Final Exam November 24, Problem-1: Consider random walk with drift plus a linear time trend: ( t

Size: px
Start display at page:

Download "Final Exam November 24, Problem-1: Consider random walk with drift plus a linear time trend: ( t"

Transcription

1 Problem-1: Consider random walk with drift plus a linear time trend: y t = c + y t 1 + δ t + ϵ t, (1) where {ϵ t } is white noise with E[ϵ 2 t ] = σ 2 >, and y is a non-stochastic initial value. (a) Show that y t = ( c + δ ) t + δ 2 2 t2 + y + t ϵ j. (2) j=1 (b) Compute E[y t ]. (c) Compute V ar[y t ] E[(y t E[y t ]) 2 ]. (d) Compute Cov[y t, y t h ] E[(y t E[y t ])(y t h E[y t h ])] for h 1. (e) Is {y t } covariance stationary? Explain why or why not. (f) Suppose that we simulate the process (1) with y = and ϵ t N(,.5). We consider four cases for (c, δ): Case A. (c, δ) = (.4,.1). Case B. (c, δ) = ( 1.1,.1). Case C. (c, δ) = (.4,.1). Case D. (c, δ) = (1.1,.1). Figure 1 plots simulated sample paths with sample size n = 1. Panels 1-4 of Figure 1 match Cases A-D but possibly with a different order. Answer with a brief reason which panel matches which case. 1

2 Figure 1: Random Walk with Drift plus Linear Time Trend Which case? Which case? Which case? Which case? Case A: (c, δ) = (.4,.1). Case B: (c, δ) = ( 1.1,.1). Case C: (c, δ) = (.4,.1). Case D: (c, δ) = (1.1,.1). 2

3 Problem-2: Consider testing for the unit root hypothesis of a time series {y t }. Suppose that we run the Dickey-Fuller test with Approach #2, under which the regression model is written as y t = α + ϕy t 1 + u t = x tθ + u t (3) with x t = [1, y t 1 ] and θ = [α, ϕ]. (a) Write the expression of the ordinary least squares (OLS) estimator ˆθ n, using x t and y t. (b) Write the expression of the test statistic S n. (c) State the 5% critical value c n when sample size is n = 1. (Instruction: Your answer does not have to be exactly the same as what we learned in class. You get credits if your answer is reasonably close to the true critical value.) (d) Do you reject or accept H : ϕ = 1 at the 5% level when S n < c n? (e) Recall from class that Approach #2 is valid if a true DGP is y t = ϕ y t 1 + ϵ t with ϕ 1 and ϵ t (, σ 2 ). Hereafter we analyze the consequence of having serially correlated errors instead of IID. Assume that the true DGP is given by y t = ϕ y t 1 + ϵ t, ϵ t = ν t + β ν t 1, ν t N(, 1), ϕ {1,.95,.9}, β {,.2,.4}. (4) (Remark: When β =, this DGP reduces to the IID case elaborated in class.) Show 3

4 that E[ϵ t ] =, γ() E[ϵ 2 t ] = 1 + β, 2 γ(1) E[ϵ t ϵ t 1 ] = β, γ(h) E[ϵ t ϵ t h ] = for any h 2. (f) We simulate J = 1 Monte Carlo samples with sample size n {1, 5, 1} from DGP (4). In Table 1, we report rejection frequencies of Approach #2 of the Dickey-Fuller test with nominal size 5%. Discuss the empirical size and power of Approach #2. (g) To achieve correct size for any β, Phillips (1987) and Phillips and Perron (1988) proposed a modified version of the Dickey-Fuller test. 1 Keep the regression model (3) and modify the test statistic S n as follows. S n = S n B n, where S n is the usual test statistic used in Approach #2, and the extra term B n is defined as follows. B n = ˆΣ 1 n (2, 2) ˆγ n (1), where û t = y t x tˆθ n, ˆγ n (1) = 1 n n û t û t 1, t=2 1 P. C. B. Phillips (1987). Time Series Regression with a Unit Root. Econometrica, 55, ; P. C. B. Phillips and P. Perron (1988). Testing for a Unit Root in Time Series Regression. Biometrika, 75,

5 and 1 ˆΣ n (2, 2) is the (2, 2)-element of ˆΣ 1 n = [ 1 n 2 1 n x t x t]. t=1 (Remark: It can be shown that 1 ˆΣ n (2, 2) > ; ˆΣ 1 n (2, 2) = O p (1) under H : ϕ = 1; ˆγ n (1) p γ(1) = β.) We use the same critical value c n as in Approach #2 (i.e. we reject H : ϕ = 1 at the 5% level if and only if S n < c n ). Provide an intuitive explanation on why the Phillips-Perron test statistic S n is supposed to achieve correct size for any β. (h) In Table 2 we report rejection frequencies of Approach #2 and the Phillips-Perron test. (Remark: The rejection frequencies of the former are all the same as those in Table 1.) Compare the two tests in terms of empirical size and power. 5

6 Table 1: Rejection Frequencies of Approach #2 n = 1 β = β = β = n = 5 β = β = β = n = 1 β = β = β = DGP is y t = ϕ y t 1 + ϵ t, ϵ t = ν t + β ν t 1, ν t N(, 1), ϕ {1,.95,.9}, and β {,.2,.4}. We draw J = 1 Monte Carlo samples with sample size n {1, 5, 1} from this DGP. We run the Dickey-Fuller test with Approach #2 and report rejection frequencies with respect to the nominal size 5%. 6

