Algebra of Random Variables: Optimal Average and Optimal Scaling Minimising

Size: px
Start display at page:

Download "Algebra of Random Variables: Optimal Average and Optimal Scaling Minimising"

Transcription

1 Review: Optimal Average/Scaling is equivalent to Minimise χ Two 1-parameter models: Estimating < > : Scaling a pattern: Two equivalent methods: Algebra of Random Variables: Optimal Average and Optimal Scaling ˆ = i i /σ i 1/σ i σ ( ˆ ) = i 1 1/σ i µ i = µ µ i = A P i ˆ A = i i P i /σ i P i /σ i σ ˆ A ( ) = i 1 P i /σ i Minimising χ gives same result: χ Δχ χ χ min σ ( ˆα ) = = α ˆα σ ( ˆα ) χ α α = ˆα +... Δχ = 1 χ min α ˆ ± σ( α ˆ ) α

2 Chi-squared = Badness of Fit χ i µ i (α) ~ χ M σ i = data values i =1... σ i =1- σ error bar µ i (α) = model predicted data value α k = parameters of the model k =1... M = number of data points M = number of fitted parameters M = degrees of freedom

3 χ Dancing Data => Dancing χ Landscape Fit M parameters to data points. χ (,σ,α ) α ˆ ± σ( α ˆ ) µ i ( α) σ i Best - fit parameters ˆ α minimise χ. χ χ min Δχ χ min σ ( ˆα ) = Δχ = 1 χ α α= ˆα Caveat: Assumes orthogonal parameters. Generalise to correlated parameters later. α ˆα χ min Δχ χ α true Δα ˆ α ~ G( α true,σ ( ˆα) ) χ ( α true ) ~ χ χ ( ˆα ) ~ χ M ( α true ) χ min α ~ χ M

4 Constructing χ from Gaussians Sum of squares of independent Gaussian random variables χ Chi - squared with degrees of freedom and Y are independent Gaussian random variables. ~ G(0,1) Y ~ G(0,1) ~ χ 1 Y ~ χ 1 Y + Y ~ χ and so on for each new degree of freedom: χ + χ M ~ χ +M

5 Review: χ distribution degrees of freedom f (x) = 1 Γ( /) / x( / 1) e x / Γ(1) =1 Γ(1/ ) = π Γ(n) = (n 1)! Γ(x +1) = x Γ(x) e.g. Γ(3 / ) = (1/ ) Γ(1/ ) = π / χ e x 1 : f (x) = π x χ : f (x) = 1 e x / 1/ χ = σ ( χ ) =

6 Data points with no error bars L data points: = Cov( j ) = σ δ ij Sample mean: 1 unbiased: =. Var i But σ i are unknown. How can we estimate σ? Variance: σ Try: ( ) ( ) s 1 Is s = σ? i ( ) o. s < σ We can correct for this bias. ( ) = σ

7 Sample Variance S : Unbiased for σ S A ( ) Pick A so that S = A ( ) = σ ( ) = [( ) ( )] = ( ) ( ) ( ) + ( ) = σ ( ) Cov(, ) + σ ( ) = σ σ + σ = 1 1 σ = 1 σ S = A ( 1) σ Pick A = 1 1 ote : Cov(, ) = σ S 1 1 ( )

8 Evaluation of Cov(, ) Cov(, ) ( ) ( ) ote : = = Shift coords to put = 0 : Cov(, ) = ( 0) ( 0) = 1 = 1 k k k k = 1 σ δ ik = σ k Slope = 1/ Cov(, j ) σ δ i j

9 Sample Variance S : Unbiased for σ S 1 ( ) 1 1 Why -1, not 1? Because "chases" the dancing data points, removing 1 "degree-of-freedom" from the dance. S ~ σ 1 χ 1 S = σ 1 χ 1 = σ ( 1 1 ) = σ Var S 1 [ ] = σ σ( S ) = S = σ 1 1 1/ Var[ χ 1 ] ( 1) = σ 4 1 = fractional accuracy

10 Degrees of Freedom (DoF) data points: = Cov(, j ) = σ i δ ij ~ χ. degrees of freedom. σ i If unknown, use ˆnstead: ˆ σ i If =1 data point: ˆ= 1 1 σ 1 1 ˆ σ 1 ~ χ 1. 1 degrees of freedom. ~ χ 1. 1 degree of freedom Fit M parameters to data points: ( ) = 0. 0 degrees of freedom. µ i α ~ χ M. M degrees of freedom. σ i ˆ Each fitted parameter removes 1 degree of freedom from the residuals: ˆ

11 Is ( S ) 1/ unbiased for σ? The sample variance S is unbiased for σ. i.e. < S > = σ Is ( S ) 1/ unbiased for σ? o. The square root introduces a bias: (S ) 1/ σ Homework: Work out the bias correction factor as a function of. σ S S < σ, even though σ = σ.

