Linear Model Under General Variance Structure: Autocorrelation

Size: px
Start display at page:

Download "Linear Model Under General Variance Structure: Autocorrelation"

Transcription

1 Linear Model Under General Variance Structure: Autocorrelation A Definition of Autocorrelation In this section, we consider another special case of the model Y = X β + e, or y t = x t β + e t, t = 1,..,. where we relax assumption A3, while maintaining assumption A4. We assume that E(e t e t* ) = V(e t ) = σ e if t = t*, = Cov(e t, e t ) 0 if t t*, t = 1,,. While maintaining a constant variance across e t s (as implied by assumption A4), this allows for non-zero covariances across observations. his is particularly relevant in analyzing time series data, where the random variables have some memory, implying that the error terms are correlated over time. his is called autocorrelation. With autocorrelation we have: V(e) = V(e 1,, e ) = is a non-diagonal (full) ( x ) matrix. σ e Cov( e1, e). Cov( e1, e ) Cov( e1, e) σ e. Cov( e, e ).... Cov( e1, e ) Cov( e1, e). σ e ypically, some parametric structure is imposed on Cov(e t, e t ). A common structure is to assume that an autoregressive process generates the error terms. hat is: the random variable e t follows a p th autoregressive process (denoted by AR(p)) if

2 e t = p Σi=1r i e t-i + v t, where (ρ 1,..., ρ p ) are autoregressive parameters, and v t is a random variable satisfying E(v t ) = 0, t = 1,,, E(v t v t ) = Cov(v t, v t* ) = 0 for all t t*, V(v t ) = σ v, t = 1,..., Τ. For simplicity, we consider only a first-order autoregressive process AR(1), implying p = 1: e t = r e t-1 + v t. he First-Order Autoregressive Process Under AR(1), after successive substitutions we have: e t = ρ e t-1 + v t = ρ [ρ e t- + v t-1 ] + v t = ρ [ρ e t-3 + v t- ] + ρ v t-1 + v t = = ρ i e t-i + Σ j=0 ρ j v t-j = Σ i=0 ρ i v t-i. Note that ρ i 0 as i if ρ < 1, ρ i as i if ρ > 1. his means that if ρ < 1, then the distant past (v t-i ) has a small and declining influence on the present (e t ). his is called stationarity. Alternatively, if ρ > 1, then the distant past (v t-i ) has a large and growing influence on the present (e t ). his is called non-stationarity.

3 3 hus, the AR(1) process Is stationary if ρ < 1 Is non-stationary if ρ > 1 Has a unit root if ρ = 1 (this is the border-line case between stationarity and non-stationarity). For practical purpose, we will be interested only in stationary processes, so that we do not need to observe the infinite past to understand and model the present. As a result, we will limit our analysis to the stationary case, and assume that r < 1. Under stationarity ( ρ < 1), we have E(e t ) = Σ i=0 ρ i E(v t-i ) = 0 since E(v t-i ) = 0. V(e t ) = σ e = V(ρ e t-1 + v t ) his implies: = ρ V(e t-1 ) + V(v t ) + ρ Cov(e t-1, v t ) = ρ σ e + σ v + ρ Cov( Σ i=0 ρ i v t-1-i, v t ) = ρ σ e + σ v, since E(v t v t* ) = Cov(v t, v t* ) = 0 for all t t*. (1 - ρ ) σ e = σ v, or s e = s v /(1 - r ). We also know that: Cov(e t, e t-i ) = E(e t e t-i ) = E[(ρ i e t-i + = ρ i E(e t-i ) + Σ j=0 ρ j v t-j ) e t-i ] S j=0 ρ j E(v t-j e t-i ) = ρ i σ e + j=0 Σ ρ j E[v t-j ( Σ m=0 ρ i v t-i-m )] with e t-i = Σm=0 ρ i v t-i-m, = ρ i σ e since E(v t v t* ) = 0 for all t t*. = σ v ρ i /(1 - ρ ), since σ e = σ v /(1 - ρ ).

4 4 hus, under a stationary AR(1) process for e t, we have V(e) = V(e 1,, e ) = σ v 1 ρ 1 ρ ρ. ρ ρ 1 ρ. ρ ρ ρ 1. ρ ρ ρ ρ Using our earlier notation (where V(e) = σ ψ), let σ = σ v. We have: ψ = 1 1 ρ 1 ρ ρ. ρ ρ 1 ρ. ρ ρ ρ 1. ρ ρ ρ ρ It can be shown that 1 ρ ρ 1 + ρ ρ. 0 0 ψ = ρ + ρ, and ρ ρ ρ 1.. P = 1 ρ ρ ρ , where P' P = ψ ρ 1