7 Table 2: Rejection Frequencies of Approach #2 and Phillips-Perron Test n = 1 #2 PP #2 PP #2 PP β = β = β = n = 5 #2 PP #2 PP #2 PP β = β = β = n = 1 #2 PP #2 PP #2 PP β = β = β = DGP is y t = ϕ y t 1 + ϵ t, ϵ t = ν t + β ν t 1, ν t N(, 1), ϕ {1,.95,.9}, and β {,.2,.4}. We draw J = 1 Monte Carlo samples with sample size n {1, 5, 1} from this DGP. We run the Dickey-Fuller test with Approach #2 and the Phillips-Perron (PP) test, and report rejection frequencies with respect to the nominal size 5%. 7

8 Problem-3: Consider two time series {y t } and {x t }. Suppose that a true DGP is given by y t = β x t + ϵ yt, (5) x t = d + x t 1 + ϵ xt, (6) where β, d, and ϵ t = [ϵ yt, ϵ xt ] follows a joint white noise with E[ϵ t ϵ t] = σ2 ϵy. σϵx 2 (a) Show that t x t = d t + x + ϵ xj, (7) j=1 where x is understood to be a non-stochastic initial value. (Remark: Since {x t } follows a random walk with drift, it is trivially nonstationary.) (b) Eq. (5) can be rewritten as y t = y + d t + and hence t ϵ yj + η yt (8) j=1 y t = d + y t 1 + ϵ yt + η yt, (9) where η yt = η yt η y,t 1 and ν t = [ϵ yt, η yt ] follows a joint white noise with E[ν t ν t] = E[(ϵ yt) 2 ]. (1) E[ηyt] 2 8

9 Properly characterize each of ( y, d, ϵ yt, η yt, E[(ϵ yt) 2 ], E[η 2 yt] ) in terms of (d, β, x, ϵ xt, ϵ yt, σ 2 ϵy, σ 2 ϵx). (Remark: Since {y t } follows a random walk with drift and noise, it is trivially nonstationary.) (c) Eqs. (5) and (6) can be rewritten as a structural VAR(1): n 11 n 12 y t = c 1 + m 11 m 12 y t 1 + ϵ yt, (11) n 21 n 22 x t c 2 m 21 m 22 x t 1 ϵ xt or compactly Nz t = c + Mz t 1 + ϵ t. Properly characterize each of (n 11, n 12, n 21, n 22, c 1, c 2, m 11, m 12, m 21, m 22 ) in terms of (d, β ). (d) Eqs. (5) and (6) can be rewritten as a vector error correction (VEC) form: y t = a 1 + α y (y t 1 β x t 1 ) + e yt. (12) x t a 2 α x e xt Properly characterize each of (a 1, a 2, α y, α x, e yt, e xt ) in terms of (d, β, ϵ yt, ϵ xt ). (e) Based on the speed-of-adjustment parameters (α y, α x ), explain how {y t } and {x t } correct a deviation from the equilibrium level y t 1 = β x t 1. (Instruction: Just a few lines of concise explanation should be enough.) (f) Hereafter we consider a specific example with β =.5, d =.5, ϵ t N(, I 2 ), and 9

10 sample size n = 1. Figure 2 plots a simulated path of {y t } and {x t } (Panel 1) and the equilibrium error ϵ yt = y t β x t = y t.5x t (Panel 2). Answer with a brief reason which of the two lines in Panel 1 depicts {y t }. (g) Suppose that we test whether {y t } and {x t } are cointegrated with a prescribed value β =.5. We apply Approach #1 of the Dickey-Fuller unit root test with respect to ϵ yt = y t.5x t plotted in Panel 2 of Figure 2. The OLS estimator from the regression model ϵ yt = ϕϵ yt 1 +ν t is ˆϕ n =.92, and the test statistic is S n = n( ˆϕ n 1) = Which conclusion does the test reach cointegration or non-cointegration between {y t } and {x t }? (h) Suppose alternatively that we test whether {y t } and {x t } are cointegrated without any prescribed value of β. We run a linear regression model y t = α + βx t + u t in order to compute OLS estimators (ˆα n, ˆβ n ) and residuals û t = y t ˆα n ˆβx t. Then we apply Approach #1 of the Dickey-Fuller unit root test with the adjusted critical value for {û t }. The OLS estimator from the regression model û t = ϕû t 1 + ν t is ˆϕ n =.99, and the test statistic is S n = n( ˆϕ n 1) = Which conclusion does the test reach cointegration or non-cointegration between {y t } and {x t }? 1

11 Figure 2: Simulated Bivariate Vector Error Correction Processes Which is {y t }? Which is {x t }? {y t β x t } 11

Questions and Answers on Unit Roots, Cointegration, VARs and VECMs

Questions and Answers on Unit Roots, Cointegration, VARs and VECMs Questions and Answers on Unit Roots, Cointegration, VARs and VECMs L. Magee Winter, 2012 1. Let ɛ t, t = 1,..., T be a series of independent draws from a N[0,1] distribution. Let w t, t = 1,..., T, be

More information

MEI Exam Review. June 7, 2002

MEI Exam Review. June 7, 2002 MEI Exam Review June 7, 2002 1 Final Exam Revision Notes 1.1 Random Rules and Formulas Linear transformations of random variables. f y (Y ) = f x (X) dx. dg Inverse Proof. (AB)(AB) 1 = I. (B 1 A 1 )(AB)(AB)

More information

BCT Lecture 3. Lukas Vacha.

