Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models

Size: px
Start display at page:

Download "Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models"

Transcription

1 Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models Facoltà di Economia Università dell Aquila

2 Introduction In this lesson we present a method to construct an ARMA(p, q) model. The so-called Box-Jenkins Modeling Strategy.

3 Introduction The Box-Jenkins approach to modeling ARMA(p, q) models was described in a highly influential book by statisticians George Box and Gwilym Jenkins in Box, G.E.P. and G.M. Jenkins (1970) Time series analysis: Forecasting and control, San Francisco: Holden-Day.

4 Introduction The Box-Jenkins modelling procedure involved a preliminary analysis (Data Transformation) and an iterative three-stage process: 1 Model identification 2 Model estimation 3 Model checking

5 Introduction Each stage concerns a question. Preliminary analysis: Is the time series stationary? 1 Model identification: What class of models probably produced the (transformed) series? 2 Model estimation: What are the model parameters? 3 Model checking: Are the residuals from the estimated model white noise?

6 The assumption of stationarity The assumption that our time series is a realization of a stationary process is clearly fundamental in time series analysis. The Box-Jenkins methodology requires that the ARMA(p, q) process to be used in describing the DGP to be both stationary and invertible. Thus, in order to construct an ARMA model, we must first determine whether our time series can be considered a realization of a stationary process. If it is not, we must transform the time series in order to get the stationarity.

7 The assumption of stationarity A time series can be considered a realization of a stationary stochastic process if: 1 if there is no systematic change in mean (no trend), 2 if there is no systematic change in variance, 3 if there is no periodic variation.

8 Data Transformation In this stage a very useful tool is the graph of the series. From the plot of the time series values we can obtain useful indications concerning the stationarity of the process. If the observed values of the time series seem to fluctuate with constant variation around a constant mean, then it is reasonable to suppose that the process is stationary, otherwise, it is nonstationary.

9 Time series Figure : Time plot of a series generated by a stationary ARMA process.

10 Time series In the practice many time series cannot be considered like realizations of stationary processes.

11 Time series Consider an example the Airline series. Figure : Monthly totals in thousands of international airline passengers from January 1949 to December 1960.

12 Time series The plot shows that: 1 The number of passengers tends to increase over time (positive trend). 2 The spread or variance in the counts of passengers tends to increase over time. 3 The number of passengers tends to peak in certain months in each year.

13 Time series Figure : Monthly totals in thousands of international airline passengers from January 1949 to December Figure : Time plot of a series generated by a stationary ARMA process.

14 Time series Conclusion: Figure : Monthly totals in thousands of international airline passengers from January 1949 to December this time series cannot be considered like a realization of a stationary process.

15 Making a time series stationary Goal : Make the data set airlines stationary

16 Variance stabilizing techniques First, we want to stabilize the increasing variability of the series.

17 Variance stabilizing techniques To stabilize the variance, we can use the Box-Cox Transformation:

18 The Box-Cox Transformation The Box-Cox Transformation xt λ 1 if λ 0 λ y t = log(x t ) if λ = 0 where the parameter λ is chosen by the analyst. Different values of λ yield different transformations. Popular choices of the parameter λ are 0 and 1/2.

19 Mathematical Foundation of the Box-Cox Transformation with λ equal to 0 or 1/2 Why is it often the case that either λ = 0 or λ = 1/2 is adequate?

20 Mathematical Foundation of the Box-Cox Transformation with λ equal to 0 or 1/2 Consider a time series x t such that x t = µ t +v t where µ t is a nonstochastic mean level. Suppose that the variance of the time series x t has the form var(x t ) = var(v t ) = µ 2 tσ 2 The variance of the series is varying according to the mean level.

21 Mathematical Foundation of the Box-Cox Transformation with λ equal to 0 or 1/2 We want to find a transformation g on x t such that the variance of g(x t ) is constant.

22 Mathematical Foundation of the Box-Cox Transformation with λ equal to 0 or 1/2 By using the Taylor s approximation we have g(x t ) = g(µ t )+g (µ t )(x t µ t ) Thus var(g(x t )) = [g (µ t )] 2 var(x t ) = [g (µ t )] 2 µ 2 tσ 2

23 Mathematical Foundation of the Box-Cox Transformation with λ equal to 0 or 1/2 We require that var(g(x t )) = constant Therefore g is chosen such that g (µ t ) = 1 µ t

24 Mathematical Foundation of the Box-Cox Transformation with λ equal to 0 or 1/2 This implies that g(µ t ) = log(µ t ) resulting in the usual logarithmic trasformation.

25 Mathematical Foundation of the Box-Cox Transformation with λ equal to 0 or 1/2 If then which implies that var(x t ) = µ t σ 2 g (µ t ) = µ 1/2 t g(µ t ) = 2µ 1/2 t resulting in the square-root trasformation.

26 Mathematical Foundation of the Box-Cox Transformation with λ equal to 0 or 1/2 If x t = µ t +v t var(x t ) = µ 2 tσ 2 the appropriate transformation is the log-trasformation.

27 Mathematical Foundation of the Box-Cox Transformation with λ equal to 0 or 1/2 If x t = µ t +v t var(x t ) = µ t σ 2 the appropriate transformation is the square-root trasformation.