12 Robust estimation methods Robust => less sensitive to bad data. Example: using median rather than mean: Sample Mean minimizes the Sample Variance: S 1 1 ( µ) = 0 µ for µ = ( µ ) µ MAD 1 µ = 0 µ mean median M Median M minimizes the Mean Absolute Deviation : ( ) for µ = M Median

13 Mean vs Median The median is less sensitive to outliers than the mean. Mean Median The median is unbiased, but not a minimum-variance estimator. ote how the standard deviations of the median and of the mean vary with sample size. Median Mean

14 Proof that the Median minimises the MAD H(x) MAD 1 µ = 1 ( µ ) H ( µ ) d MAD d µ = %& H ( µ ) + ( µ ) H$ ( µ ) ' ( = H µ +1, x > 0 0, x = 0 1, x < 0 ( ) = ( > µ) ( < µ) = 0 if µ = median( ) d H d x = δ(x) +1 = 0 1 since H (x) = 0 whenever x 0

15 Find the Median without Sorting M M Since M = 0, first make a guess at M. M Then estimate a new M = and iterate to convergence. M 1 M, A useful algorithm ( Is it faster than sorting? ) :

16 Median Filter and Sigma-Clip Median filter: window of points centred at time t medfilt( t ) is the median of the points. Sigma-clip: Window Fit all points by minimising χ Set threshold K and check for outliers at ± K σ or more Repeat fit omitting largest outlier Iterate until set of rejected points converges. Reject Reject

17 Various Badness-of-Fit Statistics Sample Variance mean S 1 ( µ i ) 1 Chi-squared optimal average χ i µ i ˆ σ i Mean Absolute Deviation MAD 1 median µ i M Sum Absolute ormalised Errors: SAE µ i σ i ε χ ε χ Badness functions: Sigma-clip ± K σ

18 S = Sample Variance MAD = Mean Absolute Deviation Badness of Fit: S ( µ ) ( 1)S = ε i ε i µ i 3 good points 1 bad Badness of Fit: MAD( µ ) Median MAD 3 good points 1 bad with ε i without with without µ µ

19 χ = Sum of Squared ormalised Errors SAE = Sum Absolute ormalised Errors Badness of Fit: χ ( µ ) χ χ i χ i µ i σ i 3 good points 1 bad ˆ Badness of Fit: SAE( µ ) SAE 3 good points 1 bad with without χ i µ µ

20 χ = Sum of Squared ormalised Errors A clipped Badness of Fit Statistic Badness of Fit: χ ( µ ) 3 good points 1 bad ˆ χ χ i χ i µ i σ i Badness of Fit: BoF( µ ) BoF # $ 1 exp χ i with without { } ote local minimum % & µ µ

Algebra of Random Variables: Optimal Average and Optimal Scaling Minimising

Algebra of Random Variables: Optimal Average and Optimal Scaling Minimising Review: Optimal Average/Scaling is equivalent to Minimise χ Two 1-parameter models: Estimating < > : Scaling a pattern: Two equivalent methods: Algebra of Random Variables: Optimal Average and Optimal

More information

Confidence Intervals, Testing and ANOVA Summary

Confidence Intervals, Testing and ANOVA Summary Confidence Intervals, Testing and ANOVA Summary 1 One Sample Tests 1.1 One Sample z test: Mean (σ known) Let X 1,, X n a r.s. from N(µ, σ) or n > 30. Let The test statistic is H 0 : µ = µ 0. z = x µ 0

More information

y ˆ i = ˆ " T u i ( i th fitted value or i th fit)

y ˆ i = ˆ  T u i ( i th fitted value or i th fit) 1 2 INFERENCE FOR MULTIPLE LINEAR REGRESSION Recall Terminology: p predictors x 1, x 2,, x p Some might be indicator variables for categorical variables) k-1 non-constant terms u 1, u 2,, u k-1 Each u

More information

Lecture 4: Heteroskedasticity

Lecture 4: Heteroskedasticity Lecture 4: Heteroskedasticity Econometric Methods Warsaw School of Economics (4) Heteroskedasticity 1 / 24 Outline 1 What is heteroskedasticity? 2 Testing for heteroskedasticity White Goldfeld-Quandt Breusch-Pagan

More information

Introduction to Econometrics. Heteroskedasticity

Introduction to Econometrics. Heteroskedasticity Introduction to Econometrics Introduction Heteroskedasticity When the variance of the errors changes across segments of the population, where the segments are determined by different values for the explanatory