5 5 Estimation of Model Parameters Under an AR(1) Error Structure Obtain the consistent least squares estimator of β, b s = (X'X) -1 X'Y and the consistent estimator of e, e s = Y X b s. Given e s = e e s1 s, regress e st on e s,t-1 to obtain the least squares t= estimator of ρ, r s = ( Σ e s,t-1 ) -1 ( Σ t= e st e s,t-1 ). ρ s is a consistent estimator of ρ. Let ψ e be the matrix ψ evaluated at r = r s. hus, ψ e is a consistent estimator of ψ. Evaluate the FGLS estimator of β, b fg = [X y -1 X] -1 X y -1 Y. he β fg is a consistent, and asymptotically efficient estimator of β, satisfying b fg» N[b, V(b fg )] as fi. he variance of β fg, V(β fg ), can be consistently estimated: V(b fg ) = s vu [X'(y e ) -1 X], where σ vu is a consistent estimator of σ v s vu = (Y X b fg )'(y e ) -1 (Y - b fg )/( K). Estimation of Model Parameters Under an AR(1) Error Structure: An Alternative Approach We have considered the model specification y t = x t β + e t where e t = ρ e t-1 + v t, t = 1,, (Model A) his implies that: y t-1 = ρ x t-1 β + ρ e t-1, t =,,. Subtracting this expression from [y t = x t β + e t ] gives y t - ρ y t-1 = x t β - x t-1 ρβ + e t - ρ e t-1, t =,,. Recognizing that e t - ρ e t-1 = v t, we obtain the following:

6 6 y t = ρ y t-1 + x t β - x t-1 ρβ + v t, t =,, (Model A*) Note that, except for the omission of the first observation in model A * ), models A and A* are equivalent. However, note that the error term e t in model A exhibits autocorrelation (thus does not satisfy assumption A3), while the error term v t in model A* does not exhibit autocorrelation and satisfies assumption A3. On the other hand, model A is linear in the parameters (and satisfies assumption A1), while model A * is non-linear in the parameters (since rb appears as the coefficient of x t-1 in A * ) and thus does not satisfy assumption A1. his suggests that the parameters (β, ρ) can be alternatively estimated by non-linear least squares applied under assumption A3 to model A*. (See the chapter on non-linear regression). Prediction Under the AR(1) Error Structure Consider the time series model, y t = x t β + e t, e t = ρ e t-1 + v t, t = 1,,. We want to know how to predict y +1 (i.e. one period ahead) given the sample observations. Under AR(1) for e t, and using our earlier discussion of prediction, it can be shown that P 3-1 P = ρ. hus, assuming that r is known, the best linear unbiased predictor of y +1 is x t+1 b g + r [y x b g ]. Alternatively, if r is unknown and needs to be estimated, then a consistent predictor of y +1 is x t+1 b fg + r e [y x b fg ]. Hypothesis esting About the Value of r Consider the hypothesis: H 0 : r = 0 (no autocorrelation) H 1 : r 0 (the e t s follow an autoregressive process of order one, AR(1)).

7 7 An Asymptotic est It can be shown that ρ s = ( Σ e s,t-1 ) -1 ( Σ t= t= estimator of ρ, with asymptotic distribution r s» N[r, (1-r )/] as fi. e st e s,t-1 ) and is a consistent It follows that z = (r s - r)/[(1-r )/] 1/ fi N(0, 1) as fi. hus, under H 0, (where ρ = 0), z = () 1/ r s fi N(0, 1) as fi. his suggests the following asymptotic test procedure: Choose the significance level α Find z 0 such that α/ = P[z > z 0 z N(0, 1)] = P[z < -z 0 z N(0, 1)]. Do not reject H 0 if z 0 () 1/ ρ s z 0, Reject H 0 if () 1/ ρ s > z 0, or () 1/ ρ s < -z 0. he Durbin-Watson est Consider the Durbin-Watson statistic t=1 t= d = ( Σ e st ) -1 [ Σ (e st - e s,t-1 ) ]. In general, it can be shown that 0 < d < 4, and that d under H 0. his suggests not rejecting H 0 when d is around, and rejecting H 0 when d is either much less than or much greater than. As expected, making this procedure practical requires knowing the distribution of the Durbin-Watson statistic d under the null hypothesis H 0. Unfortunately, assuming that the v t are normally distributed, Durbin and Watson (who proposed this test in 1950) were not able to establish the distribution of d under H 0. However, they were able to approximate it. hey proposed a test procedure based on this approximation, procedure that is commonly used in testing for autocorrelation.