28 Mathematical Foundation of the Box-Cox Transformation with λ equal to 0 or 1/2 If the variance of the series appears to increase quadratically with the mean, the logarithmic transformation (λ = 0) is appropriate; If the variance increases linearly with the mean, we should use λ = 0.5, that is the square-root trasformation.

29 Time series Figure : Monthly totals in thousands of international airline passengers from January 1949 to December Consider the log transformation y t = log(x t ) t = 1,2,...,T

30 Time series Figure : Log of Monthly totals in thousands of international airline passengers from January 1949 to December The log transformation has removed the increasing variability.

31 Time series In order to remove the trend and the seasonal component, we decide to use the differencing method. By using the filter 12 = 1 L 12 we remove the seasonal component Figure : (1 L 12 ) Log of Monthly totals in thousands of international airline passengers

32 Time series Finally, we use the filter = 1 L in order to remove the non-stationarity in mean.

33 Time series The transformed series is given by z t = 12 log(x t ) t = 1,2,...,T We see that the differencing has well removed the trend and the seasonal component. Figure : (1 L)(1 L 12 ) Log of Monthly totals in thousands of international airline passengers

34 Time series Figure : (1 L)(1 L 12 ) Log of Monthly totals in thousands of international airline passengers Figure : Time plot of a series generated by a stationary ARMA process.

35 The DGP s model DGP ARMA z k,...,z T x 1,...,x T

36 Conclusion After the data have been rendered stationary, we are ready to fit an appropriate model to the data. This is the subject of the next lessons.

37 Lesson 13 BIS: The Identification of ARMA Models Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@ec.univaq.it Lesson 13 BIS: The Identification of ARMA Models

38 Identification Consider an ARMA process x t ARMA(p,q) Before an ARMA(p,q) model can be estimated we need to select the order p and q of the AR and MA-polynomial Following the Box and Jenkins s terminology we will refer to this step as identification of the appropriate ARMA model Lesson 13 BIS: The Identification of ARMA Models

39 Identification The guidelines for the choice of p and q come from the shape of two sample functions: 1 The Sample AutoCorrelation Function (SACF) 2 The Sample Partial AutoCorrelation Function (SPACF) Lesson 13 BIS: The Identification of ARMA Models

40 Identification The sample autocorrelation and partial autocorrelation functions should reflect (with sampling variation) the properties of the theoretical autocorrelation and partial autocorrelation functions of the process. In order to identify the order of the model, the SACF and SPACF are compared with the theoretical ACF and PACF, respectively. The sample autocorrelation plot and the sample partial autocorrelation plot are compared to the theoretical behavior of these plots. Lesson 13 BIS: The Identification of ARMA Models

41 Identification The theoretical behavior of ACF and PACF If x t WN(0,σ 2 ), then ρ k = 0 and π k = 0 for all k; If x t AR(p) process, then ρ k 0 for all k, ρ k 0 as k and π k 0 for k p, π k = 0 for k > p; If x t MA(q) process, then ρ k 0 for k q, ρ k = 0 for k > q and π k 0 for all k, π k 0 as k ; If x t ARMA(p,q), then ρ k 0 for all k, ρ k 0 as k and π k 0 for all k, π k 0 as k. Lesson 13 BIS: The Identification of ARMA Models

42 Identification If x t AR(p) process, then ρ k decays exponentially (either direct or oscillatory) and π k cut off after the lag p. Figure : Lesson 13 BIS: The Identification of ARMA Models

43 Identification If x t MA(q) process, then ρ k cut off after the lag q and π k decays exponentially (either direct or oscillatory) Figure : Lesson 13 BIS: The Identification of ARMA Models

44 Identification If x t ARMA(p,q), then ρ k decay exponentially (either direct or oscillatory) and π k decay exponentially (either direct or oscillatory) Lesson 13 BIS: The Identification of ARMA Models

45 Identification The identification of a pure autoregressive or moving average process is reasonably straightforward using the sample autocorrelation and partial autocorrelation functions. On the other hand, as we will see, for ARMA(p,q) processes with p and q both non-zero, the SACF and SPACF are much more difficult to interpret Lesson 13 BIS: The Identification of ARMA Models

46 Identifying the orders p and q by using Information Criteria The mixed models can be particularly difficult to identify by using the correlogram and the partial correlogram. For this reason, in recent years information-based criteria such as AIC (Akaike Information Criterion) and BIC (Bayes Information Criteria) and others have been preferred and used. Lesson 13 BIS: The Identification of ARMA Models

47 Model Idendification The AIC statistic is defined as AIC(p,q) = ln(ˆσ 2 )+ 2(p +q) T where ˆσ 2 is the maximum likelihood estimated of the white noise variance. Among a set of models, we select the values of p and q for our fitted model to be those which minimize AIC(p,q). Lesson 13 BIS: The Identification of ARMA Models

48 Model Idendification Intuitively one can think of 2(p +q) T as a penality term to discourage over-parameterization. Lesson 13 BIS: The Identification of ARMA Models

49 Model Idendification There is an empirical evidences that AIC has the tendency to pick models which are over-parameterized. The BIC is a criterion which attempts to correct the overfitting nature of the AIC. It is defined to be BIC(p,q) = ln(ˆσ 2 )+ ln(t)(p +q) T Lesson 13 BIS: The Identification of ARMA Models

