Answers to Problem Set #4

Size: px
Start display at page:

Download "Answers to Problem Set #4"

Transcription

1 Answers to Problem Set #4 Problems. Suppose that, from a sample of 63 observations, the least squares estimates and the corresponding estimated variance covariance matrix are given by: bβ bβ 2 bβ 3 = 2 3 and covariance matrix bβ β2 b β3 b bβ 3 2 bβ bβ Test each of the following hypotheses and state the conclusion: a. β 2 =0 t = ˆβ 2 β 2 = 3 0 = 3 ˆσ β2 4 2 =.5 Since the critical t-value is approximately.67, fail to reject the null hypothesis.. b. β +2β 2 =5 Restate the null in terms of a new parameter, γ =5 β 2β 2 : H o : γ =0 The t-statistic is: where t = ˆγˆσ γ = ˆγ =5 ˆβ 2ˆβ 2 = = 3 ˆσ 2 γ = V ³5 ˆβ 2ˆβ 2 = V ˆσ 2 γ = 3+4(4)+4( 2) = ˆσ γ = ³ˆβ +4V ³ˆβ2 +2( ) ( 2) cov ³ˆβ, 2 ˆβ Since the t-statistic is less than the critical t-value (approximately.67) we fail to reject the null hypothesis.. c. β β 2 + β 3 =4

2 Again, restate the null in terms of a new parameter, γ =4 β + β 2 β 3 : H o : γ =0 The t-statistic is: t = ˆγˆσ = 6 γ 4 =.5 where ˆγ =4 ˆβ + ˆβ 2 ˆβ 3 =4 2+3+=6 ˆσ 2 γ = V ³4 ˆβ + ˆβ 2 3 ˆβ ³ˆβ ³ˆβ2 ³ˆβ3 = V + V + V +2 ( ) () cov ³ˆβ, 2 ˆβ +2( )( )cov ³ˆβ, 3 ˆβ + 2()( )cov ³ˆβ2, 3 ˆβ ˆσ 2 γ = ( 2)( 2) + 2() + ( 2)(0) = 6 ˆσ γ = 6 = 4 Since the t-statistic is less than the critical t-value (approximately.67) we fail to reject the null hypothesis. 2. Suppose that, from a sample of 00 observations, you run a regression of the dependent variable on 3 independent variables or regressors. Some of the output from this regression looks as follows: S.E.of regression: Varianceof y : Conduct the F-test for the overall signiþcance of the coefficients. The test has the following null and alternative hypotheses: H o : β = β 2 = β 3 =0 H A : β j 6=0, for at least one j =, 2, 3 First, Þnd the sum of sqaured residuals: s PT s = ε2 t (T K) s 2 = s 2 (T K) = ε2 t (T K) ε 2 t ε 2 t = (2.532) 2 (00 3) = 62.92

3 Find the (total sum of sqaures) sum of squared y t s: var(y) = (y t ȳ) 2 T = (y t ȳ) 2 99 (y t ȳ) 2 = Note, the R 2 for this regression is: R 2 = ε2 t (y = 2 t ȳ) = The R 2 by deþnition has to be bounded by 0 and. If the R 2 had turned out positive, you can use the following relationship between the R 2 and the F-statistic for an overall signiþcance test: R 2 /(K ) F = ( R 2 ) /(T K) 3. Show that: R 2 = R 2 k T k ( R2 ) The adjusted R 2 and R 2 are deþned as: R 2 = R 2 = ³ PT ε2 t ³ PT /(T K) (y t ȳ) 2 /(T ) ε2 t (y t ȳ) 2

4 Rewrite R 2 : R 2 = R 2 (T ) (T K) (T ) (T ) = + R2 (T K) (T K) (T K T +) 2 (T ) = + R (T K) (T K) ( K) (T ) = + R2 (T K) (T K) 2 (T ) (K ) = R (T K) (T K) µ T K + K = R 2 (K ) T K (T K) µ = R 2 + K (K ) T K (T K) = R 2 + R 2 K T K (K ) (T K) = R2 ( K) R 2 (T K) 4. Given the following regression model y t = β + β 2 x 2t + β 3 x 3t + ε t you are asked to test the null hypothesis, H 0 : β 2 +3β 3 =. (a) Construct the restricted regression that imposes the constraint implied by the null hypothesis and discuss how you would use an F-test to test this null hypothesis. Restricted model: y t = β +( 3β 3 ) x 2t + β 3 x 3t + ε t y t = β + x 2t + β 3 (x 3t 2x 2t )+ε t y t x 2t = β + β 3 (x 3t 2x 2t )+ε t Construct two new variables: ỹ t =(y t x 2t )and x t =(x 3t 2x 2t ). Run the following two regressions: (U) : y t = β + β 2 x 2t + β 3 x 3t + ε t (R) : ỹ t = β + β 3 ( x t )+ε t Obtain the sum of squared residuals and construct the F statistic: F = (SSE R SSE U ) /(3 2) SSE U /(T 3) = (SSE R SSE U ) SSE U /(T 3)