Linear Model Under General Variance

Linear Model Under General Variance Linear Model Under General Variance We have a sample of T random variables y 1, y 2,, y T, satisfying the linear model Y = X β + e, where Y = (y 1,, y T )' is a (T 1) vector of random variables, X = (T

More information

Reading Assignment. Serial Correlation and Heteroskedasticity. Chapters 12 and 11. Kennedy: Chapter 8. AREC-ECON 535 Lec F1 1

Reading Assignment. Serial Correlation and Heteroskedasticity. Chapters 12 and 11. Kennedy: Chapter 8. AREC-ECON 535 Lec F1 1 Reading Assignment Serial Correlation and Heteroskedasticity Chapters 1 and 11. Kennedy: Chapter 8. AREC-ECON 535 Lec F1 1 Serial Correlation or Autocorrelation y t = β 0 + β 1 x 1t + β x t +... + β k

More information

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 14

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 14 Introduction to Econometrics (3 rd Updated Edition) by James H. Stock and Mark W. Watson Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 14 (This version July 0, 014) 015 Pearson Education,

More information

Chapter 4: Models for Stationary Time Series

Chapter 4: Models for Stationary Time Series Chapter 4: Models for Stationary Time Series Now we will introduce some useful parametric models for time series that are stationary processes. We begin by defining the General Linear Process. Let {Y t

More information

LECTURE 13: TIME SERIES I

LECTURE 13: TIME SERIES I 1 LECTURE 13: TIME SERIES I AUTOCORRELATION: Consider y = X + u where y is T 1, X is T K, is K 1 and u is T 1. We are using T and not N for sample size to emphasize that this is a time series. The natural

More information

Problem Set 2: Box-Jenkins methodology

Problem Set 2: Box-Jenkins methodology Problem Set : Box-Jenkins methodology 1) For an AR1) process we have: γ0) = σ ε 1 φ σ ε γ0) = 1 φ Hence, For a MA1) process, p lim R = φ γ0) = 1 + θ )σ ε σ ε 1 = γ0) 1 + θ Therefore, p lim R = 1 1 1 +

More information

Circle the single best answer for each multiple choice question. Your choice should be made clearly.

Circle the single best answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 6, 2017 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 32 multiple choice

More information

LINEAR REGRESSION ANALYSIS. MODULE XVI Lecture Exercises

LINEAR REGRESSION ANALYSIS. MODULE XVI Lecture Exercises LINEAR REGRESSION ANALYSIS MODULE XVI Lecture - 44 Exercises Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Exercise 1 The following data has been obtained on

More information

Economics 620, Lecture 13: Time Series I

Economics 620, Lecture 13: Time Series I Economics 620, Lecture 13: Time Series I Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 13: Time Series I 1 / 19 AUTOCORRELATION Consider y = X + u where y is

More information

AUTOCORRELATION. Phung Thanh Binh

AUTOCORRELATION. Phung Thanh Binh AUTOCORRELATION Phung Thanh Binh OUTLINE Time series Gauss-Markov conditions The nature of autocorrelation Causes of autocorrelation Consequences of autocorrelation Detecting autocorrelation Remedial measures

More information

Econometrics. Week 4. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague

Econometrics. Week 4. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Econometrics Week 4 Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Fall 2012 1 / 23 Recommended Reading For the today Serial correlation and heteroskedasticity in

More information

1. You have data on years of work experience, EXPER, its square, EXPER2, years of education, EDUC, and the log of hourly wages, LWAGE

1. You have data on years of work experience, EXPER, its square, EXPER2, years of education, EDUC, and the log of hourly wages, LWAGE 1. You have data on years of work experience, EXPER, its square, EXPER, years of education, EDUC, and the log of hourly wages, LWAGE You estimate the following regressions: (1) LWAGE =.00 + 0.05*EDUC +

More information

13. Time Series Analysis: Asymptotics Weakly Dependent and Random Walk Process. Strict Exogeneity

13. Time Series Analysis: Asymptotics Weakly Dependent and Random Walk Process. Strict Exogeneity Outline: Further Issues in Using OLS with Time Series Data 13. Time Series Analysis: Asymptotics Weakly Dependent and Random Walk Process I. Stationary and Weakly Dependent Time Series III. Highly Persistent

More information

Ch.10 Autocorrelated Disturbances (June 15, 2016)

Ch.10 Autocorrelated Disturbances (June 15, 2016) Ch10 Autocorrelated Disturbances (June 15, 2016) In a time-series linear regression model setting, Y t = x tβ + u t, t = 1, 2,, T, (10-1) a common problem is autocorrelation, or serial correlation of the

More information

Outline. Nature of the Problem. Nature of the Problem. Basic Econometrics in Transportation. Autocorrelation

Outline. Nature of the Problem. Nature of the Problem. Basic Econometrics in Transportation. Autocorrelation 1/30 Outline Basic Econometrics in Transportation Autocorrelation Amir Samimi What is the nature of autocorrelation? What are the theoretical and practical consequences of autocorrelation? Since the assumption

More information

Christopher Dougherty London School of Economics and Political Science

Christopher Dougherty London School of Economics and Political Science Introduction to Econometrics FIFTH EDITION Christopher Dougherty London School of Economics and Political Science OXFORD UNIVERSITY PRESS Contents INTRODU CTION 1 Why study econometrics? 1 Aim of this

More information

Statistics 910, #5 1. Regression Methods

Statistics 910, #5 1. Regression Methods Statistics 910, #5 1 Overview Regression Methods 1. Idea: effects of dependence 2. Examples of estimation (in R) 3. Review of regression 4. Comparisons and relative efficiencies Idea Decomposition Well-known