BCT Lecture 3. Lukas Vacha. BCT Lecture 3 Lukas Vacha vachal@utia.cas.cz Stationarity and Unit Root Testing Why do we need to test for Non-Stationarity? The stationarity or otherwise of a series can strongly influence its behaviour

More information

Testing for Unit Roots with Cointegrated Data

Testing for Unit Roots with Cointegrated Data Discussion Paper No. 2015-57 August 19, 2015 http://www.economics-ejournal.org/economics/discussionpapers/2015-57 Testing for Unit Roots with Cointegrated Data W. Robert Reed Abstract This paper demonstrates

More information

ECON 616: Lecture Two: Deterministic Trends, Nonstationary Processes

ECON 616: Lecture Two: Deterministic Trends, Nonstationary Processes ECON 616: Lecture Two: Deterministic Trends, Nonstationary Processes ED HERBST September 11, 2017 Background Hamilton, chapters 15-16 Trends vs Cycles A commond decomposition of macroeconomic time series

More information

Analysis of Nonstationary Time Series: Monte Carlo Simulations on Spurious Regression

Analysis of Nonstationary Time Series: Monte Carlo Simulations on Spurious Regression Analsis of Nonstationar Time Series: Monte Carlo Simulations on Spurious Regression Kaiji Motegi 3 rd Quarter 17, Kobe Universit 1 Descriptions of Figures In this note, we run Monte Carlo simulations in

More information

Analysis of Nonstationary Time Series: Monte Carlo Simulations on Spurious Regression

Analysis of Nonstationary Time Series: Monte Carlo Simulations on Spurious Regression Analsis of Nonstationar Time Series: Monte Carlo Simulations on Spurious Regression Kaiji Motegi 3 rd Quarter 18, Kobe Universit 1 Description In this note, we run Monte Carlo simulations in order to better

More information

Moreover, the second term is derived from: 1 T ) 2 1

Moreover, the second term is derived from: 1 T ) 2 1 170 Moreover, the second term is derived from: 1 T T ɛt 2 σ 2 ɛ. Therefore, 1 σ 2 ɛt T y t 1 ɛ t = 1 2 ( yt σ T ) 2 1 2σ 2 ɛ 1 T T ɛt 2 1 2 (χ2 (1) 1). (b) Next, consider y 2 t 1. T E y 2 t 1 T T = E(y

More information

Nonsense Regressions due to Neglected Time-varying Means

Nonsense Regressions due to Neglected Time-varying Means Nonsense Regressions due to Neglected Time-varying Means Uwe Hassler Free University of Berlin Institute of Statistics and Econometrics Boltzmannstr. 20 D-14195 Berlin Germany email: uwe@wiwiss.fu-berlin.de

More information

ECON 4160, Spring term Lecture 12

ECON 4160, Spring term Lecture 12 ECON 4160, Spring term 2013. Lecture 12 Non-stationarity and co-integration 2/2 Ragnar Nymoen Department of Economics 13 Nov 2013 1 / 53 Introduction I So far we have considered: Stationary VAR, with deterministic

More information

E 4101/5101 Lecture 9: Non-stationarity

E 4101/5101 Lecture 9: Non-stationarity E 4101/5101 Lecture 9: Non-stationarity Ragnar Nymoen 30 March 2011 Introduction I Main references: Hamilton Ch 15,16 and 17. Davidson and MacKinnon Ch 14.3 and 14.4 Also read Ch 2.4 and Ch 2.5 in Davidson

More information

DEPARTMENT OF ECONOMICS AND FINANCE COLLEGE OF BUSINESS AND ECONOMICS UNIVERSITY OF CANTERBURY CHRISTCHURCH, NEW ZEALAND

DEPARTMENT OF ECONOMICS AND FINANCE COLLEGE OF BUSINESS AND ECONOMICS UNIVERSITY OF CANTERBURY CHRISTCHURCH, NEW ZEALAND DEPARTMENT OF ECONOMICS AND FINANCE COLLEGE OF BUSINESS AND ECONOMICS UNIVERSITY OF CANTERBURY CHRISTCHURCH, NEW ZEALAND Testing For Unit Roots With Cointegrated Data NOTE: This paper is a revision of

More information

Chapter 2: Unit Roots

Chapter 2: Unit Roots Chapter 2: Unit Roots 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and undeconometrics II. Unit Roots... 3 II.1 Integration Level... 3 II.2 Nonstationarity

More information

Advanced Econometrics

Advanced Econometrics Based on the textbook by Verbeek: A Guide to Modern Econometrics Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna May 2, 2013 Outline Univariate

More information

ECON 4160, Lecture 11 and 12

ECON 4160, Lecture 11 and 12 ECON 4160, 2016. Lecture 11 and 12 Co-integration Ragnar Nymoen Department of Economics 9 November 2017 1 / 43 Introduction I So far we have considered: Stationary VAR ( no unit roots ) Standard inference