5 If the F statistic is greater than the critical F,T 3 then we reject the null hypothesis that β 2 +3β 3 =.. b. Suppose instead that you are asked to test this null hypothesis using a t-statistic. Describe how you would construct the test in this case. You need not write down \ the exact OLS expressions for quantities such as COV ( β b i, β b j ). Remember that V (ax +by )=a 2 V (X)+b 2 V (Y )+2abCOV (X, Y ), and that out of the estimation you will obtain the variances and covariances of all the coefficient estimates. Restate the null in terms of a new parameter, γ = β 2 3β 3 : The t-statistic is: where H o : γ =0 t = ˆγˆσ γ ˆγ = β 2 3β 3 ³ˆβ2 ³ˆβ3 ˆσ 2 \ ³ˆβ2 3 γ = V ( β 2 3β 3 )=V + V +2( )( 3) cov, ˆβ r ³ˆβ2 ³ˆβ3 \ ³ˆβ2 3 ˆσ γ = V + V +2( )( 3) cov, ˆβ Calculate the t-statistic and compare to the critical t-value. If the t-statistic exceeds the critical value, reject the null hypothesis. Another way to solve this problem is impose the restriction in the regression model: Y t = β +(γ 3β 3 +)X 2t + β 3 X 3t + ε t Y t = β + γx 2t + β 3 (X 3t 3X 2t )+X 2t + ε t Y t X 2t = β + γx 2t + β 3 (X 3t 3X 2t )+ε t You can estimate this expression using least squares and test the hypothesis that γ =0. 5. Suppose you estimate by OLS the model However, the true model is given by the expression y t = βx t + ε t () y t = βx t + γz t + u t (2) where u t is the residual term, and z t is a regressor that was omitted in the Þrst regression. Furthermore, suppose that γ < 0andthatCOV (x, z) > 0

6 (a) Ignoring that γ < 0andthatCOV (x, z) > 0, in general, under what conditions will the estimator b β be an unbiased estimator of the true β? Unbiasedness requires that E(x t,u t )=0. ˆβ = = (y t ȳ)(x t x) (x t x) 2 (βx t + γz t + u t β x γ z)(x t x) (x t x) 2 Ignoring that γ < 0andthatCOV (x, z) > 0: ˆβ = (βx t + u t βx t )(x t x) (x t x) 2 ˆβ = β (x P t x)(x t x) T (x + u t (x t x) t x) 2 (x t x) 2 ˆβ = β + u t (x t x) (x t x) 2 Taking the expected value, conditioning on x t : " ³ˆβ xt PT # E = E(β x t )+E u t (x t x) (x t x) 2 x t = β + = β + "Ã! # (x t x) E u 2 t x t x t "Ã! # (x t x) E u 2 t x t x t 0 (x t x) 2 E "à x! # u t x t Using the Law of Iterated Expectations: Ã! E ³ˆβ = β + (x t x) E u 2 t x t ³ PT From the above expression, we can see that E ³ˆβ 6= β if E u tx t 6= 0.. b. Calculate the bias in b β when we estimate by OLS equation () (i.e., we omit z t ).

7 Calculate ˆβ : ˆβ = ˆβ = (y t ȳ)(x t x) (x t x) 2 (βx t + γz t + u t β x γ z)(x t x) (x t x) 2 ˆβ = β (x t x) 2 (x t x) + γ (z P t z)(x t x) T 2 (x + u t (x t x) t x) 2 (x t x) 2 Taking the expected value, conditioning on x t : à ³ˆβ xt! # E = E(β x t )+ "γ (x t x) E (z 2 t z)(x t x) x t + "Ã! #! # (x t x) E u 2 t x t x t "à x (x t x) E u 2 t x t Assuming E(x t,u t )=0holds: ³ˆβ xt E E ³ˆβ = β + = β + "Ã! # γ (x t x) E (z 2 t z)(x t x) x t "!# à γ (x t x) E (z 2 t z)(x t x) {z } BIAS. c. Given the conditions of the problem, is b β from the previous part biased upwards or downwards? Explain why. Recall that γ < 0andcov(x t,z t ) > 0: E ³ˆβ E ³ˆβ Ã! Ã! γ = β + (x t x) 2 E (z t z)(x t x) {z } {z } = β + negative bias ( ) (+) Therefore, the estimate of ˆβ will be biased downward.