More information

Econometrics Part Three

Econometrics Part Three !1 I. Heteroskedasticity A. Definition 1. The variance of the error term is correlated with one of the explanatory variables 2. Example -- the variance of actual spending around the consumption line increases

More information

Auto correlation 2. Note: In general we can have AR(p) errors which implies p lagged terms in the error structure, i.e.,

Auto correlation 2. Note: In general we can have AR(p) errors which implies p lagged terms in the error structure, i.e., 1 Motivation Auto correlation 2 Autocorrelation occurs when what happens today has an impact on what happens tomorrow, and perhaps further into the future This is a phenomena mainly found in time-series

More information

Simple and Multiple Linear Regression

Simple and Multiple Linear Regression Sta. 113 Chapter 12 and 13 of Devore March 12, 2010 Table of contents 1 Simple Linear Regression 2 Model Simple Linear Regression A simple linear regression model is given by Y = β 0 + β 1 x + ɛ where

More information

Lecture 9: Introduction to Kriging

Lecture 9: Introduction to Kriging Lecture 9: Introduction to Kriging Math 586 Beginning remarks Kriging is a commonly used method of interpolation (prediction) for spatial data. The data are a set of observations of some variable(s) of

More information

9. AUTOCORRELATION. [1] Definition of Autocorrelation (AUTO) 1) Model: y t = x t β + ε t. We say that AUTO exists if cov(ε t,ε s ) 0, t s.

9. AUTOCORRELATION. [1] Definition of Autocorrelation (AUTO) 1) Model: y t = x t β + ε t. We say that AUTO exists if cov(ε t,ε s ) 0, t s. 9. AUTOCORRELATION [1] Definition of Autocorrelation (AUTO) 1) Model: y t = x t β + ε t. We say that AUTO exists if cov(ε t,ε s ) 0, t s. ) Assumptions: All of SIC except SIC.3 (the random sample assumption).

More information

Econometrics of financial markets, -solutions to seminar 1. Problem 1

Econometrics of financial markets, -solutions to seminar 1. Problem 1 Econometrics of financial markets, -solutions to seminar 1. Problem 1 a) Estimate with OLS. For any regression y i α + βx i + u i for OLS to be unbiased we need cov (u i,x j )0 i, j. For the autoregressive

More information

LECTURE 10: MORE ON RANDOM PROCESSES

LECTURE 10: MORE ON RANDOM PROCESSES LECTURE 10: MORE ON RANDOM PROCESSES AND SERIAL CORRELATION 2 Classification of random processes (cont d) stationary vs. non-stationary processes stationary = distribution does not change over time more

More information

BCT Lecture 3. Lukas Vacha.

BCT Lecture 3. Lukas Vacha. BCT Lecture 3 Lukas Vacha vachal@utia.cas.cz Stationarity and Unit Root Testing Why do we need to test for Non-Stationarity? The stationarity or otherwise of a series can strongly influence its behaviour

More information

Time Series Methods. Sanjaya Desilva

Time Series Methods. Sanjaya Desilva Time Series Methods Sanjaya Desilva 1 Dynamic Models In estimating time series models, sometimes we need to explicitly model the temporal relationships between variables, i.e. does X affect Y in the same

More information

EC408 Topics in Applied Econometrics. B Fingleton, Dept of Economics, Strathclyde University

EC408 Topics in Applied Econometrics. B Fingleton, Dept of Economics, Strathclyde University EC408 Topics in Applied Econometrics B Fingleton, Dept of Economics, Strathclyde University Applied Econometrics What is spurious regression? How do we check for stochastic trends? Cointegration and Error

More information

A time series is called strictly stationary if the joint distribution of every collection (Y t

A time series is called strictly stationary if the joint distribution of every collection (Y t 5 Time series A time series is a set of observations recorded over time. You can think for example at the GDP of a country over the years (or quarters) or the hourly measurements of temperature over a

More information

Week 11 Heteroskedasticity and Autocorrelation

Week 11 Heteroskedasticity and Autocorrelation Week 11 Heteroskedasticity and Autocorrelation İnsan TUNALI Econ 511 Econometrics I Koç University 27 November 2018 Lecture outline 1. OLS and assumptions on V(ε) 2. Violations of V(ε) σ 2 I: 1. Heteroskedasticity

More information

7. GENERALIZED LEAST SQUARES (GLS)

7. GENERALIZED LEAST SQUARES (GLS) 7. GENERALIZED LEAST SQUARES (GLS) [1] ASSUMPTIONS: Assume SIC except that Cov(ε) = E(εε ) = σ Ω where Ω I T. Assume that E(ε) = 0 T 1, and that X Ω -1 X and X ΩX are all positive definite. Examples: Autocorrelation:

More information

Economics 536 Lecture 7. Introduction to Specification Testing in Dynamic Econometric Models