More information

MA Advanced Econometrics: Spurious Regressions and Cointegration

MA Advanced Econometrics: Spurious Regressions and Cointegration MA Advanced Econometrics: Spurious Regressions and Cointegration Karl Whelan School of Economics, UCD February 22, 2011 Karl Whelan (UCD) Spurious Regressions and Cointegration February 22, 2011 1 / 18

More information

Nonstationary time series models

Nonstationary time series models 13 November, 2009 Goals Trends in economic data. Alternative models of time series trends: deterministic trend, and stochastic trend. Comparison of deterministic and stochastic trend models The statistical

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

7. Integrated Processes

7. Integrated Processes 7. Integrated Processes Up to now: Analysis of stationary processes (stationary ARMA(p, q) processes) Problem: Many economic time series exhibit non-stationary patterns over time 226 Example: We consider

More information

E 4160 Autumn term Lecture 9: Deterministic trends vs integrated series; Spurious regression; Dickey-Fuller distribution and test

E 4160 Autumn term Lecture 9: Deterministic trends vs integrated series; Spurious regression; Dickey-Fuller distribution and test E 4160 Autumn term 2016. Lecture 9: Deterministic trends vs integrated series; Spurious regression; Dickey-Fuller distribution and test Ragnar Nymoen Department of Economics, University of Oslo 24 October

More information

Lecture 8a: Spurious Regression

Lecture 8a: Spurious Regression Lecture 8a: Spurious Regression 1 2 Old Stuff The traditional statistical theory holds when we run regression using stationary variables. For example, when we regress one stationary series onto another

More information

Lecture 8a: Spurious Regression

Lecture 8a: Spurious Regression Lecture 8a: Spurious Regression 1 Old Stuff The traditional statistical theory holds when we run regression using (weakly or covariance) stationary variables. For example, when we regress one stationary

More information

Financial Econometrics

Financial Econometrics Financial Econometrics Long-run Relationships in Finance Gerald P. Dwyer Trinity College, Dublin January 2016 Outline 1 Long-Run Relationships Review of Nonstationarity in Mean Cointegration Vector Error

More information

7. Integrated Processes

7. Integrated Processes 7. Integrated Processes Up to now: Analysis of stationary processes (stationary ARMA(p, q) processes) Problem: Many economic time series exhibit non-stationary patterns over time 226 Example: We consider

More information

Econometrics. Week 11. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague

Econometrics. Week 11. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Econometrics Week 11 Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Fall 2012 1 / 30 Recommended Reading For the today Advanced Time Series Topics Selected topics

More information

Non-Stationary Time Series and Unit Root Testing

Non-Stationary Time Series and Unit Root Testing Econometrics II Non-Stationary Time Series and Unit Root Testing Morten Nyboe Tabor Course Outline: Non-Stationary Time Series and Unit Root Testing 1 Stationarity and Deviation from Stationarity Trend-Stationarity

More information

Testing for non-stationarity

Testing for non-stationarity 20 November, 2009 Overview The tests for investigating the non-stationary of a time series falls into four types: 1 Check the null that there is a unit root against stationarity. Within these, there are

More information

Univariate, Nonstationary Processes

Univariate, Nonstationary Processes Univariate, Nonstationary Processes Jamie Monogan University of Georgia March 20, 2018 Jamie Monogan (UGA) Univariate, Nonstationary Processes March 20, 2018 1 / 14 Objectives By the end of this meeting,

More information

A TIME SERIES PARADOX: UNIT ROOT TESTS PERFORM POORLY WHEN DATA ARE COINTEGRATED

A TIME SERIES PARADOX: UNIT ROOT TESTS PERFORM POORLY WHEN DATA ARE COINTEGRATED A TIME SERIES PARADOX: UNIT ROOT TESTS PERFORM POORLY WHEN DATA ARE COINTEGRATED by W. Robert Reed Department of Economics and Finance University of Canterbury, New Zealand Email: bob.reed@canterbury.ac.nz

More information

Nonstationary Time Series:

Nonstationary Time Series: Nonstationary Time Series: Unit Roots Egon Zakrajšek Division of Monetary Affairs Federal Reserve Board Summer School in Financial Mathematics Faculty of Mathematics & Physics University of Ljubljana September

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

Non-Stationary Time Series and Unit Root Testing

Non-Stationary Time Series and Unit Root Testing Econometrics II Non-Stationary Time Series and Unit Root Testing Morten Nyboe Tabor Course Outline: Non-Stationary Time Series and Unit Root Testing 1 Stationarity and Deviation from Stationarity Trend-Stationarity

More information

Steven Cook University of Wales Swansea. Abstract

Steven Cook University of Wales Swansea. Abstract On the finite sample power of modified Dickey Fuller tests: The role of the initial condition Steven Cook University of Wales Swansea Abstract The relationship between the initial condition of time series

More information

Model Specification Test with Correlated but not Cointegrated Variables

Model Specification Test with Correlated but not Cointegrated Variables Model Specification Test with Correlated but not Cointegrated Variables Li Gan Department of Economics, Texas A&M University, College Station, TX 77843-4228 Cheng Hsiao Department of Economics, University

More information

The Number of Bootstrap Replicates in Bootstrap Dickey-Fuller Unit Root Tests

The Number of Bootstrap Replicates in Bootstrap Dickey-Fuller Unit Root Tests Working Paper 2013:8 Department of Statistics The Number of Bootstrap Replicates in Bootstrap Dickey-Fuller Unit Root Tests Jianxin Wei Working Paper 2013:8 June 2013 Department of Statistics Uppsala