50 Model Idendification We note that BIC penalizes larger models more than AIC. ln(t) T > 2 T T 8 Lesson 13 BIS: The Identification of ARMA Models

51 Model Idendification The procedure to use these criteria is the following: 1 Set upper bounds, P and Q for the AR and MA order, respectively 2 Fit all possible ARMA(p,q) models for p P and q Q using a common sample size T 3 The AIC(p A,q A ) and BIC(p B,q B ) of the best models satisfy, rispectively, AIC(p A,q A ) = min p P,q Q AIC (p,q) BIC(p B,q B ) = min p P,q Q BIC (p,q) Lesson 13 BIS: The Identification of ARMA Models

52 Model Idendification The theoretical properties of these criteria have been investigated. It is known that BIC is consistent in the sense that the probability of selecting the true model approaches 1 (if the true model is in the candidate list), but AIC is not. Lesson 13 BIS: The Identification of ARMA Models

53 Some examples Lesson 13 BIS: The Identification of ARMA Models

54 Some examples Lesson 13 BIS: The Identification of ARMA Models

55 Some examples The blue dotted parallel lines show approximative 95% confidence intervals for the null hypotesis H 0 : ρ k = 0 and H 0 : π k = 0, respectively Lesson 13 BIS: The Identification of ARMA Models

56 Some examples Lesson 13 BIS: The Identification of ARMA Models

57 Some examples Lesson 13 BIS: The Identification of ARMA Models

58 Some examples Lesson 13 BIS: The Identification of ARMA Models

59 Some examples Lesson 13 BIS: The Identification of ARMA Models

60 Some examples Lesson 13 BIS: The Identification of ARMA Models

61 Some examples Lesson 13 BIS: The Identification of ARMA Models

62 Some examples Table : Selection ARMA order by AIC and BIC. Orders p,q of ARMA model 2,2 2,1 1,2 2,0 0,2 1,1 1,0 0,1 AIC BIC Lesson 13 BIS: The Identification of ARMA Models

Lesson 9: Autoregressive-Moving Average (ARMA) models

Lesson 9: Autoregressive-Moving Average (ARMA) models Lesson 9: Autoregressive-Moving Average (ARMA) models Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@ec.univaq.it Introduction We have seen

More information

Lesson 15: Building ARMA models. Examples

Lesson 15: Building ARMA models. Examples Lesson 15: Building ARMA models. Examples Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@ec.univaq.it Examples In this lesson, in order to illustrate

More information

Lesson 7: Estimation of Autocorrelation and Partial Autocorrela

Lesson 7: Estimation of Autocorrelation and Partial Autocorrela Lesson 7: Estimation of Autocorrelation and Partial Autocorrelation Function Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@ec.univaq.it Estimation

More information

Time Series Analysis -- An Introduction -- AMS 586

Time Series Analysis -- An Introduction -- AMS 586 Time Series Analysis -- An Introduction -- AMS 586 1 Objectives of time series analysis Data description Data interpretation Modeling Control Prediction & Forecasting 2 Time-Series Data Numerical data

More information

Estimation and application of best ARIMA model for forecasting the uranium price.

Estimation and application of best ARIMA model for forecasting the uranium price. Estimation and application of best ARIMA model for forecasting the uranium price. Medeu Amangeldi May 13, 2018 Capstone Project Superviser: Dongming Wei Second reader: Zhenisbek Assylbekov Abstract This

More information

A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA

A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA www.arpapress.com/volumes/vol14issue3/ijrras_14_3_14.pdf A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA Ette Harrison Etuk Department of Mathematics/Computer Science, Rivers State University

More information

Applied time-series analysis

Applied time-series analysis Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 18, 2011 Outline Introduction and overview Econometric Time-Series Analysis In principle,

More information

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL B. N. MANDAL Abstract: Yearly sugarcane production data for the period of - to - of India were analyzed by time-series methods. Autocorrelation

More information

CHAPTER 8 FORECASTING PRACTICE I

CHAPTER 8 FORECASTING PRACTICE I CHAPTER 8 FORECASTING PRACTICE I Sometimes we find time series with mixed AR and MA properties (ACF and PACF) We then can use mixed models: ARMA(p,q) These slides are based on: González-Rivera: Forecasting

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH. I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo

MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH. I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo Vol.4, No.2, pp.2-27, April 216 MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo ABSTRACT: This study

More information

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA CHAPTER 6 TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA 6.1. Introduction A time series is a sequence of observations ordered in time. A basic assumption in the time series analysis

More information

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn }

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn } Stochastic processes Time series are an example of a stochastic or random process Models for time series A stochastic process is 'a statistical phenomenon that evolves in time according to probabilistic

More information

Lab: Box-Jenkins Methodology - US Wholesale Price Indicator

Lab: Box-Jenkins Methodology - US Wholesale Price Indicator Lab: Box-Jenkins Methodology - US Wholesale Price Indicator In this lab we explore the Box-Jenkins methodology by applying it to a time-series data set comprising quarterly observations of the US Wholesale

More information

Univariate ARIMA Models

Univariate ARIMA Models Univariate ARIMA Models ARIMA Model Building Steps: Identification: Using graphs, statistics, ACFs and PACFs, transformations, etc. to achieve stationary and tentatively identify patterns and model components.

