applied Statistics I Liang Zhang Department of Mathematics, University of Utah June 17, 2008 Liang Zhang (UofU) Applied Statistics I June 17, 2008 1 / 22 Random Variables Definition A dicrete random variable

More information

ω X(ω) Y (ω) hhh 3 1 hht 2 1 hth 2 1 htt 1 1 thh 2 2 tht 1 2 tth 1 3 ttt 0 none

ω X(ω) Y (ω) hhh 3 1 hht 2 1 hth 2 1 htt 1 1 thh 2 2 tht 1 2 tth 1 3 ttt 0 none 3 D I S C R E T E R A N D O M VA R I A B L E S In the previous chapter many different distributions were developed out of Bernoulli trials. In that chapter we proceeded by creating new sample spaces for

More information

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Applications Elementary Set Theory Random

More information

Chapter 2: The Random Variable

Chapter 2: The Random Variable Chapter : The Random Variable The outcome of a random eperiment need not be a number, for eample tossing a coin or selecting a color ball from a bo. However we are usually interested not in the outcome

More information

4/17/2012. NE ( ) # of ways an event can happen NS ( ) # of events in the sample space

4/17/2012. NE ( ) # of ways an event can happen NS ( ) # of events in the sample space I. Vocabulary: A. Outcomes: the things that can happen in a probability experiment B. Sample Space (S): all possible outcomes C. Event (E): one outcome D. Probability of an Event (P(E)): the likelihood

More information

Probability. VCE Maths Methods - Unit 2 - Probability

Probability. VCE Maths Methods - Unit 2 - Probability Probability Probability Tree diagrams La ice diagrams Venn diagrams Karnough maps Probability tables Union & intersection rules Conditional probability Markov chains 1 Probability Probability is the mathematics

More information

ECE 450 Lecture 2. Recall: Pr(A B) = Pr(A) + Pr(B) Pr(A B) in general = Pr(A) + Pr(B) if A and B are m.e. Lecture Overview

ECE 450 Lecture 2. Recall: Pr(A B) = Pr(A) + Pr(B) Pr(A B) in general = Pr(A) + Pr(B) if A and B are m.e. Lecture Overview ECE 450 Lecture 2 Recall: Pr(A B) = Pr(A) + Pr(B) Pr(A B) in general = Pr(A) + Pr(B) if A and B are m.e. Lecture Overview Conditional Probability, Pr(A B) Total Probability Bayes Theorem Independent Events

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 3: Probability, Bayes Theorem, and Bayes Classification Peter Belhumeur Computer Science Columbia University Probability Should you play this game? Game: A fair

More information

LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD

LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD .0 Introduction: The theory of probability has its origin in the games of chance related to gambling such as tossing of a coin, throwing of a die, drawing cards from a pack of cards etc. Jerame Cardon,

More information

324 Stat Lecture Notes (1) Probability

324 Stat Lecture Notes (1) Probability 324 Stat Lecture Notes 1 robability Chapter 2 of the book pg 35-71 1 Definitions: Sample Space: Is the set of all possible outcomes of a statistical experiment, which is denoted by the symbol S Notes:

More information

Solution to HW 12. Since B and B 2 form a partition, we have P (A) = P (A B 1 )P (B 1 ) + P (A B 2 )P (B 2 ). Using P (A) = 21.

Solution to HW 12. Since B and B 2 form a partition, we have P (A) = P (A B 1 )P (B 1 ) + P (A B 2 )P (B 2 ). Using P (A) = 21. Solution to HW 12 (1) (10 pts) Sec 12.3 Problem A screening test for a disease shows a positive result in 92% of all cases when the disease is actually present and in 7% of all cases when it is not. Assume

More information

Senior Math Circles November 19, 2008 Probability II

Senior Math Circles November 19, 2008 Probability II University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Senior Math Circles November 9, 2008 Probability II Probability Counting There are many situations where

More information

STAT:5100 (22S:193) Statistical Inference I

STAT:5100 (22S:193) Statistical Inference I STAT:5100 (22S:193) Statistical Inference I Week 3 Luke Tierney University of Iowa Fall 2015 Luke Tierney (U Iowa) STAT:5100 (22S:193) Statistical Inference I Fall 2015 1 Recap Matching problem Generalized