More information

OSU Economics 444: Elementary Econometrics. Ch.10 Heteroskedasticity

OSU Economics 444: Elementary Econometrics. Ch.10 Heteroskedasticity OSU Economics 444: Elementary Econometrics Ch.0 Heteroskedasticity (Pure) heteroskedasticity is caused by the error term of a correctly speciþed equation: Var(² i )=σ 2 i, i =, 2,,n, i.e., the variance

More information

Chapter 8 Heteroskedasticity

Chapter 8 Heteroskedasticity Chapter 8 Walter R. Paczkowski Rutgers University Page 1 Chapter Contents 8.1 The Nature of 8. Detecting 8.3 -Consistent Standard Errors 8.4 Generalized Least Squares: Known Form of Variance 8.5 Generalized

More information

Why is the field of statistics still an active one?

Why is the field of statistics still an active one? Why is the field of statistics still an active one? It s obvious that one needs statistics: to describe experimental data in a compact way, to compare datasets, to ask whether data are consistent with

More information

Intermediate Econometrics

Intermediate Econometrics Intermediate Econometrics Heteroskedasticity Text: Wooldridge, 8 July 17, 2011 Heteroskedasticity Assumption of homoskedasticity, Var(u i x i1,..., x ik ) = E(u 2 i x i1,..., x ik ) = σ 2. That is, the

More information

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B Simple Linear Regression 35 Problems 1 Consider a set of data (x i, y i ), i =1, 2,,n, and the following two regression models: y i = β 0 + β 1 x i + ε, (i =1, 2,,n), Model A y i = γ 0 + γ 1 x i + γ 2

More information

EE/CpE 345. Modeling and Simulation. Fall Class 10 November 18, 2002

EE/CpE 345. Modeling and Simulation. Fall Class 10 November 18, 2002 EE/CpE 345 Modeling and Simulation Class 0 November 8, 2002 Input Modeling Inputs(t) Actual System Outputs(t) Parameters? Simulated System Outputs(t) The input data is the driving force for the simulation

More information

EE/CpE 345. Modeling and Simulation. Fall Class 9

EE/CpE 345. Modeling and Simulation. Fall Class 9 EE/CpE 345 Modeling and Simulation Class 9 208 Input Modeling Inputs(t) Actual System Outputs(t) Parameters? Simulated System Outputs(t) The input data is the driving force for the simulation - the behavior

More information

Statistical Methods for Astronomy

Statistical Methods for Astronomy Statistical Methods for Astronomy Probability (Lecture 1) Statistics (Lecture 2) Why do we need statistics? Useful Statistics Definitions Error Analysis Probability distributions Error Propagation Binomial

More information

[y i α βx i ] 2 (2) Q = i=1

[y i α βx i ] 2 (2) Q = i=1 Least squares fits This section has no probability in it. There are no random variables. We are given n points (x i, y i ) and want to find the equation of the line that best fits them. We take the equation

More information

Chapter 4. Probability and Statistics. Probability and Statistics

Chapter 4. Probability and Statistics. Probability and Statistics Chapter 4 Probability and Statistics Figliola and Beasley, (999) Probability and Statistics Engineering measurements taken repeatedly under seemingly ideal conditions will normally show variability. Measurement

More information

Drawing Inferences from Statistics Based on Multiyear Asset Returns

Drawing Inferences from Statistics Based on Multiyear Asset Returns Drawing Inferences from Statistics Based on Multiyear Asset Returns Matthew Richardson ames H. Stock FE 1989 1 Motivation Fama and French (1988, Poterba and Summer (1988 document significant negative correlations

More information

f (1 0.5)/n Z =

f (1 0.5)/n Z = Math 466/566 - Homework 4. We want to test a hypothesis involving a population proportion. The unknown population proportion is p. The null hypothesis is p = / and the alternative hypothesis is p > /.

More information

Next is material on matrix rank. Please see the handout

Next is material on matrix rank. Please see the handout B90.330 / C.005 NOTES for Wednesday 0.APR.7 Suppose that the model is β + ε, but ε does not have the desired variance matrix. Say that ε is normal, but Var(ε) σ W. The form of W is W w 0 0 0 0 0 0 w 0

More information

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression.