More information

Lesson 8: Testing for IID Hypothesis with the correlogram

Lesson 8: Testing for IID Hypothesis with the correlogram Lesson 8: Testing for IID Hypothesis with the correlogram Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@ec.univaq.it Testing for i.i.d. Hypothesis

More information

Lecture 7: Model Building Bus 41910, Time Series Analysis, Mr. R. Tsay

Lecture 7: Model Building Bus 41910, Time Series Analysis, Mr. R. Tsay Lecture 7: Model Building Bus 41910, Time Series Analysis, Mr R Tsay An effective procedure for building empirical time series models is the Box-Jenkins approach, which consists of three stages: model

More information

Modelling Monthly Rainfall Data of Port Harcourt, Nigeria by Seasonal Box-Jenkins Methods

Modelling Monthly Rainfall Data of Port Harcourt, Nigeria by Seasonal Box-Jenkins Methods International Journal of Sciences Research Article (ISSN 2305-3925) Volume 2, Issue July 2013 http://www.ijsciences.com Modelling Monthly Rainfall Data of Port Harcourt, Nigeria by Seasonal Box-Jenkins

More information

EASTERN MEDITERRANEAN UNIVERSITY ECON 604, FALL 2007 DEPARTMENT OF ECONOMICS MEHMET BALCILAR ARIMA MODELS: IDENTIFICATION

EASTERN MEDITERRANEAN UNIVERSITY ECON 604, FALL 2007 DEPARTMENT OF ECONOMICS MEHMET BALCILAR ARIMA MODELS: IDENTIFICATION ARIMA MODELS: IDENTIFICATION A. Autocorrelations and Partial Autocorrelations 1. Summary of What We Know So Far: a) Series y t is to be modeled by Box-Jenkins methods. The first step was to convert y t

More information

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Moving average processes Autoregressive

More information

5 Autoregressive-Moving-Average Modeling

5 Autoregressive-Moving-Average Modeling 5 Autoregressive-Moving-Average Modeling 5. Purpose. Autoregressive-moving-average (ARMA models are mathematical models of the persistence, or autocorrelation, in a time series. ARMA models are widely

More information

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis Chapter 12: An introduction to Time Series Analysis Introduction In this chapter, we will discuss forecasting with single-series (univariate) Box-Jenkins models. The common name of the models is Auto-Regressive

More information

Ch 6. Model Specification. Time Series Analysis

Ch 6. Model Specification. Time Series Analysis We start to build ARIMA(p,d,q) models. The subjects include: 1 how to determine p, d, q for a given series (Chapter 6); 2 how to estimate the parameters (φ s and θ s) of a specific ARIMA(p,d,q) model (Chapter

More information

Ch 5. Models for Nonstationary Time Series. Time Series Analysis

Ch 5. Models for Nonstationary Time Series. Time Series Analysis We have studied some deterministic and some stationary trend models. However, many time series data cannot be modeled in either way. Ex. The data set oil.price displays an increasing variation from the

More information

at least 50 and preferably 100 observations should be available to build a proper model

at least 50 and preferably 100 observations should be available to build a proper model III Box-Jenkins Methods 1. Pros and Cons of ARIMA Forecasting a) need for data at least 50 and preferably 100 observations should be available to build a proper model used most frequently for hourly or

More information

Chapter 3, Part V: More on Model Identification; Examples

Chapter 3, Part V: More on Model Identification; Examples Chapter 3, Part V: More on Model Identification; Examples Automatic Model Identification Through AIC As mentioned earlier, there is a clear need for automatic, objective methods of identifying the best

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

Chapter 5: Models for Nonstationary Time Series

Chapter 5: Models for Nonstationary Time Series Chapter 5: Models for Nonstationary Time Series Recall that any time series that is a stationary process has a constant mean function. So a process that has a mean function that varies over time must be

More information

2. An Introduction to Moving Average Models and ARMA Models

2. An Introduction to Moving Average Models and ARMA Models . An Introduction to Moving Average Models and ARMA Models.1 White Noise. The MA(1) model.3 The MA(q) model..4 Estimation and forecasting of MA models..5 ARMA(p,q) models. The Moving Average (MA) models

More information

Autoregressive Moving Average (ARMA) Models and their Practical Applications

Autoregressive Moving Average (ARMA) Models and their Practical Applications Autoregressive Moving Average (ARMA) Models and their Practical Applications Massimo Guidolin February 2018 1 Essential Concepts in Time Series Analysis 1.1 Time Series and Their Properties Time series:

More information

APPLIED ECONOMETRIC TIME SERIES 4TH EDITION

APPLIED ECONOMETRIC TIME SERIES 4TH EDITION APPLIED ECONOMETRIC TIME SERIES 4TH EDITION Chapter 2: STATIONARY TIME-SERIES MODELS WALTER ENDERS, UNIVERSITY OF ALABAMA Copyright 2015 John Wiley & Sons, Inc. Section 1 STOCHASTIC DIFFERENCE EQUATION

More information

Econometric Forecasting

Econometric Forecasting Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 1, 2014 Outline Introduction Model-free extrapolation Univariate time-series models Trend