8 Comments on Problem Set #4 (Empirical) There are a number of ways to approach this problem. I have provided some results below, but they are by no means exhaustive. As a first step, include all of the explanatory variables: DRUGS, ENROLLMENT, MATH87, and SES in a baseline regression. Note, the variable ENROLL is ENROLLMENT/000, so the coefficient can be interpreted for each 000 students. Dependent Variable: MATH9 Method: Least Squares Date: 03/0/0 Time: 6:07 Sample: 407 Included observations: 402 Excluded observations: 5 Variable Coefficient Std. Error t-statistic Prob. C DRUGS ENROLL MATH SES URBAN R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Since the p-values for ENROLL and URBAN are greater than 0.05, the variables are not significant. When you conduct an F-test to find whether the variables are jointly significant, you will find the p-value is greater than This yields the following regression: Dependent Variable: MATH9 Method: Least Squares Date: 02/26/0 Time: 7:03 Sample: 407 Included observations: 405 Excluded observations: 2 Variable Coefficient Std. Error t-statistic Prob. C DRUGS MATH SES R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)

9 Notice that when we drop the ENROLL and URBAN variables, the DRUGS variable becomes insignificant at the 95% level. A Wald test on the joint significance of the DRUGS, ENROLL, and URBAN coefficients from the baseline regression above yields: Wald Test: Equation: EQ0 Null Hypothesis: C(2)=0 C(3)=0 C(6)=0 F-statistic Probability Chi-square Probability This implies that the DRUGS, URBAN, and ENROLL variables are jointly insignificant at the 95% level. It is a matter of choice in deciding whether or not to drop these variables. Here, we decide to leave the variables in the regression. Given the sample size, we do not need to worry about degrees of freedom. Now, we will look more carefully at subsamples using dummy variables. We run the following regression for males and females: Dependent Variable: MATH9 Method: Least Squares Date: 03/0/0 Time: 6: Sample: 407 Included observations: 402 Excluded observations: 5 Variable Coefficient Std. Error t-statistic Prob. MALE*MATH (-MALE)*MATH MALE*DRUGS (-MALE)*DRUGS MALE*ENROLL (-MALE)*ENROLL MALE*SES (-MALE)*SES MALE*URBAN (-MALE)*URBAN R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood Durbin-Watson stat A couple of implications from this regression deserve comment. The F-statistics which test whether females and males respond differently all yield p-values that are greater than 0.5. This means that males and females respond the same way to DRUGS, ENROLL, SES, URBAN, and MATH87 in terms of their MATH9 performance. However, compared to the average response, the following observations hold. First, males at schools where drugs are prominent tend to perform worse than women at the same schools. It appears that the effect drugs have on women is not significant. Second, males at schools with high enrollment tend to perform better than women at the same schools. Third, social-economic status affects the performance of males more

10 than females in terms of test scores. Finally, males and females do not respond differently in terms of their previous math scores or the degree of urbanization. The latter finding could be the result of including both the ENROLL and URBAN variables in the regress. These two variables are most likely highly correlated, so it could be that ENROLL is taking explanatory power away from the URBAN variable. Even though males and females do not respond differently, the t-statisics reveal that males attending schools with high enrollment, low level of drugs, and with high social-economic status perform better on average. We have to consider this when making a recommendation on how to improve math scores. For instance, fighting a drug problem will be successful in raising test scores if the school male-dominated in terms of enrollment.

CHAPTER 6: SPECIFICATION VARIABLES

CHAPTER 6: SPECIFICATION VARIABLES Recall, we had the following six assumptions required for the Gauss-Markov Theorem: 1. The regression model is linear, correctly specified, and has an additive error term. 2. The error term has a zero

More information

5. Erroneous Selection of Exogenous Variables (Violation of Assumption #A1)

5. Erroneous Selection of Exogenous Variables (Violation of Assumption #A1) 5. Erroneous Selection of Exogenous Variables (Violation of Assumption #A1) Assumption #A1: Our regression model does not lack of any further relevant exogenous variables beyond x 1i, x 2i,..., x Ki and

More information

The Simple Regression Model. Part II. The Simple Regression Model

The Simple Regression Model. Part II. The Simple Regression Model Part II The Simple Regression Model As of Sep 22, 2015 Definition 1 The Simple Regression Model Definition Estimation of the model, OLS OLS Statistics Algebraic properties Goodness-of-Fit, the R-square

More information

Multiple Regression Analysis. Part III. Multiple Regression Analysis

Multiple Regression Analysis. Part III. Multiple Regression Analysis Part III Multiple Regression Analysis As of Sep 26, 2017 1 Multiple Regression Analysis Estimation Matrix form Goodness-of-Fit R-square Adjusted R-square Expected values of the OLS estimators Irrelevant

More information

Brief Suggested Solutions

Brief Suggested Solutions DEPARTMENT OF ECONOMICS UNIVERSITY OF VICTORIA ECONOMICS 366: ECONOMETRICS II SPRING TERM 5: ASSIGNMENT TWO Brief Suggested Solutions Question One: Consider the classical T-observation, K-regressor linear

More information

3. Linear Regression With a Single Regressor

3. Linear Regression With a Single Regressor 3. Linear Regression With a Single Regressor Econometrics: (I) Application of statistical methods in empirical research Testing economic theory with real-world data (data analysis) 56 Econometrics: (II)

More information

2. Linear regression with multiple regressors

2. Linear regression with multiple regressors 2. Linear regression with multiple regressors Aim of this section: Introduction of the multiple regression model OLS estimation in multiple regression Measures-of-fit in multiple regression Assumptions

More information

4. Nonlinear regression functions

4. Nonlinear regression functions 4. Nonlinear regression functions Up to now: Population regression function was assumed to be linear The slope(s) of the population regression function is (are) constant The effect on Y of a unit-change