Economics 536 Lecture 7. Introduction to Specification Testing in Dynamic Econometric Models University of Illinois Fall 2016 Department of Economics Roger Koenker Economics 536 Lecture 7 Introduction to Specification Testing in Dynamic Econometric Models In this lecture I want to briefly describe

More information

Econometrics Summary Algebraic and Statistical Preliminaries

Econometrics Summary Algebraic and Statistical Preliminaries Econometrics Summary Algebraic and Statistical Preliminaries Elasticity: The point elasticity of Y with respect to L is given by α = ( Y/ L)/(Y/L). The arc elasticity is given by ( Y/ L)/(Y/L), when L

More information

Analysis. Components of a Time Series

Analysis. Components of a Time Series Module 8: Time Series Analysis 8.2 Components of a Time Series, Detection of Change Points and Trends, Time Series Models Components of a Time Series There can be several things happening simultaneously

More information

Non-Stationary Time Series and Unit Root Testing

Non-Stationary Time Series and Unit Root Testing Econometrics II Non-Stationary Time Series and Unit Root Testing Morten Nyboe Tabor Course Outline: Non-Stationary Time Series and Unit Root Testing 1 Stationarity and Deviation from Stationarity Trend-Stationarity

More information

Questions and Answers on Heteroskedasticity, Autocorrelation and Generalized Least Squares

Questions and Answers on Heteroskedasticity, Autocorrelation and Generalized Least Squares Questions and Answers on Heteroskedasticity, Autocorrelation and Generalized Least Squares L Magee Fall, 2008 1 Consider a regression model y = Xβ +ɛ, where it is assumed that E(ɛ X) = 0 and E(ɛɛ X) =

More information

Likely causes: The Problem. E u t 0. E u s u p 0

Likely causes: The Problem. E u t 0. E u s u p 0 Autocorrelation This implies that taking the time series regression Y t X t u t but in this case there is some relation between the error terms across observations. E u t 0 E u t E u s u p 0 Thus the error

More information

Time Series: Theory and Methods

Time Series: Theory and Methods Peter J. Brockwell Richard A. Davis Time Series: Theory and Methods Second Edition With 124 Illustrations Springer Contents Preface to the Second Edition Preface to the First Edition vn ix CHAPTER 1 Stationary

More information

Econometrics I. Professor William Greene Stern School of Business Department of Economics 25-1/25. Part 25: Time Series

Econometrics I. Professor William Greene Stern School of Business Department of Economics 25-1/25. Part 25: Time Series Econometrics I Professor William Greene Stern School of Business Department of Economics 25-1/25 Econometrics I Part 25 Time Series 25-2/25 Modeling an Economic Time Series Observed y 0, y 1,, y t, What

More information

Section 6: Heteroskedasticity and Serial Correlation

Section 6: Heteroskedasticity and Serial Correlation From the SelectedWorks of Econ 240B Section February, 2007 Section 6: Heteroskedasticity and Serial Correlation Jeffrey Greenbaum, University of California, Berkeley Available at: https://works.bepress.com/econ_240b_econometrics/14/

More information

AR, MA and ARMA models

AR, MA and ARMA models AR, MA and AR by Hedibert Lopes P Based on Tsay s Analysis of Financial Time Series (3rd edition) P 1 Stationarity 2 3 4 5 6 7 P 8 9 10 11 Outline P Linear Time Series Analysis and Its Applications For

More information

Non-Stationary Time Series and Unit Root Testing

Non-Stationary Time Series and Unit Root Testing Econometrics II Non-Stationary Time Series and Unit Root Testing Morten Nyboe Tabor Course Outline: Non-Stationary Time Series and Unit Root Testing 1 Stationarity and Deviation from Stationarity Trend-Stationarity

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 4 Jakub Mućk Econometrics of Panel Data Meeting # 4 1 / 30 Outline 1 Two-way Error Component Model Fixed effects model Random effects model 2 Non-spherical

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

1 Introduction. 2 AIC versus SBIC. Erik Swanson Cori Saviano Li Zha Final Project

1 Introduction. 2 AIC versus SBIC. Erik Swanson Cori Saviano Li Zha Final Project Erik Swanson Cori Saviano Li Zha Final Project 1 Introduction In analyzing time series data, we are posed with the question of how past events influences the current situation. In order to determine this,

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

10. Time series regression and forecasting

10. Time series regression and forecasting 10. Time series regression and forecasting Key feature of this section: Analysis of data on a single entity observed at multiple points in time (time series data) Typical research questions: What is the

More information

LECTURE 11. Introduction to Econometrics. Autocorrelation

LECTURE 11. Introduction to Econometrics. Autocorrelation LECTURE 11 Introduction to Econometrics Autocorrelation November 29, 2016 1 / 24 ON PREVIOUS LECTURES We discussed the specification of a regression equation Specification consists of choosing: 1. correct