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression. 10/3/011 Functional Connectivity Correlation and Regression Variance VAR = Standard deviation Standard deviation SD = Unbiased SD = 1 10/3/011 Standard error Confidence interval SE = CI = = t value for

More information

17: INFERENCE FOR MULTIPLE REGRESSION. Inference for Individual Regression Coefficients

17: INFERENCE FOR MULTIPLE REGRESSION. Inference for Individual Regression Coefficients 17: INFERENCE FOR MULTIPLE REGRESSION Inference for Individual Regression Coefficients The results of this section require the assumption that the errors u are normally distributed. Let c i ij denote the

More information

Computer projects for Mathematical Statistics, MA 486. Some practical hints for doing computer projects with MATLAB:

Computer projects for Mathematical Statistics, MA 486. Some practical hints for doing computer projects with MATLAB: Computer projects for Mathematical Statistics, MA 486. Some practical hints for doing computer projects with MATLAB: You can save your project to a text file (on a floppy disk or CD or on your web page),

More information

Final Exam. Name: Solution:

Final Exam. Name: Solution: Final Exam. Name: Instructions. Answer all questions on the exam. Open books, open notes, but no electronic devices. The first 13 problems are worth 5 points each. The rest are worth 1 point each. HW1.

More information

Homework #2 Due Monday, April 18, 2012

Homework #2 Due Monday, April 18, 2012 12.540 Homework #2 Due Monday, April 18, 2012 Matlab solution codes are given in HW02_2012.m This code uses cells and contains the solutions to all the questions. Question 1: Non-linear estimation problem

More information

1. You have data on years of work experience, EXPER, its square, EXPER2, years of education, EDUC, and the log of hourly wages, LWAGE

1. You have data on years of work experience, EXPER, its square, EXPER2, years of education, EDUC, and the log of hourly wages, LWAGE 1. You have data on years of work experience, EXPER, its square, EXPER, years of education, EDUC, and the log of hourly wages, LWAGE You estimate the following regressions: (1) LWAGE =.00 + 0.05*EDUC +

More information

Simple Linear Regression Analysis

Simple Linear Regression Analysis LINEAR REGRESSION ANALYSIS MODULE II Lecture - 6 Simple Linear Regression Analysis Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Prediction of values of study

More information

Inferring from data. Theory of estimators

Inferring from data. Theory of estimators Inferring from data Theory of estimators 1 Estimators Estimator is any function of the data e(x) used to provide an estimate ( a measurement ) of an unknown parameter. Because estimators are functions

More information

* Tuesday 17 January :30-16:30 (2 hours) Recored on ESSE3 General introduction to the course.

* Tuesday 17 January :30-16:30 (2 hours) Recored on ESSE3 General introduction to the course. Name of the course Statistical methods and data analysis Audience The course is intended for students of the first or second year of the Graduate School in Materials Engineering. The aim of the course

More information

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X.

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X. Estimating σ 2 We can do simple prediction of Y and estimation of the mean of Y at any value of X. To perform inferences about our regression line, we must estimate σ 2, the variance of the error term.

More information

ISQS 5349 Final Exam, Spring 2017.

ISQS 5349 Final Exam, Spring 2017. ISQS 5349 Final Exam, Spring 7. Instructions: Put all answers on paper other than this exam. If you do not have paper, some will be provided to you. The exam is OPEN BOOKS, OPEN NOTES, but NO ELECTRONIC

More information

Multiple Regression Analysis

Multiple Regression Analysis Multiple Regression Analysis y = 0 + 1 x 1 + x +... k x k + u 6. Heteroskedasticity What is Heteroskedasticity?! Recall the assumption of homoskedasticity implied that conditional on the explanatory variables,

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science

UNIVERSITY OF TORONTO Faculty of Arts and Science UNIVERSITY OF TORONTO Faculty of Arts and Science December 2013 Final Examination STA442H1F/2101HF Methods of Applied Statistics Jerry Brunner Duration - 3 hours Aids: Calculator Model(s): Any calculator

More information

Stochastic Gradient Descent

Stochastic Gradient Descent Stochastic Gradient Descent Machine Learning CSE546 Carlos Guestrin University of Washington October 9, 2013 1 Logistic Regression Logistic function (or Sigmoid): Learn P(Y X) directly Assume a particular

More information

Topic 4: Model Specifications

Topic 4: Model Specifications Topic 4: Model Specifications Advanced Econometrics (I) Dong Chen School of Economics, Peking University 1 Functional Forms 1.1 Redefining Variables Change the unit of measurement of the variables will

More information

Answers to Problem Set #4

Answers to Problem Set #4 Answers to Problem Set #4 Problems. Suppose that, from a sample of 63 observations, the least squares estimates and the corresponding estimated variance covariance matrix are given by: bβ bβ 2 bβ 3 = 2

More information

Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18)

Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18) Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18) MichaelR.Roberts Department of Economics and Department of Statistics University of California