More information

Model Specification and Data Problems. Part VIII

Model Specification and Data Problems. Part VIII Part VIII Model Specification and Data Problems As of Oct 24, 2017 1 Model Specification and Data Problems RESET test Non-nested alternatives Outliers A functional form misspecification generally means

More information

Practice Questions for the Final Exam. Theoretical Part

Practice Questions for the Final Exam. Theoretical Part Brooklyn College Econometrics 7020X Spring 2016 Instructor: G. Koimisis Name: Date: Practice Questions for the Final Exam Theoretical Part 1. Define dummy variable and give two examples. 2. Analyze the

More information

The general linear regression with k explanatory variables is just an extension of the simple regression as follows

The general linear regression with k explanatory variables is just an extension of the simple regression as follows 3. Multiple Regression Analysis The general linear regression with k explanatory variables is just an extension of the simple regression as follows (1) y i = β 0 + β 1 x i1 + + β k x ik + u i. Because

More information

Heteroskedasticity. Part VII. Heteroskedasticity

Heteroskedasticity. Part VII. Heteroskedasticity Part VII Heteroskedasticity As of Oct 15, 2015 1 Heteroskedasticity Consequences Heteroskedasticity-robust inference Testing for Heteroskedasticity Weighted Least Squares (WLS) Feasible generalized Least

More information

Economics 471: Econometrics Department of Economics, Finance and Legal Studies University of Alabama

Economics 471: Econometrics Department of Economics, Finance and Legal Studies University of Alabama Economics 471: Econometrics Department of Economics, Finance and Legal Studies University of Alabama Course Packet The purpose of this packet is to show you one particular dataset and how it is used in

More information

10. Time series regression and forecasting

10. Time series regression and forecasting 10. Time series regression and forecasting Key feature of this section: Analysis of data on a single entity observed at multiple points in time (time series data) Typical research questions: What is the

More information

Exercise Sheet 6: Solutions

Exercise Sheet 6: Solutions Exercise Sheet 6: Solutions R.G. Pierse 1. (a) Regression yields: Dependent Variable: LC Date: 10/29/02 Time: 18:37 Sample(adjusted): 1950 1985 Included observations: 36 after adjusting endpoints C 0.244716

More information

Statistical Inference. Part IV. Statistical Inference

Statistical Inference. Part IV. Statistical Inference Part IV Statistical Inference As of Oct 5, 2017 Sampling Distributions of the OLS Estimator 1 Statistical Inference Sampling Distributions of the OLS Estimator Testing Against One-Sided Alternatives Two-Sided

More information

Lecture 8. Using the CLR Model. Relation between patent applications and R&D spending. Variables

Lecture 8. Using the CLR Model. Relation between patent applications and R&D spending. Variables Lecture 8. Using the CLR Model Relation between patent applications and R&D spending Variables PATENTS = No. of patents (in 000) filed RDEP = Expenditure on research&development (in billions of 99 $) The

More information

6. Assessing studies based on multiple regression

6. Assessing studies based on multiple regression 6. Assessing studies based on multiple regression Questions of this section: What makes a study using multiple regression (un)reliable? When does multiple regression provide a useful estimate of the causal

More information

x = 1 n (x = 1 (x n 1 ι(ι ι) 1 ι x) (x ι(ι ι) 1 ι x) = 1

x = 1 n (x = 1 (x n 1 ι(ι ι) 1 ι x) (x ι(ι ι) 1 ι x) = 1 Estimation and Inference in Econometrics Exercises, January 24, 2003 Solutions 1. a) cov(wy ) = E [(WY E[WY ])(WY E[WY ]) ] = E [W(Y E[Y ])(Y E[Y ]) W ] = W [(Y E[Y ])(Y E[Y ]) ] W = WΣW b) Let Σ be a

More information

2) For a normal distribution, the skewness and kurtosis measures are as follows: A) 1.96 and 4 B) 1 and 2 C) 0 and 3 D) 0 and 0

2) For a normal distribution, the skewness and kurtosis measures are as follows: A) 1.96 and 4 B) 1 and 2 C) 0 and 3 D) 0 and 0 Introduction to Econometrics Midterm April 26, 2011 Name Student ID MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. (5,000 credit for each correct

More information

Econ 510 B. Brown Spring 2014 Final Exam Answers

Econ 510 B. Brown Spring 2014 Final Exam Answers Econ 510 B. Brown Spring 2014 Final Exam Answers Answer five of the following questions. You must answer question 7. The question are weighted equally. You have 2.5 hours. You may use a calculator. Brevity

More information

Multiple Regression Analysis

Multiple Regression Analysis Chapter 4 Multiple Regression Analysis The simple linear regression covered in Chapter 2 can be generalized to include more than one variable. Multiple regression analysis is an extension of the simple

More information

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018 Econometrics I KS Module 2: Multivariate Linear Regression Alexander Ahammer Department of Economics Johannes Kepler University of Linz This version: April 16, 2018 Alexander Ahammer (JKU) Module 2: Multivariate