More information

Unit Root and Cointegration

Unit Root and Cointegration Unit Root and Cointegration Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt@illinois.edu Oct 7th, 016 C. Hurtado (UIUC - Economics) Applied Econometrics On the

More information

Nonstationary Panels

Nonstationary Panels Nonstationary Panels Based on chapters 12.4, 12.5, and 12.6 of Baltagi, B. (2005): Econometric Analysis of Panel Data, 3rd edition. Chichester, John Wiley & Sons. June 3, 2009 Agenda 1 Spurious Regressions

More information

A Simple Test for Spurious Regression

A Simple Test for Spurious Regression Motivation The test statistic MC Evidence To be done... Department of Economics and Finance Universidad de Guanajuato ITAM, Seminario Aleatorio, 2009 Motivation The test statistic MC Evidence To be done...

More information

Vector error correction model, VECM Cointegrated VAR

Vector error correction model, VECM Cointegrated VAR 1 / 58 Vector error correction model, VECM Cointegrated VAR Chapter 4 Financial Econometrics Michael Hauser WS17/18 2 / 58 Content Motivation: plausible economic relations Model with I(1) variables: spurious

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information

Stationary and nonstationary variables

Stationary and nonstationary variables Stationary and nonstationary variables Stationary variable: 1. Finite and constant in time expected value: E (y t ) = µ < 2. Finite and constant in time variance: Var (y t ) = σ 2 < 3. Covariance dependent

More information

Consider the trend-cycle decomposition of a time series y t

Consider the trend-cycle decomposition of a time series y t 1 Unit Root Tests Consider the trend-cycle decomposition of a time series y t y t = TD t + TS t + C t = TD t + Z t The basic issue in unit root testing is to determine if TS t = 0. Two classes of tests,

More information

[y i α βx i ] 2 (2) Q = i=1

[y i α βx i ] 2 (2) Q = i=1 Least squares fits This section has no probability in it. There are no random variables. We are given n points (x i, y i ) and want to find the equation of the line that best fits them. We take the equation

More information

Time series: Cointegration

Time series: Cointegration Time series: Cointegration May 29, 2018 1 Unit Roots and Integration Univariate time series unit roots, trends, and stationarity Have so far glossed over the question of stationarity, except for my stating

More information

Non-Stationary Time Series and Unit Root Testing

Non-Stationary Time Series and Unit Root Testing Econometrics II Non-Stationary Time Series and Unit Root Testing Morten Nyboe Tabor Course Outline: Non-Stationary Time Series and Unit Root Testing 1 Stationarity and Deviation from Stationarity Trend-Stationarity

More information

Supplemental Material for KERNEL-BASED INFERENCE IN TIME-VARYING COEFFICIENT COINTEGRATING REGRESSION. September 2017

Supplemental Material for KERNEL-BASED INFERENCE IN TIME-VARYING COEFFICIENT COINTEGRATING REGRESSION. September 2017 Supplemental Material for KERNEL-BASED INFERENCE IN TIME-VARYING COEFFICIENT COINTEGRATING REGRESSION By Degui Li, Peter C. B. Phillips, and Jiti Gao September 017 COWLES FOUNDATION DISCUSSION PAPER NO.

More information

7 Introduction to Time Series

7 Introduction to Time Series Econ 495 - Econometric Review 1 7 Introduction to Time Series 7.1 Time Series vs. Cross-Sectional Data Time series data has a temporal ordering, unlike cross-section data, we will need to changes some

More information

Non-Stationary Time Series, Cointegration, and Spurious Regression

Non-Stationary Time Series, Cointegration, and Spurious Regression Econometrics II Non-Stationary Time Series, Cointegration, and Spurious Regression Econometrics II Course Outline: Non-Stationary Time Series, Cointegration and Spurious Regression 1 Regression with Non-Stationarity

More information

Choice of Spectral Density Estimator in Ng-Perron Test: Comparative Analysis

Choice of Spectral Density Estimator in Ng-Perron Test: Comparative Analysis MPRA Munich Personal RePEc Archive Choice of Spectral Density Estimator in Ng-Perron Test: Comparative Analysis Muhammad Irfan Malik and Atiq-ur- Rehman International Institute of Islamic Economics, International

More information

9) Time series econometrics

9) Time series econometrics 30C00200 Econometrics 9) Time series econometrics Timo Kuosmanen Professor Management Science http://nomepre.net/index.php/timokuosmanen 1 Macroeconomic data: GDP Inflation rate Examples of time series

More information

Panel unit root and cointegration methods

Panel unit root and cointegration methods University of Vienna, Dept. of Economics Master in Economics Vienna 2010 Outline of the talk (1) Unit root, cointegration and estimation in time series. 1a) Unit Root tests (Dickey-Fuller Test, 1979);

More information

Studies in Nonlinear Dynamics and Econometrics

Studies in Nonlinear Dynamics and Econometrics Studies in Nonlinear Dynamics and Econometrics Quarterly Journal April 1997, Volume, Number 1 The MIT Press Studies in Nonlinear Dynamics and Econometrics (ISSN 1081-186) is a quarterly journal published