More information

Lecture 4a: ARMA Model

Lecture 4a: ARMA Model Lecture 4a: ARMA Model 1 2 Big Picture Most often our goal is to find a statistical model to describe real time series (estimation), and then predict the future (forecasting) One particularly popular model

More information

Empirical Approach to Modelling and Forecasting Inflation in Ghana

Empirical Approach to Modelling and Forecasting Inflation in Ghana Current Research Journal of Economic Theory 4(3): 83-87, 2012 ISSN: 2042-485X Maxwell Scientific Organization, 2012 Submitted: April 13, 2012 Accepted: May 06, 2012 Published: June 30, 2012 Empirical Approach

More information

A SARIMAX coupled modelling applied to individual load curves intraday forecasting

A SARIMAX coupled modelling applied to individual load curves intraday forecasting A SARIMAX coupled modelling applied to individual load curves intraday forecasting Frédéric Proïa Workshop EDF Institut Henri Poincaré - Paris 05 avril 2012 INRIA Bordeaux Sud-Ouest Institut de Mathématiques

More information

Chapter 3: Regression Methods for Trends

Chapter 3: Regression Methods for Trends Chapter 3: Regression Methods for Trends Time series exhibiting trends over time have a mean function that is some simple function (not necessarily constant) of time. The example random walk graph from

More information

Design of Time Series Model for Road Accident Fatal Death in Tamilnadu

Design of Time Series Model for Road Accident Fatal Death in Tamilnadu Volume 109 No. 8 2016, 225-232 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Design of Time Series Model for Road Accident Fatal Death in Tamilnadu

More information

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1 Forecasting using R Rob J Hyndman 2.4 Non-seasonal ARIMA models Forecasting using R 1 Outline 1 Autoregressive models 2 Moving average models 3 Non-seasonal ARIMA models 4 Partial autocorrelations 5 Estimation

More information

ECONOMETRIA II. CURSO 2009/2010 LAB # 3

ECONOMETRIA II. CURSO 2009/2010 LAB # 3 ECONOMETRIA II. CURSO 2009/2010 LAB # 3 BOX-JENKINS METHODOLOGY The Box Jenkins approach combines the moving average and the autorregresive models. Although both models were already known, the contribution

More information

Using Analysis of Time Series to Forecast numbers of The Patients with Malignant Tumors in Anbar Provinc

Using Analysis of Time Series to Forecast numbers of The Patients with Malignant Tumors in Anbar Provinc Using Analysis of Time Series to Forecast numbers of The Patients with Malignant Tumors in Anbar Provinc /. ) ( ) / (Box & Jenkins).(.(2010-2006) ARIMA(2,1,0). Abstract: The aim of this research is to

More information

Estimating AR/MA models

Estimating AR/MA models September 17, 2009 Goals The likelihood estimation of AR/MA models AR(1) MA(1) Inference Model specification for a given dataset Why MLE? Traditional linear statistics is one methodology of estimating

More information

Econometrics I: Univariate Time Series Econometrics (1)

Econometrics I: Univariate Time Series Econometrics (1) Econometrics I: Dipartimento di Economia Politica e Metodi Quantitativi University of Pavia Overview of the Lecture 1 st EViews Session VI: Some Theoretical Premises 2 Overview of the Lecture 1 st EViews

More information

Sugarcane Productivity in Bihar- A Forecast through ARIMA Model

Sugarcane Productivity in Bihar- A Forecast through ARIMA Model Available online at www.ijpab.com Kumar et al Int. J. Pure App. Biosci. 5 (6): 1042-1051 (2017) ISSN: 2320 7051 DOI: http://dx.doi.org/10.18782/2320-7051.5838 ISSN: 2320 7051 Int. J. Pure App. Biosci.

More information

Time Series Forecasting: A Tool for Out - Sample Model Selection and Evaluation

Time Series Forecasting: A Tool for Out - Sample Model Selection and Evaluation AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 214, Science Huβ, http://www.scihub.org/ajsir ISSN: 2153-649X, doi:1.5251/ajsir.214.5.6.185.194 Time Series Forecasting: A Tool for Out - Sample Model

More information

Lecture 5: Estimation of time series

Lecture 5: Estimation of time series Lecture 5, page 1 Lecture 5: Estimation of time series Outline of lesson 5 (chapter 4) (Extended version of the book): a.) Model formulation Explorative analyses Model formulation b.) Model estimation

More information

ESSE Mid-Term Test 2017 Tuesday 17 October :30-09:45

ESSE Mid-Term Test 2017 Tuesday 17 October :30-09:45 ESSE 4020 3.0 - Mid-Term Test 207 Tuesday 7 October 207. 08:30-09:45 Symbols have their usual meanings. All questions are worth 0 marks, although some are more difficult than others. Answer as many questions

More information

Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting)

Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting) Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting) (overshort example) White noise H 0 : Let Z t be the stationary

More information

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION MAS451/MTH451 Time Series Analysis TIME ALLOWED: 2 HOURS

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION MAS451/MTH451 Time Series Analysis TIME ALLOWED: 2 HOURS NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION 2012-2013 MAS451/MTH451 Time Series Analysis May 2013 TIME ALLOWED: 2 HOURS INSTRUCTIONS TO CANDIDATES 1. This examination paper contains FOUR (4)