More information

Empirical Economic Research, Part II

Empirical Economic Research, Part II Based on the text book by Ramanathan: Introductory Econometrics Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna December 7, 2011 Outline Introduction

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Exercise Sheet 5: Solutions

Exercise Sheet 5: Solutions Exercise Sheet 5: Solutions R.G. Pierse 2. Estimation of Model M1 yields the following results: Date: 10/24/02 Time: 18:06 C -1.448432 0.696587-2.079327 0.0395 LPC -0.306051 0.272836-1.121740 0.2640 LPF

More information

Ron Heck, Fall Week 3: Notes Building a Two-Level Model

Ron Heck, Fall Week 3: Notes Building a Two-Level Model Ron Heck, Fall 2011 1 EDEP 768E: Seminar on Multilevel Modeling rev. 9/6/2011@11:27pm Week 3: Notes Building a Two-Level Model We will build a model to explain student math achievement using student-level

More information

Econometrics Review questions for exam

Econometrics Review questions for exam Econometrics Review questions for exam Nathaniel Higgins nhiggins@jhu.edu, 1. Suppose you have a model: y = β 0 x 1 + u You propose the model above and then estimate the model using OLS to obtain: ŷ =

More information

OSU Economics 444: Elementary Econometrics. Ch.10 Heteroskedasticity

OSU Economics 444: Elementary Econometrics. Ch.10 Heteroskedasticity OSU Economics 444: Elementary Econometrics Ch.0 Heteroskedasticity (Pure) heteroskedasticity is caused by the error term of a correctly speciþed equation: Var(² i )=σ 2 i, i =, 2,,n, i.e., the variance

More information

Föreläsning /31

Föreläsning /31 1/31 Föreläsning 10 090420 Chapter 13 Econometric Modeling: Model Speci cation and Diagnostic testing 2/31 Types of speci cation errors Consider the following models: Y i = β 1 + β 2 X i + β 3 X 2 i +

More information

AGEC 621 Lecture 16 David Bessler

AGEC 621 Lecture 16 David Bessler AGEC 621 Lecture 16 David Bessler This is a RATS output for the dummy variable problem given in GHJ page 422; the beer expenditure lecture (last time). I do not expect you to know RATS but this will give

More information

Contest Quiz 3. Question Sheet. In this quiz we will review concepts of linear regression covered in lecture 2.

Contest Quiz 3. Question Sheet. In this quiz we will review concepts of linear regression covered in lecture 2. Updated: November 17, 2011 Lecturer: Thilo Klein Contact: tk375@cam.ac.uk Contest Quiz 3 Question Sheet In this quiz we will review concepts of linear regression covered in lecture 2. NOTE: Please round

More information

11. Simultaneous-Equation Models

11. Simultaneous-Equation Models 11. Simultaneous-Equation Models Up to now: Estimation and inference in single-equation models Now: Modeling and estimation of a system of equations 328 Example: [I] Analysis of the impact of advertisement

More information

Econometric Methods. Prediction / Violation of A-Assumptions. Burcu Erdogan. Universität Trier WS 2011/2012

Econometric Methods. Prediction / Violation of A-Assumptions. Burcu Erdogan. Universität Trier WS 2011/2012 Econometric Methods Prediction / Violation of A-Assumptions Burcu Erdogan Universität Trier WS 2011/2012 (Universität Trier) Econometric Methods 30.11.2011 1 / 42 Moving on to... 1 Prediction 2 Violation

More information

Practical Econometrics. for. Finance and Economics. (Econometrics 2)

Practical Econometrics. for. Finance and Economics. (Econometrics 2) Practical Econometrics for Finance and Economics (Econometrics 2) Seppo Pynnönen and Bernd Pape Department of Mathematics and Statistics, University of Vaasa 1. Introduction 1.1 Econometrics Econometrics

More information

Outline. 11. Time Series Analysis. Basic Regression. Differences between Time Series and Cross Section

Outline. 11. Time Series Analysis. Basic Regression. Differences between Time Series and Cross Section Outline I. The Nature of Time Series Data 11. Time Series Analysis II. Examples of Time Series Models IV. Functional Form, Dummy Variables, and Index Basic Regression Numbers Read Wooldridge (2013), Chapter

More information

Eastern Mediterranean University Department of Economics ECON 503: ECONOMETRICS I. M. Balcilar. Midterm Exam Fall 2007, 11 December 2007.