More information

Testing Error Correction in Panel data

Testing Error Correction in Panel data University of Vienna, Dept. of Economics Master in Economics Vienna 2010 The Model (1) Westerlund (2007) consider the following DGP: y it = φ 1i + φ 2i t + z it (1) x it = x it 1 + υ it (2) where the stochastic

More information

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics Jiti Gao Department of Statistics School of Mathematics and Statistics The University of Western Australia Crawley

More information

7 Introduction to Time Series Time Series vs. Cross-Sectional Data Detrending Time Series... 15

7 Introduction to Time Series Time Series vs. Cross-Sectional Data Detrending Time Series... 15 Econ 495 - Econometric Review 1 Contents 7 Introduction to Time Series 3 7.1 Time Series vs. Cross-Sectional Data............ 3 7.2 Detrending Time Series................... 15 7.3 Types of Stochastic

More information

11/18/2008. So run regression in first differences to examine association. 18 November November November 2008

11/18/2008. So run regression in first differences to examine association. 18 November November November 2008 Time Series Econometrics 7 Vijayamohanan Pillai N Unit Root Tests Vijayamohan: CDS M Phil: Time Series 7 1 Vijayamohan: CDS M Phil: Time Series 7 2 R 2 > DW Spurious/Nonsense Regression. Integrated but

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

The Slow Convergence of OLS Estimators of α, β and Portfolio. β and Portfolio Weights under Long Memory Stochastic Volatility

The Slow Convergence of OLS Estimators of α, β and Portfolio. β and Portfolio Weights under Long Memory Stochastic Volatility The Slow Convergence of OLS Estimators of α, β and Portfolio Weights under Long Memory Stochastic Volatility New York University Stern School of Business June 21, 2018 Introduction Bivariate long memory

More information

Dynamic Econometric Models Time Series Econometrics for Microeconometricians

Dynamic Econometric Models Time Series Econometrics for Microeconometricians Dynamic Econometric Models Time Series Econometrics for Microeconometricians Walter Beckert Department of Economics Birkbeck College, University of London Institute for Fiscal Studies 26-27 May 2011, DIW

More information

Unit Roots in Time Series with Changepoints

Unit Roots in Time Series with Changepoints International Journal of Statistics and Probability; Vol. 6, No. 6; November 2017 ISSN 1927-7032 E-ISSN 1927-7040 Published by Canadian Center of Science and Education Unit Roots in Time Series with Changepoints

More information

A Test of Cointegration Rank Based Title Component Analysis.

A Test of Cointegration Rank Based Title Component Analysis. A Test of Cointegration Rank Based Title Component Analysis Author(s) Chigira, Hiroaki Citation Issue 2006-01 Date Type Technical Report Text Version publisher URL http://hdl.handle.net/10086/13683 Right

More information

The Impact of the Initial Condition on Covariate Augmented Unit Root Tests

The Impact of the Initial Condition on Covariate Augmented Unit Root Tests The Impact of the Initial Condition on Covariate Augmented Unit Root Tests Chrystalleni Aristidou, David I. Harvey and Stephen J. Leybourne School of Economics, University of Nottingham January 2016 Abstract

More information

Bayesian Inference. Chapter 4: Regression and Hierarchical Models

Bayesian Inference. Chapter 4: Regression and Hierarchical Models Bayesian Inference Chapter 4: Regression and Hierarchical Models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Advanced Statistics and Data Mining Summer School

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 6 Jakub Mućk Econometrics of Panel Data Meeting # 6 1 / 36 Outline 1 The First-Difference (FD) estimator 2 Dynamic panel data models 3 The Anderson and Hsiao

More information

Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem

Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Stochastic vs. deterministic

More information

Panel Unit Root Tests in the Presence of Cross-Sectional Dependencies: Comparison and Implications for Modelling

Panel Unit Root Tests in the Presence of Cross-Sectional Dependencies: Comparison and Implications for Modelling Panel Unit Root Tests in the Presence of Cross-Sectional Dependencies: Comparison and Implications for Modelling Christian Gengenbach, Franz C. Palm, Jean-Pierre Urbain Department of Quantitative Economics,

More information

Univariate Unit Root Process (May 14, 2018)

Univariate Unit Root Process (May 14, 2018) Ch. Univariate Unit Root Process (May 4, 8) Introduction Much conventional asymptotic theory for least-squares estimation (e.g. the standard proofs of consistency and asymptotic normality of OLS estimators)

More information

Bootstrapping the Grainger Causality Test With Integrated Data

Bootstrapping the Grainger Causality Test With Integrated Data Bootstrapping the Grainger Causality Test With Integrated Data Richard Ti n University of Reading July 26, 2006 Abstract A Monte-carlo experiment is conducted to investigate the small sample performance

More information

Response surface models for the Elliott, Rothenberg, Stock DF-GLS unit-root test

Response surface models for the Elliott, Rothenberg, Stock DF-GLS unit-root test Response surface models for the Elliott, Rothenberg, Stock DF-GLS unit-root test Christopher F Baum Jesús Otero Stata Conference, Baltimore, July 2017 Baum, Otero (BC, U. del Rosario) DF-GLS response surfaces

More information

Econ 423 Lecture Notes: Additional Topics in Time Series 1

Econ 423 Lecture Notes: Additional Topics in Time Series 1 Econ 423 Lecture Notes: Additional Topics in Time Series 1 John C. Chao April 25, 2017 1 These notes are based in large part on Chapter 16 of Stock and Watson (2011). They are for instructional purposes