More information

Multivariate Time Series: VAR(p) Processes and Models

Multivariate Time Series: VAR(p) Processes and Models Multivariate Time Series: VAR(p) Processes and Models A VAR(p) model, for p > 0 is X t = φ 0 + Φ 1 X t 1 + + Φ p X t p + A t, where X t, φ 0, and X t i are k-vectors, Φ 1,..., Φ p are k k matrices, with

More information

White Noise Processes (Section 6.2)

White Noise Processes (Section 6.2) White Noise Processes (Section 6.) Recall that covariance stationary processes are time series, y t, such. E(y t ) = µ for all t. Var(y t ) = σ for all t, σ < 3. Cov(y t,y t-τ ) = γ(τ) for all t and τ

More information

7. Forecasting with ARIMA models

7. Forecasting with ARIMA models 7. Forecasting with ARIMA models 309 Outline: Introduction The prediction equation of an ARIMA model Interpreting the predictions Variance of the predictions Forecast updating Measuring predictability

More information

Hypothesis Testing for Var-Cov Components

Hypothesis Testing for Var-Cov Components Hypothesis Testing for Var-Cov Components When the specification of coefficients as fixed, random or non-randomly varying is considered, a null hypothesis of the form is considered, where Additional output

More information

1 The Multiple Regression Model: Freeing Up the Classical Assumptions

1 The Multiple Regression Model: Freeing Up the Classical Assumptions 1 The Multiple Regression Model: Freeing Up the Classical Assumptions Some or all of classical assumptions were crucial for many of the derivations of the previous chapters. Derivation of the OLS estimator

More information

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 6.3. FORECASTING ARMA PROCESSES 123 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss

More information

Linear Regression with Time Series Data

Linear Regression with Time Series Data Econometrics 2 Linear Regression with Time Series Data Heino Bohn Nielsen 1of21 Outline (1) The linear regression model, identification and estimation. (2) Assumptions and results: (a) Consistency. (b)

More information

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models Module 3 Descriptive Time Series Statistics and Introduction to Time Series Models Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W Q Meeker November 11, 2015

More information

Issues in estimating past climate change at local scale.

Issues in estimating past climate change at local scale. 14th EMS Annual Meeting, Prague Oct. 6th 2014 Issues in estimating past climate change at local scale. Case study: the recent warming (1959-2009) over France. Lola Corre (Division de la Climatologie, Météo-France)

More information

Heteroskedasticity and Autocorrelation

Heteroskedasticity and Autocorrelation Lesson 7 Heteroskedasticity and Autocorrelation Pilar González and Susan Orbe Dpt. Applied Economics III (Econometrics and Statistics) Pilar González and Susan Orbe OCW 2014 Lesson 7. Heteroskedasticity

More information

Lecture 6: Dynamic Models

Lecture 6: Dynamic Models Lecture 6: Dynamic Models R.G. Pierse 1 Introduction Up until now we have maintained the assumption that X values are fixed in repeated sampling (A4) In this lecture we look at dynamic models, where the

More information

FinQuiz Notes

FinQuiz Notes Reading 9 A time series is any series of data that varies over time e.g. the quarterly sales for a company during the past five years or daily returns of a security. When assumptions of the regression

More information

Cointegration, Stationarity and Error Correction Models.

Cointegration, Stationarity and Error Correction Models. Cointegration, Stationarity and Error Correction Models. STATIONARITY Wold s decomposition theorem states that a stationary time series process with no deterministic components has an infinite moving average

More information

at least 50 and preferably 100 observations should be available to build a proper model

at least 50 and preferably 100 observations should be available to build a proper model III Box-Jenkins Methods 1. Pros and Cons of ARIMA Forecasting a) need for data at least 50 and preferably 100 observations should be available to build a proper model used most frequently for hourly or

More information

1 Introduction to Generalized Least Squares

1 Introduction to Generalized Least Squares ECONOMICS 7344, Spring 2017 Bent E. Sørensen April 12, 2017 1 Introduction to Generalized Least Squares Consider the model Y = Xβ + ɛ, where the N K matrix of regressors X is fixed, independent of the

More information

Autocorrelation. Think of autocorrelation as signifying a systematic relationship between the residuals measured at different points in time

Autocorrelation. Think of autocorrelation as signifying a systematic relationship between the residuals measured at different points in time Autocorrelation Given the model Y t = b 0 + b 1 X t + u t Think of autocorrelation as signifying a systematic relationship between the residuals measured at different points in time This could be caused

More information

ECON2228 Notes 10. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 48

ECON2228 Notes 10. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 48 ECON2228 Notes 10 Christopher F Baum Boston College Economics 2014 2015 cfb (BC Econ) ECON2228 Notes 10 2014 2015 1 / 48 Serial correlation and heteroskedasticity in time series regressions Chapter 12:

More information

Regression with time series

Regression with time series Regression with time series Class Notes Manuel Arellano February 22, 2018 1 Classical regression model with time series Model and assumptions The basic assumption is E y t x 1,, x T = E y t x t = x tβ