Eastern Mediterranean University Department of Economics ECON 503: ECONOMETRICS I. M. Balcilar. Midterm Exam Fall 2007, 11 December 2007. Eastern Mediterranean University Department of Economics ECON 503: ECONOMETRICS I M. Balcilar Midterm Exam Fall 2007, 11 December 2007 Duration: 120 minutes Questions Q1. In order to estimate the demand

More information

Brief Sketch of Solutions: Tutorial 3. 3) unit root tests

Brief Sketch of Solutions: Tutorial 3. 3) unit root tests Brief Sketch of Solutions: Tutorial 3 3) unit root tests.5.4.4.3.3.2.2.1.1.. -.1 -.1 -.2 -.2 -.3 -.3 -.4 -.4 21 22 23 24 25 26 -.5 21 22 23 24 25 26.8.2.4. -.4 - -.8 - - -.12 21 22 23 24 25 26 -.2 21 22

More information

Multiple Regression. Midterm results: AVG = 26.5 (88%) A = 27+ B = C =

Multiple Regression. Midterm results: AVG = 26.5 (88%) A = 27+ B = C = Economics 130 Lecture 6 Midterm Review Next Steps for the Class Multiple Regression Review & Issues Model Specification Issues Launching the Projects!!!!! Midterm results: AVG = 26.5 (88%) A = 27+ B =

More information

The Multiple Regression Model Estimation

The Multiple Regression Model Estimation Lesson 5 The Multiple Regression Model Estimation Pilar González and Susan Orbe Dpt Applied Econometrics III (Econometrics and Statistics) Pilar González and Susan Orbe OCW 2014 Lesson 5 Regression model:

More information

Least Squares Estimation-Finite-Sample Properties

Least Squares Estimation-Finite-Sample Properties Least Squares Estimation-Finite-Sample Properties Ping Yu School of Economics and Finance The University of Hong Kong Ping Yu (HKU) Finite-Sample 1 / 29 Terminology and Assumptions 1 Terminology and Assumptions

More information

ECON 3150/4150, Spring term Lecture 7

ECON 3150/4150, Spring term Lecture 7 ECON 3150/4150, Spring term 2014. Lecture 7 The multivariate regression model (I) Ragnar Nymoen University of Oslo 4 February 2014 1 / 23 References to Lecture 7 and 8 SW Ch. 6 BN Kap 7.1-7.8 2 / 23 Omitted

More information

Heteroscedasticity 1

Heteroscedasticity 1 Heteroscedasticity 1 Pierre Nguimkeu BUEC 333 Summer 2011 1 Based on P. Lavergne, Lectures notes Outline Pure Versus Impure Heteroscedasticity Consequences and Detection Remedies Pure Heteroscedasticity

More information

Applied Statistics and Econometrics

Applied Statistics and Econometrics Applied Statistics and Econometrics Lecture 6 Saul Lach September 2017 Saul Lach () Applied Statistics and Econometrics September 2017 1 / 53 Outline of Lecture 6 1 Omitted variable bias (SW 6.1) 2 Multiple

More information

Applied Econometrics. Applied Econometrics Second edition. Dimitrios Asteriou and Stephen G. Hall

Applied Econometrics. Applied Econometrics Second edition. Dimitrios Asteriou and Stephen G. Hall Applied Econometrics Second edition Dimitrios Asteriou and Stephen G. Hall MULTICOLLINEARITY 1. Perfect Multicollinearity 2. Consequences of Perfect Multicollinearity 3. Imperfect Multicollinearity 4.

More information

Econometrics. Week 4. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague

Econometrics. Week 4. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Econometrics Week 4 Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Fall 2012 1 / 23 Recommended Reading For the today Serial correlation and heteroskedasticity in

More information

ECO220Y Simple Regression: Testing the Slope

ECO220Y Simple Regression: Testing the Slope ECO220Y Simple Regression: Testing the Slope Readings: Chapter 18 (Sections 18.3-18.5) Winter 2012 Lecture 19 (Winter 2012) Simple Regression Lecture 19 1 / 32 Simple Regression Model y i = β 0 + β 1 x

More information

Problem set 1: answers. April 6, 2018

Problem set 1: answers. April 6, 2018 Problem set 1: answers April 6, 2018 1 1 Introduction to answers This document provides the answers to problem set 1. If any further clarification is required I may produce some videos where I go through

More information

Econometrics. Week 8. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague

Econometrics. Week 8. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Econometrics Week 8 Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Fall 2012 1 / 25 Recommended Reading For the today Instrumental Variables Estimation and Two Stage

More information

ECON 366: ECONOMETRICS II. SPRING TERM 2005: LAB EXERCISE #10 Nonspherical Errors Continued. Brief Suggested Solutions

ECON 366: ECONOMETRICS II. SPRING TERM 2005: LAB EXERCISE #10 Nonspherical Errors Continued. Brief Suggested Solutions DEPARTMENT OF ECONOMICS UNIVERSITY OF VICTORIA ECON 366: ECONOMETRICS II SPRING TERM 2005: LAB EXERCISE #10 Nonspherical Errors Continued Brief Suggested Solutions 1. In Lab 8 we considered the following

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 3 Jakub Mućk Econometrics of Panel Data Meeting # 3 1 / 21 Outline 1 Fixed or Random Hausman Test 2 Between Estimator 3 Coefficient of determination (R 2

More information

ECON The Simple Regression Model

ECON The Simple Regression Model ECON 351 - The Simple Regression Model Maggie Jones 1 / 41 The Simple Regression Model Our starting point will be the simple regression model where we look at the relationship between two variables In