More information

Intermediate Math Circles November 8, 2017 Probability II

Intermediate Math Circles November 8, 2017 Probability II Intersection of Events and Independence Consider two groups of pairs of events Intermediate Math Circles November 8, 017 Probability II Group 1 (Dependent Events) A = {a sales associate has training} B

More information

Lecture Lecture 5

Lecture Lecture 5 Lecture 4 --- Lecture 5 A. Basic Concepts (4.1-4.2) 1. Experiment: A process of observing a phenomenon that has variation in its outcome. Examples: (E1). Rolling a die, (E2). Drawing a card form a shuffled

More information

2.6 Tools for Counting sample points

2.6 Tools for Counting sample points 2.6 Tools for Counting sample points When the number of simple events in S is too large, manual enumeration of every sample point in S is tedious or even impossible. (Example) If S contains N equiprobable

More information

Why should you care?? Intellectual curiosity. Gambling. Mathematically the same as the ESP decision problem we discussed in Week 4.

Why should you care?? Intellectual curiosity. Gambling. Mathematically the same as the ESP decision problem we discussed in Week 4. I. Probability basics (Sections 4.1 and 4.2) Flip a fair (probability of HEADS is 1/2) coin ten times. What is the probability of getting exactly 5 HEADS? What is the probability of getting exactly 10

More information

MATH1231 Algebra, 2017 Chapter 9: Probability and Statistics

MATH1231 Algebra, 2017 Chapter 9: Probability and Statistics MATH1231 Algebra, 2017 Chapter 9: Probability and Statistics A/Prof. Daniel Chan School of Mathematics and Statistics University of New South Wales danielc@unsw.edu.au Daniel Chan (UNSW) MATH1231 Algebra

More information

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev CS4705 Probability Review and Naïve Bayes Slides from Dragomir Radev Classification using a Generative Approach Previously on NLP discriminative models P C D here is a line with all the social media posts

More information

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability What is Probability? the chance of an event occuring eg 1classical probability 2empirical probability 3subjective probability Section 2 - Probability (1) Probability - Terminology random (probability)

More information

EE 178 Lecture Notes 0 Course Introduction. About EE178. About Probability. Course Goals. Course Topics. Lecture Notes EE 178

EE 178 Lecture Notes 0 Course Introduction. About EE178. About Probability. Course Goals. Course Topics. Lecture Notes EE 178 EE 178 Lecture Notes 0 Course Introduction About EE178 About Probability Course Goals Course Topics Lecture Notes EE 178: Course Introduction Page 0 1 EE 178 EE 178 provides an introduction to probabilistic

More information

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny a nickel are flipped. You win $ if either

More information

Chapter 2 PROBABILITY SAMPLE SPACE

Chapter 2 PROBABILITY SAMPLE SPACE Chapter 2 PROBABILITY Key words: Sample space, sample point, tree diagram, events, complement, union and intersection of an event, mutually exclusive events; Counting techniques: multiplication rule, permutation,

More information

PROBABILITY CHAPTER LEARNING OBJECTIVES UNIT OVERVIEW

PROBABILITY CHAPTER LEARNING OBJECTIVES UNIT OVERVIEW CHAPTER 16 PROBABILITY LEARNING OBJECTIVES Concept of probability is used in accounting and finance to understand the likelihood of occurrence or non-occurrence of a variable. It helps in developing financial

More information

Discrete Probability

Discrete Probability Discrete Probability Counting Permutations Combinations r- Combinations r- Combinations with repetition Allowed Pascal s Formula Binomial Theorem Conditional Probability Baye s Formula Independent Events

More information

Lecture 6 Random Variable. Compose of procedure & observation. From observation, we get outcomes

Lecture 6 Random Variable. Compose of procedure & observation. From observation, we get outcomes ENM 07 Lecture 6 Random Variable Random Variable Eperiment (hysical Model) Compose of procedure & observation From observation we get outcomes From all outcomes we get a (mathematical) probability model

More information

Discrete Random Variables

Discrete Random Variables Chapter 5 Discrete Random Variables Suppose that an experiment and a sample space are given. A random variable is a real-valued function of the outcome of the experiment. In other words, the random variable

More information

Probabilistic models

Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became the definitive formulation

More information

P (A) = P (B) = P (C) = P (D) =

P (A) = P (B) = P (C) = P (D) = STAT 145 CHAPTER 12 - PROBABILITY - STUDENT VERSION The probability of a random event, is the proportion of times the event will occur in a large number of repititions. For example, when flipping a coin,