More information

Forecasting. Simon Shaw 2005/06 Semester II

Forecasting. Simon Shaw 2005/06 Semester II Forecasting Simon Shaw s.c.shaw@maths.bath.ac.uk 2005/06 Semester II 1 Introduction A critical aspect of managing any business is planning for the future. events is called forecasting. Predicting future

More information

Time Series I Time Domain Methods

Time Series I Time Domain Methods Astrostatistics Summer School Penn State University University Park, PA 16802 May 21, 2007 Overview Filtering and the Likelihood Function Time series is the study of data consisting of a sequence of DEPENDENT

More information

Forecasting Egyptian GDP Using ARIMA Models

Forecasting Egyptian GDP Using ARIMA Models Reports on Economics and Finance, Vol. 5, 2019, no. 1, 35-47 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ref.2019.81023 Forecasting Egyptian GDP Using ARIMA Models Mohamed Reda Abonazel * and

More information

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation University of Oxford Statistical Methods Autocorrelation Identification and Estimation Dr. Órlaith Burke Michaelmas Term, 2011 Department of Statistics, 1 South Parks Road, Oxford OX1 3TG Contents 1 Model

More information

A Data-Driven Model for Software Reliability Prediction

A Data-Driven Model for Software Reliability Prediction A Data-Driven Model for Software Reliability Prediction Author: Jung-Hua Lo IEEE International Conference on Granular Computing (2012) Young Taek Kim KAIST SE Lab. 9/4/2013 Contents Introduction Background

More information

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models Module 3 Descriptive Time Series Statistics and Introduction to Time Series Models Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W Q Meeker November 11, 2015

More information

Lecture 1: Fundamental concepts in Time Series Analysis (part 2)

Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEA-Nice) Sept. 2011 - Jan. 2012 Florian Pelgrin (HEC)

More information

Problem Set 2: Box-Jenkins methodology

Problem Set 2: Box-Jenkins methodology Problem Set : Box-Jenkins methodology 1) For an AR1) process we have: γ0) = σ ε 1 φ σ ε γ0) = 1 φ Hence, For a MA1) process, p lim R = φ γ0) = 1 + θ )σ ε σ ε 1 = γ0) 1 + θ Therefore, p lim R = 1 1 1 +

More information

Time Series Outlier Detection

Time Series Outlier Detection Time Series Outlier Detection Tingyi Zhu July 28, 2016 Tingyi Zhu Time Series Outlier Detection July 28, 2016 1 / 42 Outline Time Series Basics Outliers Detection in Single Time Series Outlier Series Detection

More information

Review Session: Econometrics - CLEFIN (20192)

Review Session: Econometrics - CLEFIN (20192) Review Session: Econometrics - CLEFIN (20192) Part II: Univariate time series analysis Daniele Bianchi March 20, 2013 Fundamentals Stationarity A time series is a sequence of random variables x t, t =

More information

MCMC analysis of classical time series algorithms.

MCMC analysis of classical time series algorithms. MCMC analysis of classical time series algorithms. mbalawata@yahoo.com Lappeenranta University of Technology Lappeenranta, 19.03.2009 Outline Introduction 1 Introduction 2 3 Series generation Box-Jenkins

More information

Basics: Definitions and Notation. Stationarity. A More Formal Definition

Basics: Definitions and Notation. Stationarity. A More Formal Definition Basics: Definitions and Notation A Univariate is a sequence of measurements of the same variable collected over (usually regular intervals of) time. Usual assumption in many time series techniques is that

More information

STAT 436 / Lecture 16: Key

STAT 436 / Lecture 16: Key STAT 436 / 536 - Lecture 16: Key Modeling Non-Stationary Time Series Many time series models are non-stationary. Recall a time series is stationary if the mean and variance are constant in time and the

More information

Study on Modeling and Forecasting of the GDP of Manufacturing Industries in Bangladesh

Study on Modeling and Forecasting of the GDP of Manufacturing Industries in Bangladesh CHIANG MAI UNIVERSITY JOURNAL OF SOCIAL SCIENCE AND HUMANITIES M. N. A. Bhuiyan 1*, Kazi Saleh Ahmed 2 and Roushan Jahan 1 Study on Modeling and Forecasting of the GDP of Manufacturing Industries in Bangladesh

More information

Lesson 14: Model Checking

Lesson 14: Model Checking Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@univaq.it Model checking Given the time series {x t ; t = 1,..., T } suppose that we have estimated

More information

Note: The primary reference for these notes is Enders (2004). An alternative and more technical treatment can be found in Hamilton (1994).

Note: The primary reference for these notes is Enders (2004). An alternative and more technical treatment can be found in Hamilton (1994). Chapter 4 Analysis of a Single Time Series Note: The primary reference for these notes is Enders (4). An alternative and more technical treatment can be found in Hamilton (994). Most data used in financial

More information

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each)

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) GROUND RULES: This exam contains two parts: Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) The maximum number of points on this exam is

More information

Circle a single answer for each multiple choice question. Your choice should be made clearly.