More information

ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests

ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests Patrick Herb Brandeis University Spring 2016 Patrick Herb (Brandeis University) Unit Root Tests ECON/FIN

More information

Darmstadt Discussion Papers in Economics

Darmstadt Discussion Papers in Economics Darmstadt Discussion Papers in Economics The Effect of Linear Time Trends on Cointegration Testing in Single Equations Uwe Hassler Nr. 111 Arbeitspapiere des Instituts für Volkswirtschaftslehre Technische

More information

MA Advanced Econometrics: Applying Least Squares to Time Series

MA Advanced Econometrics: Applying Least Squares to Time Series MA Advanced Econometrics: Applying Least Squares to Time Series Karl Whelan School of Economics, UCD February 15, 2011 Karl Whelan (UCD) Time Series February 15, 2011 1 / 24 Part I Time Series: Standard

More information

Unit roots in vector time series. Scalar autoregression True model: y t 1 y t1 2 y t2 p y tp t Estimated model: y t c y t1 1 y t1 2 y t2

Unit roots in vector time series. Scalar autoregression True model: y t 1 y t1 2 y t2 p y tp t Estimated model: y t c y t1 1 y t1 2 y t2 Unit roots in vector time series A. Vector autoregressions with unit roots Scalar autoregression True model: y t y t y t p y tp t Estimated model: y t c y t y t y t p y tp t Results: T j j is asymptotically

More information

Financial Time Series Analysis: Part II

Financial Time Series Analysis: Part II Department of Mathematics and Statistics, University of Vaasa, Finland Spring 2017 1 Unit root Deterministic trend Stochastic trend Testing for unit root ADF-test (Augmented Dickey-Fuller test) Testing

More information

Economtrics of money and finance Lecture six: spurious regression and cointegration

Economtrics of money and finance Lecture six: spurious regression and cointegration Economtrics of money and finance Lecture six: spurious regression and cointegration Zongxin Qian School of Finance, Renmin University of China October 21, 2014 Table of Contents Overview Spurious regression

More information

Cointegration. Example 1 Consider the following model: x t + βy t = u t (1) x t + αy t = e t (2) u t = u t 1 + ε 1t (3)

Cointegration. Example 1 Consider the following model: x t + βy t = u t (1) x t + αy t = e t (2) u t = u t 1 + ε 1t (3) Cointegration In economics we usually think that there exist long-run relationships between many variables of interest. For example, although consumption and income may each follow random walks, it seem

More information

This chapter reviews properties of regression estimators and test statistics based on

This chapter reviews properties of regression estimators and test statistics based on Chapter 12 COINTEGRATING AND SPURIOUS REGRESSIONS This chapter reviews properties of regression estimators and test statistics based on the estimators when the regressors and regressant are difference

More information

Modelling of Economic Time Series and the Method of Cointegration

Modelling of Economic Time Series and the Method of Cointegration AUSTRIAN JOURNAL OF STATISTICS Volume 35 (2006), Number 2&3, 307 313 Modelling of Economic Time Series and the Method of Cointegration Jiri Neubauer University of Defence, Brno, Czech Republic Abstract:

More information

Topic 4 Unit Roots. Gerald P. Dwyer. February Clemson University

Topic 4 Unit Roots. Gerald P. Dwyer. February Clemson University Topic 4 Unit Roots Gerald P. Dwyer Clemson University February 2016 Outline 1 Unit Roots Introduction Trend and Difference Stationary Autocorrelations of Series That Have Deterministic or Stochastic Trends

More information

MFE Financial Econometrics 2018 Final Exam Model Solutions

MFE Financial Econometrics 2018 Final Exam Model Solutions MFE Financial Econometrics 2018 Final Exam Model Solutions Tuesday 12 th March, 2019 1. If (X, ε) N (0, I 2 ) what is the distribution of Y = µ + β X + ε? Y N ( µ, β 2 + 1 ) 2. What is the Cramer-Rao lower

More information

The Role of "Leads" in the Dynamic Title of Cointegrating Regression Models. Author(s) Hayakawa, Kazuhiko; Kurozumi, Eiji

The Role of Leads in the Dynamic Title of Cointegrating Regression Models. Author(s) Hayakawa, Kazuhiko; Kurozumi, Eiji he Role of "Leads" in the Dynamic itle of Cointegrating Regression Models Author(s) Hayakawa, Kazuhiko; Kurozumi, Eiji Citation Issue 2006-12 Date ype echnical Report ext Version publisher URL http://hdl.handle.net/10086/13599

More information

Department of Economics, UCSD UC San Diego

Department of Economics, UCSD UC San Diego Department of Economics, UCSD UC San Diego itle: Spurious Regressions with Stationary Series Author: Granger, Clive W.J., University of California, San Diego Hyung, Namwon, University of Seoul Jeon, Yongil,

More information

Asymptotic Least Squares Theory

Asymptotic Least Squares Theory Asymptotic Least Squares Theory CHUNG-MING KUAN Department of Finance & CRETA December 5, 2011 C.-M. Kuan (National Taiwan Univ.) Asymptotic Least Squares Theory December 5, 2011 1 / 85 Lecture Outline

More information

On the Long-Run Variance Ratio Test for a Unit Root

On the Long-Run Variance Ratio Test for a Unit Root On the Long-Run Variance Ratio Test for a Unit Root Ye Cai and Mototsugu Shintani Vanderbilt University May 2004 Abstract This paper investigates the effects of consistent and inconsistent long-run variance

More information

Threshold models: Basic concepts and new results

Threshold models: Basic concepts and new results Threshold models: Basic concepts and new results 1 1 Department of Economics National Taipei University PCCU, Taipei, 2009 Outline 1 2 3 4 5 6 1 Structural Change Model (Chow 1960; Bai 1995) 1 Structural

More information

Why Segregating Cointegration Test?