More information

ECON 497: Lecture Notes 10 Page 1 of 1

ECON 497: Lecture Notes 10 Page 1 of 1 ECON 497: Lecture Notes 10 Page 1 of 1 Metropolitan State University ECON 497: Research and Forecasting Lecture Notes 10 Heteroskedasticity Studenmund Chapter 10 We'll start with a quote from Studenmund:

More information

Parameter Estimation and Fitting to Data

Parameter Estimation and Fitting to Data Parameter Estimation and Fitting to Data Parameter estimation Maximum likelihood Least squares Goodness-of-fit Examples Elton S. Smith, Jefferson Lab 1 Parameter estimation Properties of estimators 3 An

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

Formal Statement of Simple Linear Regression Model

Formal Statement of Simple Linear Regression Model Formal Statement of Simple Linear Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters X i is a known constant, the value of the predictor

More information

Math 423/533: The Main Theoretical Topics

Math 423/533: The Main Theoretical Topics Math 423/533: The Main Theoretical Topics Notation sample size n, data index i number of predictors, p (p = 2 for simple linear regression) y i : response for individual i x i = (x i1,..., x ip ) (1 p)

More information

Generate a theoretical model, which provides a functional form for the data points. global warming, try theoretical model

Generate a theoretical model, which provides a functional form for the data points. global warming, try theoretical model CURVE FITTING Basic part of a wide range of physics - fit data to a model e.g. Global warming - CO 2 level in atmosphere what is estimated rate of increase in CO 2 per year? 166 Modelling of data Generate

More information

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics)

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Probability quantifies randomness and uncertainty How do I estimate the normalization and logarithmic slope of a X ray continuum, assuming

More information

Least squares: introduction to the network adjustment

Least squares: introduction to the network adjustment Least squares: introduction to the network adjustment Experimental evidence and consequences Observations of the same quantity that have been performed at the highest possible accuracy provide different

More information

EXAMINERS REPORT & SOLUTIONS STATISTICS 1 (MATH 11400) May-June 2009

EXAMINERS REPORT & SOLUTIONS STATISTICS 1 (MATH 11400) May-June 2009 EAMINERS REPORT & SOLUTIONS STATISTICS (MATH 400) May-June 2009 Examiners Report A. Most plots were well done. Some candidates muddled hinges and quartiles and gave the wrong one. Generally candidates

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Föreläsning /31

Föreläsning /31 1/31 Föreläsning 10 090420 Chapter 13 Econometric Modeling: Model Speci cation and Diagnostic testing 2/31 Types of speci cation errors Consider the following models: Y i = β 1 + β 2 X i + β 3 X 2 i +

More information

Expectation. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Expectation. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Expectation DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean, variance,

More information

Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study

Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study 1.4 0.0-6 7 8 9 10 11 12 13 14 15 16 17 18 19 age Model 1: A simple broken stick model with knot at 14 fit with

More information

Simple Linear Regression for the Climate Data

Simple Linear Regression for the Climate Data Prediction Prediction Interval Temperature 0.2 0.0 0.2 0.4 0.6 0.8 320 340 360 380 CO 2 Simple Linear Regression for the Climate Data What do we do with the data? y i = Temperature of i th Year x i =CO

More information

Finite Sample Performance of A Minimum Distance Estimator Under Weak Instruments

Finite Sample Performance of A Minimum Distance Estimator Under Weak Instruments Finite Sample Performance of A Minimum Distance Estimator Under Weak Instruments Tak Wai Chau February 20, 2014 Abstract This paper investigates the nite sample performance of a minimum distance estimator

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Asymptotics Asymptotics Multiple Linear Regression: Assumptions Assumption MLR. (Linearity in parameters) Assumption MLR. (Random Sampling from the population) We have a random

More information

Harmonization of Friction Measuring Devices Using Robust Regression Methods

Harmonization of Friction Measuring Devices Using Robust Regression Methods Harmonization of Friction Measuring Devices Using Robust Regression Methods Samer Katicha 09/09/2013 Center for Sustainable Transportation Infrastructure Outline o What is harmonization of devices? Measurement

More information

Econometrics Honor s Exam Review Session. Spring 2012 Eunice Han

Econometrics Honor s Exam Review Session. Spring 2012 Eunice Han Econometrics Honor s Exam Review Session Spring 2012 Eunice Han Topics 1. OLS The Assumptions Omitted Variable Bias Conditional Mean Independence Hypothesis Testing and Confidence Intervals Homoskedasticity

More information

3 Multiple Linear Regression

3 Multiple Linear Regression 3 Multiple Linear Regression 3.1 The Model Essentially, all models are wrong, but some are useful. Quote by George E.P. Box. Models are supposed to be exact descriptions of the population, but that is