Circle a single answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 4, 215 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 31 questions. Circle

More information

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Moving average processes Autoregressive

More information

Chapter 8: Model Diagnostics

Chapter 8: Model Diagnostics Chapter 8: Model Diagnostics Model diagnostics involve checking how well the model fits. If the model fits poorly, we consider changing the specification of the model. A major tool of model diagnostics

More information

ARIMA Models. Richard G. Pierse

ARIMA Models. Richard G. Pierse ARIMA Models Richard G. Pierse 1 Introduction Time Series Analysis looks at the properties of time series from a purely statistical point of view. No attempt is made to relate variables using a priori

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 4 - Estimation in the time Domain Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 46 Agenda 1 Introduction 2 Moment Estimates 3 Autoregressive Models (AR

More information

Univariate, Nonstationary Processes

Univariate, Nonstationary Processes Univariate, Nonstationary Processes Jamie Monogan University of Georgia March 20, 2018 Jamie Monogan (UGA) Univariate, Nonstationary Processes March 20, 2018 1 / 14 Objectives By the end of this meeting,

More information

Stationary Stochastic Time Series Models

Stationary Stochastic Time Series Models Stationary Stochastic Time Series Models When modeling time series it is useful to regard an observed time series, (x 1,x,..., x n ), as the realisation of a stochastic process. In general a stochastic

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

Minitab Project Report - Assignment 6

Minitab Project Report - Assignment 6 .. Sunspot data Minitab Project Report - Assignment Time Series Plot of y Time Series Plot of X y X 7 9 7 9 The data have a wavy pattern. However, they do not show any seasonality. There seem to be an

More information

Forecasting Area, Production and Yield of Cotton in India using ARIMA Model

Forecasting Area, Production and Yield of Cotton in India using ARIMA Model Forecasting Area, Production and Yield of Cotton in India using ARIMA Model M. K. Debnath 1, Kartic Bera 2 *, P. Mishra 1 1 Department of Agricultural Statistics, Bidhan Chanda Krishi Vishwavidyalaya,

More information

Final Examination 7/6/2011

Final Examination 7/6/2011 The Islamic University of Gaza Faculty of Commerce Department of Economics & Applied Statistics Time Series Analysis - Dr. Samir Safi Spring Semester 211 Final Examination 7/6/211 Name: ID: INSTRUCTIONS:

More information

Suan Sunandha Rajabhat University

Suan Sunandha Rajabhat University Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis Kunya Bowornchockchai Suan Sunandha Rajabhat University INTRODUCTION The objective of this research is to forecast

More information

Exercises - Time series analysis

Exercises - Time series analysis Descriptive analysis of a time series (1) Estimate the trend of the series of gasoline consumption in Spain using a straight line in the period from 1945 to 1995 and generate forecasts for 24 months. Compare

More information

Quantitative Finance I

Quantitative Finance I Quantitative Finance I Linear AR and MA Models (Lecture 4) Winter Semester 01/013 by Lukas Vacha * If viewed in.pdf format - for full functionality use Mathematica 7 (or higher) notebook (.nb) version

More information

Econ 623 Econometrics II Topic 2: Stationary Time Series

Econ 623 Econometrics II Topic 2: Stationary Time Series 1 Introduction Econ 623 Econometrics II Topic 2: Stationary Time Series In the regression model we can model the error term as an autoregression AR(1) process. That is, we can use the past value of the

More information

Forecasting the Prices of Indian Natural Rubber using ARIMA Model

Forecasting the Prices of Indian Natural Rubber using ARIMA Model Available online at www.ijpab.com Rani and Krishnan Int. J. Pure App. Biosci. 6 (2): 217-221 (2018) ISSN: 2320 7051 DOI: http://dx.doi.org/10.18782/2320-7051.5464 ISSN: 2320 7051 Int. J. Pure App. Biosci.

More information

ARIMA modeling to forecast area and production of rice in West Bengal

ARIMA modeling to forecast area and production of rice in West Bengal Journal of Crop and Weed, 9(2):26-31(2013) ARIMA modeling to forecast area and production of rice in West Bengal R. BISWAS AND B. BHATTACHARYYA Department of Agricultural Statistics Bidhan Chandra Krishi

More information

Chapter 6: Model Specification for Time Series

Chapter 6: Model Specification for Time Series Chapter 6: Model Specification for Time Series The ARIMA(p, d, q) class of models as a broad class can describe many real time series. Model specification for ARIMA(p, d, q) models involves 1. Choosing

More information

Some Time-Series Models

Some Time-Series Models Some Time-Series Models Outline 1. Stochastic processes and their properties 2. Stationary processes 3. Some properties of the autocorrelation function 4. Some useful models Purely random processes, random

More information

Lesson 2: Analysis of time series

Lesson 2: Analysis of time series Lesson 2: Analysis of time series Time series Main aims of time series analysis choosing right model statistical testing forecast driving and optimalisation Problems in analysis of time series time problems

More information

3 Theory of stationary random processes

3 Theory of stationary random processes 3 Theory of stationary random processes 3.1 Linear filters and the General linear process A filter is a transformation of one random sequence {U t } into another, {Y t }. A linear filter is a transformation

More information

7. Forecasting with ARIMA models

7. Forecasting with ARIMA models 7. Forecasting with ARIMA models 309 Outline: Introduction The prediction equation of an ARIMA model Interpreting the predictions Variance of the predictions Forecast updating Measuring predictability