More information

Lecture 8. Using the CLR Model

Lecture 8. Using the CLR Model Lecture 8. Using the CLR Model Example of regression analysis. Relation between patent applications and R&D spending Variables PATENTS = No. of patents (in 1000) filed RDEXP = Expenditure on research&development

More information

Inference. ME104: Linear Regression Analysis Kenneth Benoit. August 15, August 15, 2012 Lecture 3 Multiple linear regression 1 1 / 58

Inference. ME104: Linear Regression Analysis Kenneth Benoit. August 15, August 15, 2012 Lecture 3 Multiple linear regression 1 1 / 58 Inference ME104: Linear Regression Analysis Kenneth Benoit August 15, 2012 August 15, 2012 Lecture 3 Multiple linear regression 1 1 / 58 Stata output resvisited. reg votes1st spend_total incumb minister

More information

ECON 4230 Intermediate Econometric Theory Exam

ECON 4230 Intermediate Econometric Theory Exam ECON 4230 Intermediate Econometric Theory Exam Multiple Choice (20 pts). Circle the best answer. 1. The Classical assumption of mean zero errors is satisfied if the regression model a) is linear in the

More information

1/34 3/ Omission of a relevant variable(s) Y i = α 1 + α 2 X 1i + α 3 X 2i + u 2i

1/34 3/ Omission of a relevant variable(s) Y i = α 1 + α 2 X 1i + α 3 X 2i + u 2i 1/34 Outline Basic Econometrics in Transportation Model Specification How does one go about finding the correct model? What are the consequences of specification errors? How does one detect specification

More information

Økonomisk Kandidateksamen 2004 (I) Econometrics 2. Rettevejledning

Økonomisk Kandidateksamen 2004 (I) Econometrics 2. Rettevejledning Økonomisk Kandidateksamen 2004 (I) Econometrics 2 Rettevejledning This is a closed-book exam (uden hjælpemidler). Answer all questions! The group of questions 1 to 4 have equal weight. Within each group,

More information

APPLIED MACROECONOMETRICS Licenciatura Universidade Nova de Lisboa Faculdade de Economia. FINAL EXAM JUNE 3, 2004 Starts at 14:00 Ends at 16:30

APPLIED MACROECONOMETRICS Licenciatura Universidade Nova de Lisboa Faculdade de Economia. FINAL EXAM JUNE 3, 2004 Starts at 14:00 Ends at 16:30 APPLIED MACROECONOMETRICS Licenciatura Universidade Nova de Lisboa Faculdade de Economia FINAL EXAM JUNE 3, 2004 Starts at 14:00 Ends at 16:30 I In Figure I.1 you can find a quarterly inflation rate series

More information

Statistics and Quantitative Analysis U4320

Statistics and Quantitative Analysis U4320 Statistics and Quantitative Analysis U3 Lecture 13: Explaining Variation Prof. Sharyn O Halloran Explaining Variation: Adjusted R (cont) Definition of Adjusted R So we'd like a measure like R, but one

More information

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012 Problem Set #6: OLS Economics 835: Econometrics Fall 202 A preliminary result Suppose we have a random sample of size n on the scalar random variables (x, y) with finite means, variances, and covariance.

More information

Panel Data. March 2, () Applied Economoetrics: Topic 6 March 2, / 43

Panel Data. March 2, () Applied Economoetrics: Topic 6 March 2, / 43 Panel Data March 2, 212 () Applied Economoetrics: Topic March 2, 212 1 / 43 Overview Many economic applications involve panel data. Panel data has both cross-sectional and time series aspects. Regression

More information

7. Integrated Processes

7. Integrated Processes 7. Integrated Processes Up to now: Analysis of stationary processes (stationary ARMA(p, q) processes) Problem: Many economic time series exhibit non-stationary patterns over time 226 Example: We consider

More information

WISE International Masters

WISE International Masters WISE International Masters ECONOMETRICS Instructor: Brett Graham INSTRUCTIONS TO STUDENTS 1 The time allowed for this examination paper is 2 hours. 2 This examination paper contains 32 questions. You are

More information

Lecture 4: Multivariate Regression, Part 2

Lecture 4: Multivariate Regression, Part 2 Lecture 4: Multivariate Regression, Part 2 Gauss-Markov Assumptions 1) Linear in Parameters: Y X X X i 0 1 1 2 2 k k 2) Random Sampling: we have a random sample from the population that follows the above

More information

Exercise sheet 6 Models with endogenous explanatory variables

Exercise sheet 6 Models with endogenous explanatory variables Exercise sheet 6 Models with endogenous explanatory variables Note: Some of the exercises include estimations and references to the data files. Use these to compare them to the results you obtained with

More information

Multiple Regression Analysis

Multiple Regression Analysis Multiple Regression Analysis y = β 0 + β 1 x 1 + β 2 x 2 +... β k x k + u 2. Inference 0 Assumptions of the Classical Linear Model (CLM)! So far, we know: 1. The mean and variance of the OLS estimators