More information

Testing Error Correction in Panel data

Testing Error Correction in Panel data University of Vienna, Dept. of Economics Master in Economics Vienna 2010 The Model (1) Westerlund (2007) consider the following DGP: y it = φ 1i + φ 2i t + z it (1) x it = x it 1 + υ it (2) where the stochastic

More information

MEI Exam Review. June 7, 2002

MEI Exam Review. June 7, 2002 MEI Exam Review June 7, 2002 1 Final Exam Revision Notes 1.1 Random Rules and Formulas Linear transformations of random variables. f y (Y ) = f x (X) dx. dg Inverse Proof. (AB)(AB) 1 = I. (B 1 A 1 )(AB)(AB)

More information

7. Integrated Processes

7. Integrated Processes 7. Integrated Processes Up to now: Analysis of stationary processes (stationary ARMA(p, q) processes) Problem: Many economic time series exhibit non-stationary patterns over time 226 Example: We consider

More information

Econ 300/QAC 201: Quantitative Methods in Economics/Applied Data Analysis. 17th Class 7/1/10

Econ 300/QAC 201: Quantitative Methods in Economics/Applied Data Analysis. 17th Class 7/1/10 Econ 300/QAC 201: Quantitative Methods in Economics/Applied Data Analysis 17th Class 7/1/10 The only function of economic forecasting is to make astrology look respectable. --John Kenneth Galbraith show

More information

Introduction to Stochastic processes

Introduction to Stochastic processes Università di Pavia Introduction to Stochastic processes Eduardo Rossi Stochastic Process Stochastic Process: A stochastic process is an ordered sequence of random variables defined on a probability space

More information

Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8]

Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8] 1 Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8] Insights: Price movements in one market can spread easily and instantly to another market [economic globalization and internet

More information

An estimate of the long-run covariance matrix, Ω, is necessary to calculate asymptotic

An estimate of the long-run covariance matrix, Ω, is necessary to calculate asymptotic Chapter 6 ESTIMATION OF THE LONG-RUN COVARIANCE MATRIX An estimate of the long-run covariance matrix, Ω, is necessary to calculate asymptotic standard errors for the OLS and linear IV estimators presented

More information

Time Series Analysis

Time Series Analysis Time Series Analysis Christopher Ting http://mysmu.edu.sg/faculty/christophert/ christopherting@smu.edu.sg Quantitative Finance Singapore Management University March 3, 2017 Christopher Ting Week 9 March

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

Lesson 9: Autoregressive-Moving Average (ARMA) models

Lesson 9: Autoregressive-Moving Average (ARMA) models Lesson 9: Autoregressive-Moving Average (ARMA) models Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@ec.univaq.it Introduction We have seen

More information

Chapter 2: Unit Roots

Chapter 2: Unit Roots Chapter 2: Unit Roots 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and undeconometrics II. Unit Roots... 3 II.1 Integration Level... 3 II.2 Nonstationarity

More information

STT 843 Key to Homework 1 Spring 2018

STT 843 Key to Homework 1 Spring 2018 STT 843 Key to Homework Spring 208 Due date: Feb 4, 208 42 (a Because σ = 2, σ 22 = and ρ 2 = 05, we have σ 2 = ρ 2 σ σ22 = 2/2 Then, the mean and covariance of the bivariate normal is µ = ( 0 2 and Σ

More information

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation University of Oxford Statistical Methods Autocorrelation Identification and Estimation Dr. Órlaith Burke Michaelmas Term, 2011 Department of Statistics, 1 South Parks Road, Oxford OX1 3TG Contents 1 Model

More information

Agricultural and Applied Economics 637 Applied Econometrics II

Agricultural and Applied Economics 637 Applied Econometrics II Agricultural and Applied Economics 637 Applied Econometrics II Assignment 1 Review of GLS Heteroskedasity and Autocorrelation (Due: Feb. 4, 2011) In this assignment you are asked to develop relatively

More information

Efficiency Tradeoffs in Estimating the Linear Trend Plus Noise Model. Abstract

Efficiency Tradeoffs in Estimating the Linear Trend Plus Noise Model. Abstract Efficiency radeoffs in Estimating the Linear rend Plus Noise Model Barry Falk Department of Economics, Iowa State University Anindya Roy University of Maryland Baltimore County Abstract his paper presents

More information

7. Integrated Processes

7. Integrated Processes 7. Integrated Processes Up to now: Analysis of stationary processes (stationary ARMA(p, q) processes) Problem: Many economic time series exhibit non-stationary patterns over time 226 Example: We consider

More information

ECON2228 Notes 10. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 54

ECON2228 Notes 10. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 54 ECON2228 Notes 10 Christopher F Baum Boston College Economics 2014 2015 cfb (BC Econ) ECON2228 Notes 10 2014 2015 1 / 54 erial correlation and heteroskedasticity in time series regressions Chapter 12:

More information

11.1 Gujarati(2003): Chapter 12

11.1 Gujarati(2003): Chapter 12 11.1 Gujarati(2003): Chapter 12 Time Series Data 11.2 Time series process of economic variables e.g., GDP, M1, interest rate, echange rate, imports, eports, inflation rate, etc. Realization An observed

More information

F9 F10: Autocorrelation

F9 F10: Autocorrelation F9 F10: Autocorrelation Feng Li Department of Statistics, Stockholm University Introduction In the classic regression model we assume cov(u i, u j x i, x k ) = E(u i, u j ) = 0 What if we break the assumption?