Why Segregating Cointegration Test? American Journal of Applied Mathematics and Statistics, 208, Vol 6, No 4, 2-25 Available online at http://pubssciepubcom/ajams/6/4/ Science and Education Publishing DOI:0269/ajams-6-4- Why Segregating

More information

3. Linear Regression With a Single Regressor

3. Linear Regression With a Single Regressor 3. Linear Regression With a Single Regressor Econometrics: (I) Application of statistical methods in empirical research Testing economic theory with real-world data (data analysis) 56 Econometrics: (II)

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 9 Jakub Mućk Econometrics of Panel Data Meeting # 9 1 / 22 Outline 1 Time series analysis Stationarity Unit Root Tests for Nonstationarity 2 Panel Unit Root

More information

It is easily seen that in general a linear combination of y t and x t is I(1). However, in particular cases, it can be I(0), i.e. stationary.

It is easily seen that in general a linear combination of y t and x t is I(1). However, in particular cases, it can be I(0), i.e. stationary. 6. COINTEGRATION 1 1 Cointegration 1.1 Definitions I(1) variables. z t = (y t x t ) is I(1) (integrated of order 1) if it is not stationary but its first difference z t is stationary. It is easily seen

More information

Bayesian Inference. Chapter 4: Regression and Hierarchical Models

Bayesian Inference. Chapter 4: Regression and Hierarchical Models Bayesian Inference Chapter 4: Regression and Hierarchical Models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative

More information

Time Series Econometrics 4 Vijayamohanan Pillai N

Time Series Econometrics 4 Vijayamohanan Pillai N Time Series Econometrics 4 Vijayamohanan Pillai N Vijayamohan: CDS MPhil: Time Series 5 1 Autoregressive Moving Average Process: ARMA(p, q) Vijayamohan: CDS MPhil: Time Series 5 2 1 Autoregressive Moving

More information

Residual-Based Tests for Cointegration and Multiple Deterministic Structural Breaks: A Monte Carlo Study

Residual-Based Tests for Cointegration and Multiple Deterministic Structural Breaks: A Monte Carlo Study Residual-Based Tests for Cointegration and Multiple Deterministic Structural Breaks: A Monte Carlo Study Matteo Mogliani Paris School of Economics, France VERY PRELIMINARY VERSION, DO NOT CIRCULATE November

More information

On Bootstrap Implementation of Likelihood Ratio Test for a Unit Root

On Bootstrap Implementation of Likelihood Ratio Test for a Unit Root On Bootstrap Implementation of Likelihood Ratio Test for a Unit Root ANTON SKROBOTOV The Russian Presidential Academy of National Economy and Public Administration February 25, 2018 Abstract In this paper

More information

Estimation of Threshold Cointegration

Estimation of Threshold Cointegration Estimation of Myung Hwan London School of Economics December 2006 Outline Model Asymptotics Inference Conclusion 1 Model Estimation Methods Literature 2 Asymptotics Consistency Convergence Rates Asymptotic

More information

Econ 424 Time Series Concepts

Econ 424 Time Series Concepts Econ 424 Time Series Concepts Eric Zivot January 20 2015 Time Series Processes Stochastic (Random) Process { 1 2 +1 } = { } = sequence of random variables indexed by time Observed time series of length

More information

Covers Chapter 10-12, some of 16, some of 18 in Wooldridge. Regression Analysis with Time Series Data

Covers Chapter 10-12, some of 16, some of 18 in Wooldridge. Regression Analysis with Time Series Data Covers Chapter 10-12, some of 16, some of 18 in Wooldridge Regression Analysis with Time Series Data Obviously time series data different from cross section in terms of source of variation in x and y temporal

More information

VAR Models and Cointegration 1

VAR Models and Cointegration 1 VAR Models and Cointegration 1 Sebastian Fossati University of Alberta 1 These slides are based on Eric Zivot s time series notes available at: http://faculty.washington.edu/ezivot The Cointegrated VAR

More information

Multivariate Time Series: VAR(p) Processes and Models

Multivariate Time Series: VAR(p) Processes and Models Multivariate Time Series: VAR(p) Processes and Models A VAR(p) model, for p > 0 is X t = φ 0 + Φ 1 X t 1 + + Φ p X t p + A t, where X t, φ 0, and X t i are k-vectors, Φ 1,..., Φ p are k k matrices, with

More information

CHAPTER 21: TIME SERIES ECONOMETRICS: SOME BASIC CONCEPTS

CHAPTER 21: TIME SERIES ECONOMETRICS: SOME BASIC CONCEPTS CHAPTER 21: TIME SERIES ECONOMETRICS: SOME BASIC CONCEPTS 21.1 A stochastic process is said to be weakly stationary if its mean and variance are constant over time and if the value of the covariance between

More information