More information

Quantitative Methods for Decision Making

Quantitative Methods for Decision Making January 14, 2012 Lecture 3 Probability Theory Definition Mutually exclusive events: Two events A and B are mutually exclusive if A B = φ Definition Special Addition Rule: Let A and B be two mutually exclusive

More information

Discrete Probability Distribution

Discrete Probability Distribution Shapes of binomial distributions Discrete Probability Distribution Week 11 For this activity you will use a web applet. Go to http://socr.stat.ucla.edu/htmls/socr_eperiments.html and choose Binomial coin

More information

6.2 Introduction to Probability. The Deal. Possible outcomes: STAT1010 Intro to probability. Definitions. Terms: What are the chances of?

6.2 Introduction to Probability. The Deal. Possible outcomes: STAT1010 Intro to probability. Definitions. Terms: What are the chances of? 6.2 Introduction to Probability Terms: What are the chances of?! Personal probability (subjective) " Based on feeling or opinion. " Gut reaction.! Empirical probability (evidence based) " Based on experience

More information

Conditional Probability and Bayes Theorem (2.4) Independence (2.5)

Conditional Probability and Bayes Theorem (2.4) Independence (2.5) Conditional Probability and Bayes Theorem (2.4) Independence (2.5) Prof. Tesler Math 186 Winter 2019 Prof. Tesler Conditional Probability and Bayes Theorem Math 186 / Winter 2019 1 / 38 Scenario: Flip

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

Chapter 4: Probability and Probability Distributions

Chapter 4: Probability and Probability Distributions Chapter 4: Probability and Probability Distributions 4.1 a. Subjective probability b. Relative frequency c. Classical d. Relative frequency e. Subjective probability f. Subjective probability g. Classical

More information

Sample Spaces, Random Variables

Sample Spaces, Random Variables Sample Spaces, Random Variables Moulinath Banerjee University of Michigan August 3, 22 Probabilities In talking about probabilities, the fundamental object is Ω, the sample space. (elements) in Ω are denoted

More information

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability Chapter 2 Conditional Probability and Independence 2.1 Conditional Probability Probability assigns a likelihood to results of experiments that have not yet been conducted. Suppose that the experiment has

More information

4th IIA-Penn State Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur

4th IIA-Penn State Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur 4th IIA-Penn State Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur Laws of Probability, Bayes theorem, and the Central Limit Theorem Rahul Roy Indian Statistical Institute, Delhi. Adapted

More information

Bayes Rule for probability

Bayes Rule for probability Bayes Rule for probability P A B P A P B A PAP B A P AP B A An generalization of Bayes Rule Let A, A 2,, A k denote a set of events such that S A A2 Ak and Ai Aj for all i and j. Then P A i B P Ai P B

More information

The Bernoulli distribution has only two outcomes, Y, success or failure, with values one or zero. The probability of success is p.

The Bernoulli distribution has only two outcomes, Y, success or failure, with values one or zero. The probability of success is p. The Bernoulli distribution has onl two outcomes, Y, success or failure, with values one or zero. The probabilit of success is p. The probabilit distribution f() is denoted as B (p), the formula is: f ()

More information

Probability Pearson Education, Inc. Slide

Probability Pearson Education, Inc. Slide Probability The study of probability is concerned with random phenomena. Even though we cannot be certain whether a given result will occur, we often can obtain a good measure of its likelihood, or probability.

More information

Example. If 4 tickets are drawn with replacement from ,

Example. If 4 tickets are drawn with replacement from , Example. If 4 tickets are drawn with replacement from 1 2 2 4 6, what are the chances that we observe exactly two 2 s? Exactly two 2 s in a sequence of four draws can occur in many ways. For example, (

More information

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability Chapter 2 Conditional Probability and Independence 2.1 Conditional Probability Example: Two dice are tossed. What is the probability that the sum is 8? This is an easy exercise: we have a sample space

More information

Joint Distribution of Two or More Random Variables

Joint Distribution of Two or More Random Variables Joint Distribution of Two or More Random Variables Sometimes more than one measurement in the form of random variable is taken on each member of the sample space. In cases like this there will be a few

More information

Conditional Probability (cont...) 10/06/2005

Conditional Probability (cont...) 10/06/2005 Conditional Probability (cont...) 10/06/2005 Independent Events Two events E and F are independent if both E and F have positive probability and if P (E F ) = P (E), and P (F E) = P (F ). 1 Theorem. If

More information

The probability of an event is viewed as a numerical measure of the chance that the event will occur.