More information

Autoregressive Moving Average (ARMA) Models and their Practical Applications

Autoregressive Moving Average (ARMA) Models and their Practical Applications Autoregressive Moving Average (ARMA) Models and their Practical Applications Massimo Guidolin February 2018 1 Essential Concepts in Time Series Analysis 1.1 Time Series and Their Properties Time series:

More information

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012 Problem Set #6: OLS Economics 835: Econometrics Fall 202 A preliminary result Suppose we have a random sample of size n on the scalar random variables (x, y) with finite means, variances, and covariance.

More information

Økonomisk Kandidateksamen 2004 (I) Econometrics 2. Rettevejledning

Økonomisk Kandidateksamen 2004 (I) Econometrics 2. Rettevejledning Økonomisk Kandidateksamen 2004 (I) Econometrics 2 Rettevejledning This is a closed-book exam (uden hjælpemidler). Answer all questions! The group of questions 1 to 4 have equal weight. Within each group,

More information

Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem

Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Stochastic vs. deterministic

More information

Heteroskedasticity-Robust Inference in Finite Samples

Heteroskedasticity-Robust Inference in Finite Samples Heteroskedasticity-Robust Inference in Finite Samples Jerry Hausman and Christopher Palmer Massachusetts Institute of Technology December 011 Abstract Since the advent of heteroskedasticity-robust standard

More information

Hypothesis Testing in Predictive Regressions

Hypothesis Testing in Predictive Regressions Hypothesis Testing in Predictive Regressions Yakov Amihud 1 Clifford M. Hurvich 2 Yi Wang 3 November 12, 2004 1 Ira Leon Rennert Professor of Finance, Stern School of Business, New York University, New

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini June 9, 2018 1 / 56 Table of Contents Multiple linear regression Linear model setup Estimation of β Geometric interpretation Estimation of σ 2 Hat matrix Gram matrix

More information

Multivariate Time Series

Multivariate Time Series Multivariate Time Series Notation: I do not use boldface (or anything else) to distinguish vectors from scalars. Tsay (and many other writers) do. I denote a multivariate stochastic process in the form

More information

Lecture 4a: ARMA Model

Lecture 4a: ARMA Model Lecture 4a: ARMA Model 1 2 Big Picture Most often our goal is to find a statistical model to describe real time series (estimation), and then predict the future (forecasting) One particularly popular model

More information

An Introduction to Parameter Estimation

An Introduction to Parameter Estimation Introduction Introduction to Econometrics An Introduction to Parameter Estimation This document combines several important econometric foundations and corresponds to other documents such as the Introduction

More information

Freeing up the Classical Assumptions. () Introductory Econometrics: Topic 5 1 / 94

Freeing up the Classical Assumptions. () Introductory Econometrics: Topic 5 1 / 94 Freeing up the Classical Assumptions () Introductory Econometrics: Topic 5 1 / 94 The Multiple Regression Model: Freeing Up the Classical Assumptions Some or all of classical assumptions needed for derivations

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design Marcel Dettling Institute for Data Analysis and Process Design Zurich University of Applied Sciences marcel.dettling@zhaw.ch http://stat.ethz.ch/~dettling ETH Zürich, March 18, 2013 1 Basics of Modeling

More information

22s:152 Applied Linear Regression. Returning to a continuous response variable Y...

22s:152 Applied Linear Regression. Returning to a continuous response variable Y... 22s:152 Applied Linear Regression Generalized Least Squares Returning to a continuous response variable Y... Ordinary Least Squares Estimation The classical models we have fit so far with a continuous

More information

Topic 4 Unit Roots. Gerald P. Dwyer. February Clemson University

Topic 4 Unit Roots. Gerald P. Dwyer. February Clemson University Topic 4 Unit Roots Gerald P. Dwyer Clemson University February 2016 Outline 1 Unit Roots Introduction Trend and Difference Stationary Autocorrelations of Series That Have Deterministic or Stochastic Trends

More information

Time Series 2. Robert Almgren. Sept. 21, 2009

Time Series 2. Robert Almgren. Sept. 21, 2009 Time Series 2 Robert Almgren Sept. 21, 2009 This week we will talk about linear time series models: AR, MA, ARMA, ARIMA, etc. First we will talk about theory and after we will talk about fitting the models

More information