More information

Univariate Time Series Analysis; ARIMA Models

Univariate Time Series Analysis; ARIMA Models Econometrics 2 Fall 24 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Outline of the Lecture () Introduction to univariate time series analysis. (2) Stationarity. (3) Characterizing

More information

Time Series Analysis of United States of America Crude Oil and Petroleum Products Importations from Saudi Arabia

Time Series Analysis of United States of America Crude Oil and Petroleum Products Importations from Saudi Arabia International Journal of Applied Science and Technology Vol. 5, No. 5; October 2015 Time Series Analysis of United States of America Crude Oil and Petroleum Products Importations from Saudi Arabia Olayan

More information

TIME SERIES DATA PREDICTION OF NATURAL GAS CONSUMPTION USING ARIMA MODEL

TIME SERIES DATA PREDICTION OF NATURAL GAS CONSUMPTION USING ARIMA MODEL International Journal of Information Technology & Management Information System (IJITMIS) Volume 7, Issue 3, Sep-Dec-2016, pp. 01 07, Article ID: IJITMIS_07_03_001 Available online at http://www.iaeme.com/ijitmis/issues.asp?jtype=ijitmis&vtype=7&itype=3

More information

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27 ARIMA Models Jamie Monogan University of Georgia January 16, 2018 Jamie Monogan (UGA) ARIMA Models January 16, 2018 1 / 27 Objectives By the end of this meeting, participants should be able to: Argue why

More information

Asian Economic and Financial Review. SEASONAL ARIMA MODELLING OF NIGERIAN MONTHLY CRUDE OIL PRICES Ette Harrison Etuk

Asian Economic and Financial Review. SEASONAL ARIMA MODELLING OF NIGERIAN MONTHLY CRUDE OIL PRICES Ette Harrison Etuk Asian Economic and Financial Review journal homepage: http://aessweb.com/journal-detail.php?id=5002 SEASONAL ARIMA MODELLING OF NIGERIAN MONTHLY CRUDE OIL PRICES Ette Harrison Etuk Department of Mathematics/Computer

More information

Advanced Econometrics

Advanced Econometrics Advanced Econometrics Marco Sunder Nov 04 2010 Marco Sunder Advanced Econometrics 1/ 25 Contents 1 2 3 Marco Sunder Advanced Econometrics 2/ 25 Music Marco Sunder Advanced Econometrics 3/ 25 Music Marco

More information

Applied Time. Series Analysis. Wayne A. Woodward. Henry L. Gray. Alan C. Elliott. Dallas, Texas, USA

Applied Time. Series Analysis. Wayne A. Woodward. Henry L. Gray. Alan C. Elliott. Dallas, Texas, USA Applied Time Series Analysis Wayne A. Woodward Southern Methodist University Dallas, Texas, USA Henry L. Gray Southern Methodist University Dallas, Texas, USA Alan C. Elliott University of Texas Southwestern

More information

Problem Set 2 Solution Sketches Time Series Analysis Spring 2010

Problem Set 2 Solution Sketches Time Series Analysis Spring 2010 Problem Set 2 Solution Sketches Time Series Analysis Spring 2010 Forecasting 1. Let X and Y be two random variables such that E(X 2 ) < and E(Y 2 )

More information

MGR-815. Notes for the MGR-815 course. 12 June School of Superior Technology. Professor Zbigniew Dziong

MGR-815. Notes for the MGR-815 course. 12 June School of Superior Technology. Professor Zbigniew Dziong Modeling, Estimation and Control, for Telecommunication Networks Notes for the MGR-815 course 12 June 2010 School of Superior Technology Professor Zbigniew Dziong 1 Table of Contents Preface 5 1. Example

More information

FORECASTING THE INVENTORY LEVEL OF MAGNETIC CARDS IN TOLLING SYSTEM

FORECASTING THE INVENTORY LEVEL OF MAGNETIC CARDS IN TOLLING SYSTEM FORECASTING THE INVENTORY LEVEL OF MAGNETIC CARDS IN TOLLING SYSTEM Bratislav Lazić a, Nebojša Bojović b, Gordana Radivojević b*, Gorana Šormaz a a University of Belgrade, Mihajlo Pupin Institute, Serbia

More information

Dynamic Time Series Regression: A Panacea for Spurious Correlations

Dynamic Time Series Regression: A Panacea for Spurious Correlations International Journal of Scientific and Research Publications, Volume 6, Issue 10, October 2016 337 Dynamic Time Series Regression: A Panacea for Spurious Correlations Emmanuel Alphonsus Akpan *, Imoh

More information

Forecasting Bangladesh's Inflation through Econometric Models

Forecasting Bangladesh's Inflation through Econometric Models American Journal of Economics and Business Administration Original Research Paper Forecasting Bangladesh's Inflation through Econometric Models 1,2 Nazmul Islam 1 Department of Humanities, Bangladesh University

More information

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M.

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M. TIME SERIES ANALYSIS Forecasting and Control Fifth Edition GEORGE E. P. BOX GWILYM M. JENKINS GREGORY C. REINSEL GRETA M. LJUNG Wiley CONTENTS PREFACE TO THE FIFTH EDITION PREFACE TO THE FOURTH EDITION

More information