More information

Statistical methods. Mean value and standard deviations Standard statistical distributions Linear systems Matrix algebra

Statistical methods. Mean value and standard deviations Standard statistical distributions Linear systems Matrix algebra Statistical methods Mean value and standard deviations Standard statistical distributions Linear systems Matrix algebra Statistical methods Generating random numbers MATLAB has many built-in functions

More information

Econ 620. Matrix Differentiation. Let a and x are (k 1) vectors and A is an (k k) matrix. ) x. (a x) = a. x = a (x Ax) =(A + A (x Ax) x x =(A + A )

Econ 620. Matrix Differentiation. Let a and x are (k 1) vectors and A is an (k k) matrix. ) x. (a x) = a. x = a (x Ax) =(A + A (x Ax) x x =(A + A ) Econ 60 Matrix Differentiation Let a and x are k vectors and A is an k k matrix. a x a x = a = a x Ax =A + A x Ax x =A + A x Ax = xx A We don t want to prove the claim rigorously. But a x = k a i x i i=

More information

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH1725 (May-June 2009) INTRODUCTION TO STATISTICS. Time allowed: 2 hours

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH1725 (May-June 2009) INTRODUCTION TO STATISTICS. Time allowed: 2 hours 01 This question paper consists of 11 printed pages, each of which is identified by the reference. Only approved basic scientific calculators may be used. Statistical tables are provided at the end of

More information

Measurement Error and Linear Regression of Astronomical Data. Brandon Kelly Penn State Summer School in Astrostatistics, June 2007

Measurement Error and Linear Regression of Astronomical Data. Brandon Kelly Penn State Summer School in Astrostatistics, June 2007 Measurement Error and Linear Regression of Astronomical Data Brandon Kelly Penn State Summer School in Astrostatistics, June 2007 Classical Regression Model Collect n data points, denote i th pair as (η

More information

Generalized Linear Models (1/29/13)

Generalized Linear Models (1/29/13) STA613/CBB540: Statistical methods in computational biology Generalized Linear Models (1/29/13) Lecturer: Barbara Engelhardt Scribe: Yangxiaolu Cao When processing discrete data, two commonly used probability

More information

A Few Special Distributions and Their Properties

A Few Special Distributions and Their Properties A Few Special Distributions and Their Properties Econ 690 Purdue University Justin L. Tobias (Purdue) Distributional Catalog 1 / 20 Special Distributions and Their Associated Properties 1 Uniform Distribution

More information

Review of Statistics

Review of Statistics Review of Statistics Topics Descriptive Statistics Mean, Variance Probability Union event, joint event Random Variables Discrete and Continuous Distributions, Moments Two Random Variables Covariance and

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information

Linear Regression In God we trust, all others bring data. William Edwards Deming

Linear Regression In God we trust, all others bring data. William Edwards Deming Linear Regression ddebarr@uw.edu 2017-01-19 In God we trust, all others bring data. William Edwards Deming Course Outline 1. Introduction to Statistical Learning 2. Linear Regression 3. Classification

More information

Expectation. DS GA 1002 Probability and Statistics for Data Science. Carlos Fernandez-Granda

Expectation. DS GA 1002 Probability and Statistics for Data Science.   Carlos Fernandez-Granda Expectation DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean,

More information

STATISTICS 141 Final Review

STATISTICS 141 Final Review STATISTICS 141 Final Review Bin Zou bzou@ualberta.ca Department of Mathematical & Statistical Sciences University of Alberta Winter 2015 Bin Zou (bzou@ualberta.ca) STAT 141 Final Review Winter 2015 1 /

More information

STT 843 Key to Homework 1 Spring 2018

STT 843 Key to Homework 1 Spring 2018 STT 843 Key to Homework Spring 208 Due date: Feb 4, 208 42 (a Because σ = 2, σ 22 = and ρ 2 = 05, we have σ 2 = ρ 2 σ σ22 = 2/2 Then, the mean and covariance of the bivariate normal is µ = ( 0 2 and Σ

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Lecture 14 Simple Linear Regression

Lecture 14 Simple Linear Regression Lecture 4 Simple Linear Regression Ordinary Least Squares (OLS) Consider the following simple linear regression model where, for each unit i, Y i is the dependent variable (response). X i is the independent

More information

Topic 22 Analysis of Variance

Topic 22 Analysis of Variance Topic 22 Analysis of Variance Comparing Multiple Populations 1 / 14 Outline Overview One Way Analysis of Variance Sample Means Sums of Squares The F Statistic Confidence Intervals 2 / 14 Overview Two-sample