The probability of an event is viewed as a numerical measure of the chance that the event will occur. Chapter 5 This chapter introduces probability to quantify randomness. Section 5.1: How Can Probability Quantify Randomness? The probability of an event is viewed as a numerical measure of the chance that

More information

Mathematical Foundations of Computer Science Lecture Outline October 18, 2018

Mathematical Foundations of Computer Science Lecture Outline October 18, 2018 Mathematical Foundations of Computer Science Lecture Outline October 18, 2018 The Total Probability Theorem. Consider events E and F. Consider a sample point ω E. Observe that ω belongs to either F or

More information

4. Suppose that we roll two die and let X be equal to the maximum of the two rolls. Find P (X {1, 3, 5}) and draw the PMF for X.

4. Suppose that we roll two die and let X be equal to the maximum of the two rolls. Find P (X {1, 3, 5}) and draw the PMF for X. Math 10B with Professor Stankova Worksheet, Midterm #2; Wednesday, 3/21/2018 GSI name: Roy Zhao 1 Problems 1.1 Bayes Theorem 1. Suppose a test is 99% accurate and 1% of people have a disease. What is the

More information

Formal Modeling in Cognitive Science

Formal Modeling in Cognitive Science Formal Modeling in Cognitive Science Lecture 9: Application of Bayes Theorem; Discrete Random Variables; Steve Renals (notes by Frank Keller) School of Informatics University of Edinburgh s.renals@ed.ac.uk

More information

Formal Modeling in Cognitive Science Lecture 19: Application of Bayes Theorem; Discrete Random Variables; Distributions. Background.

Formal Modeling in Cognitive Science Lecture 19: Application of Bayes Theorem; Discrete Random Variables; Distributions. Background. Formal Modeling in Cognitive Science Lecture 9: ; Discrete Random Variables; Steve Renals (notes by Frank Keller) School of Informatics University of Edinburgh s.renals@ed.ac.uk February 7 Probability

More information

Lecture 2. Constructing Probability Spaces

Lecture 2. Constructing Probability Spaces Lecture 2. Constructing Probability Spaces This lecture describes some procedures for constructing probability spaces. We will work exclusively with discrete spaces usually finite ones. Later, we will

More information

the time it takes until a radioactive substance undergoes a decay

the time it takes until a radioactive substance undergoes a decay 1 Probabilities 1.1 Experiments with randomness Wewillusethetermexperimentinaverygeneralwaytorefertosomeprocess that produces a random outcome. Examples: (Ask class for some first) Here are some discrete

More information

Outline. 1. Define likelihood 2. Interpretations of likelihoods 3. Likelihood plots 4. Maximum likelihood 5. Likelihood ratio benchmarks

Outline. 1. Define likelihood 2. Interpretations of likelihoods 3. Likelihood plots 4. Maximum likelihood 5. Likelihood ratio benchmarks Outline 1. Define likelihood 2. Interpretations of likelihoods 3. Likelihood plots 4. Maximum likelihood 5. Likelihood ratio benchmarks Likelihood A common and fruitful approach to statistics is to assume

More information

Introduction Probability. Math 141. Introduction to Probability and Statistics. Albyn Jones

Introduction Probability. Math 141. Introduction to Probability and Statistics. Albyn Jones Math 141 to and Statistics Albyn Jones Mathematics Department Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 September 3, 2014 Motivation How likely is an eruption at Mount Rainier in

More information

Chapter 5 : Probability. Exercise Sheet. SHilal. 1 P a g e

Chapter 5 : Probability. Exercise Sheet. SHilal. 1 P a g e 1 P a g e experiment ( observing / measuring ) outcomes = results sample space = set of all outcomes events = subset of outcomes If we collect all outcomes we are forming a sample space If we collect some

More information

ACM 116: Lecture 2. Agenda. Independence. Bayes rule. Discrete random variables Bernoulli distribution Binomial distribution

ACM 116: Lecture 2. Agenda. Independence. Bayes rule. Discrete random variables Bernoulli distribution Binomial distribution 1 ACM 116: Lecture 2 Agenda Independence Bayes rule Discrete random variables Bernoulli distribution Binomial distribution Continuous Random variables The Normal distribution Expected value of a random

More information