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter Seven Jesse Crawford Department of Mathematics Tarleton State University Spring 2011 (Tarleton State University) Chapter Seven Notes Spring 2011 1 / 42 Outline

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 1 Random Vectors Let a 0 and y be n 1 vectors, and let A be an n n matrix. Here, a 0 and A are non-random, whereas y is

More information

Physics 509: Bootstrap and Robust Parameter Estimation

Physics 509: Bootstrap and Robust Parameter Estimation Physics 509: Bootstrap and Robust Parameter Estimation Scott Oser Lecture #20 Physics 509 1 Nonparametric parameter estimation Question: what error estimate should you assign to the slope and intercept

More information

Which model to use? How can we deal with these decisions automatically? Note flailing in data gaps and beyond ends for high M

Which model to use? How can we deal with these decisions automatically? Note flailing in data gaps and beyond ends for high M Which model to use? Microlens modellers face many dilemmas: Blending or no blending? Keep original error bars, or resacle them? Simple scale factor, or more elaborate model. Point source or extended source?

More information

MID-TERM EXAM ANSWERS. p t + δ t = Rp t 1 + η t (1.1)

MID-TERM EXAM ANSWERS. p t + δ t = Rp t 1 + η t (1.1) ECO 513 Fall 2005 C.Sims MID-TERM EXAM ANSWERS (1) Suppose a stock price p t and the stock dividend δ t satisfy these equations: p t + δ t = Rp t 1 + η t (1.1) δ t = γδ t 1 + φp t 1 + ε t, (1.2) where

More information

Central Limit Theorem ( 5.3)

Central Limit Theorem ( 5.3) Central Limit Theorem ( 5.3) Let X 1, X 2,... be a sequence of independent random variables, each having n mean µ and variance σ 2. Then the distribution of the partial sum S n = X i i=1 becomes approximately

More information

K. Model Diagnostics. residuals ˆɛ ij = Y ij ˆµ i N = Y ij Ȳ i semi-studentized residuals ω ij = ˆɛ ij. studentized deleted residuals ɛ ij =

K. Model Diagnostics. residuals ˆɛ ij = Y ij ˆµ i N = Y ij Ȳ i semi-studentized residuals ω ij = ˆɛ ij. studentized deleted residuals ɛ ij = K. Model Diagnostics We ve already seen how to check model assumptions prior to fitting a one-way ANOVA. Diagnostics carried out after model fitting by using residuals are more informative for assessing

More information

Lecture 3: Linear Models. Bruce Walsh lecture notes Uppsala EQG course version 28 Jan 2012

Lecture 3: Linear Models. Bruce Walsh lecture notes Uppsala EQG course version 28 Jan 2012 Lecture 3: Linear Models Bruce Walsh lecture notes Uppsala EQG course version 28 Jan 2012 1 Quick Review of the Major Points The general linear model can be written as y = X! + e y = vector of observed

More information

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018 Econometrics I KS Module 2: Multivariate Linear Regression Alexander Ahammer Department of Economics Johannes Kepler University of Linz This version: April 16, 2018 Alexander Ahammer (JKU) Module 2: Multivariate

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

Econ 2120: Section 2

Econ 2120: Section 2 Econ 2120: Section 2 Part I - Linear Predictor Loose Ends Ashesh Rambachan Fall 2018 Outline Big Picture Matrix Version of the Linear Predictor and Least Squares Fit Linear Predictor Least Squares Omitted

More information

Introductory Econometrics

Introductory Econometrics Introductory Econometrics Violation of basic assumptions Heteroskedasticity Barbara Pertold-Gebicka CERGE-EI 16 November 010 OLS assumptions 1. Disturbances are random variables drawn from a normal distribution.

More information

Regression diagnostics

Regression diagnostics Regression diagnostics Kerby Shedden Department of Statistics, University of Michigan November 5, 018 1 / 6 Motivation When working with a linear model with design matrix X, the conventional linear model

More information

Binary Dependent Variables

Binary Dependent Variables Binary Dependent Variables In some cases the outcome of interest rather than one of the right hand side variables - is discrete rather than continuous Binary Dependent Variables In some cases the outcome

More information

ECON Introductory Econometrics. Lecture 6: OLS with Multiple Regressors

ECON Introductory Econometrics. Lecture 6: OLS with Multiple Regressors ECON4150 - Introductory Econometrics Lecture 6: OLS with Multiple Regressors Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 6 Lecture outline 2 Violation of first Least Squares assumption

More information

LECTURE 10. Introduction to Econometrics. Multicollinearity & Heteroskedasticity

LECTURE 10. Introduction to Econometrics. Multicollinearity & Heteroskedasticity LECTURE 10 Introduction to Econometrics Multicollinearity & Heteroskedasticity November 22, 2016 1 / 23 ON PREVIOUS LECTURES We discussed the specification of a regression equation Specification consists

More information

Multiple Regression Analysis: Heteroskedasticity

Multiple Regression Analysis: Heteroskedasticity Multiple Regression Analysis: Heteroskedasticity y = β 0 + β 1 x 1 + β x +... β k x k + u Read chapter 8. EE45 -Chaiyuth Punyasavatsut 1 topics 8.1 Heteroskedasticity and OLS 8. Robust estimation 8.3 Testing

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 00 MODULE : Statistical Inference Time Allowed: Three Hours Candidates should answer FIVE questions. All questions carry equal marks. The

More information

STATISTICS OF OBSERVATIONS & SAMPLING THEORY. Parent Distributions

STATISTICS OF OBSERVATIONS & SAMPLING THEORY. Parent Distributions ASTR 511/O Connell Lec 6 1 STATISTICS OF OBSERVATIONS & SAMPLING THEORY References: Bevington Data Reduction & Error Analysis for the Physical Sciences LLM: Appendix B Warning: the introductory literature

More information

Model Mis-specification

Model Mis-specification Model Mis-specification Carlo Favero Favero () Model Mis-specification 1 / 28 Model Mis-specification Each specification can be interpreted of the result of a reduction process, what happens if the reduction

More information

Numerical Methods I Solving Nonlinear Equations

Numerical Methods I Solving Nonlinear Equations Numerical Methods I Solving Nonlinear Equations Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 16th, 2014 A. Donev (Courant Institute)

More information

Unit 10: Simple Linear Regression and Correlation

Unit 10: Simple Linear Regression and Correlation Unit 10: Simple Linear Regression and Correlation Statistics 571: Statistical Methods Ramón V. León 6/28/2004 Unit 10 - Stat 571 - Ramón V. León 1 Introductory Remarks Regression analysis is a method for

More information

Overview of SPM. Overview. Making the group inferences we want. Non-sphericity Beyond Ordinary Least Squares. Model estimation A word on power

Overview of SPM. Overview. Making the group inferences we want. Non-sphericity Beyond Ordinary Least Squares. Model estimation A word on power Group Inference, Non-sphericity & Covariance Components in SPM Alexa Morcom Edinburgh SPM course, April 011 Centre for Cognitive & Neural Systems/ Department of Psychology University of Edinburgh Overview

More information

Ma 3/103: Lecture 25 Linear Regression II: Hypothesis Testing and ANOVA

Ma 3/103: Lecture 25 Linear Regression II: Hypothesis Testing and ANOVA Ma 3/103: Lecture 25 Linear Regression II: Hypothesis Testing and ANOVA March 6, 2017 KC Border Linear Regression II March 6, 2017 1 / 44 1 OLS estimator 2 Restricted regression 3 Errors in variables 4

More information

4. DATA ASSIMILATION FUNDAMENTALS

4. DATA ASSIMILATION FUNDAMENTALS 4. DATA ASSIMILATION FUNDAMENTALS... [the atmosphere] "is a chaotic system in which errors introduced into the system can grow with time... As a consequence, data assimilation is a struggle between chaotic

More information

Introduction to least square fits for Geant 4 Simulation and ROOT Analysis of a Silicon Beam Telescope Mar , DESY Hamburg Olaf Behnke, DESY

Introduction to least square fits for Geant 4 Simulation and ROOT Analysis of a Silicon Beam Telescope Mar , DESY Hamburg Olaf Behnke, DESY Introduction to least square fits for Geant 4 Simulation and ROOT Analysis of a Silicon Beam Telescope Mar 4-6 2, DESY Hamburg Olaf Behnke, DESY Literature: Roger Barlow: Statistics, A Guide To The Use

More information

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010 Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010 Image time-series Spatial filter Design matrix Statistical Parametric Map

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

Chapter 15 Panel Data Models. Pooling Time-Series and Cross-Section Data

Chapter 15 Panel Data Models. Pooling Time-Series and Cross-Section Data Chapter 5 Panel Data Models Pooling Time-Series and Cross-Section Data Sets of Regression Equations The topic can be introduced wh an example. A data set has 0 years of time series data (from 935 to 954)

More information

IEOR 165 Lecture 7 1 Bias-Variance Tradeoff

IEOR 165 Lecture 7 1 Bias-Variance Tradeoff IEOR 165 Lecture 7 Bias-Variance Tradeoff 1 Bias-Variance Tradeoff Consider the case of parametric regression with β R, and suppose we would like to analyze the error of the estimate ˆβ in comparison to

More information