More information

Econometrics - Slides

Econometrics - Slides 1 Econometrics - Slides 2011/2012 João Nicolau 2 1 Introduction 1.1 What is Econometrics? Econometrics is a discipline that aims to give empirical content to economic relations. It has been defined generally

More information

ECON Introductory Econometrics. Lecture 16: Instrumental variables

ECON Introductory Econometrics. Lecture 16: Instrumental variables ECON4150 - Introductory Econometrics Lecture 16: Instrumental variables Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 12 Lecture outline 2 OLS assumptions and when they are violated Instrumental

More information

Applied Econometrics (QEM)

Applied Econometrics (QEM) Applied Econometrics (QEM) based on Prinicples of Econometrics Jakub Mućk Department of Quantitative Economics Jakub Mućk Applied Econometrics (QEM) Meeting #3 1 / 42 Outline 1 2 3 t-test P-value Linear

More information

About the seasonal effects on the potential liquid consumption

About the seasonal effects on the potential liquid consumption About the seasonal effects on the potential liquid consumption Lucie Ravelojaona Guillaume Perrez Clément Cousin ENAC 14/01/2013 Consumption raw data Figure : Evolution during one year of different family

More information

Solution to Exercise E6.

Solution to Exercise E6. Solution to Exercise E6. The Multiple Regression Model. Inference Exercise E6.1 Beach umbrella rental Part I. Simple Linear Regression Model. a. Regression model: U t = α + β T t + u t t = 1,..., 22 Model

More information

Lecture 4: Heteroskedasticity

Lecture 4: Heteroskedasticity Lecture 4: Heteroskedasticity Econometric Methods Warsaw School of Economics (4) Heteroskedasticity 1 / 24 Outline 1 What is heteroskedasticity? 2 Testing for heteroskedasticity White Goldfeld-Quandt Breusch-Pagan

More information

Statistical Inference with Regression Analysis

Statistical Inference with Regression Analysis Introductory Applied Econometrics EEP/IAS 118 Spring 2015 Steven Buck Lecture #13 Statistical Inference with Regression Analysis Next we turn to calculating confidence intervals and hypothesis testing

More information

7. Integrated Processes

7. Integrated Processes 7. Integrated Processes Up to now: Analysis of stationary processes (stationary ARMA(p, q) processes) Problem: Many economic time series exhibit non-stationary patterns over time 226 Example: We consider

More information

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B Simple Linear Regression 35 Problems 1 Consider a set of data (x i, y i ), i =1, 2,,n, and the following two regression models: y i = β 0 + β 1 x i + ε, (i =1, 2,,n), Model A y i = γ 0 + γ 1 x i + γ 2

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 6 Jakub Mućk Econometrics of Panel Data Meeting # 6 1 / 36 Outline 1 The First-Difference (FD) estimator 2 Dynamic panel data models 3 The Anderson and Hsiao

More information

Lecture 6 Multiple Linear Regression, cont.

Lecture 6 Multiple Linear Regression, cont. Lecture 6 Multiple Linear Regression, cont. BIOST 515 January 22, 2004 BIOST 515, Lecture 6 Testing general linear hypotheses Suppose we are interested in testing linear combinations of the regression

More information

Econ 427, Spring Problem Set 3 suggested answers (with minor corrections) Ch 6. Problems and Complements:

Econ 427, Spring Problem Set 3 suggested answers (with minor corrections) Ch 6. Problems and Complements: Econ 427, Spring 2010 Problem Set 3 suggested answers (with minor corrections) Ch 6. Problems and Complements: 1. (page 132) In each case, the idea is to write these out in general form (without the lag

More information

13. Time Series Analysis: Asymptotics Weakly Dependent and Random Walk Process. Strict Exogeneity

13. Time Series Analysis: Asymptotics Weakly Dependent and Random Walk Process. Strict Exogeneity Outline: Further Issues in Using OLS with Time Series Data 13. Time Series Analysis: Asymptotics Weakly Dependent and Random Walk Process I. Stationary and Weakly Dependent Time Series III. Highly Persistent

More information

[y i α βx i ] 2 (2) Q = i=1

[y i α βx i ] 2 (2) Q = i=1 Least squares fits This section has no probability in it. There are no random variables. We are given n points (x i, y i ) and want to find the equation of the line that best fits them. We take the equation

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 2 Jakub Mućk Econometrics of Panel Data Meeting # 2 1 / 26 Outline 1 Fixed effects model The Least Squares Dummy Variable Estimator The Fixed Effect (Within

More information

Applied Econometrics (QEM)

Applied Econometrics (QEM) Applied Econometrics (QEM) The Simple Linear Regression Model based on Prinicples of Econometrics Jakub Mućk Department of Quantitative Economics Jakub Mućk Applied Econometrics (QEM) Meeting #2 The Simple

More information

Introductory Econometrics

Introductory Econometrics Based on the textbook by Wooldridge: : A Modern Approach Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna November 23, 2013 Outline Introduction

More information

Basic econometrics. Tutorial 3. Dipl.Kfm. Johannes Metzler

Basic econometrics. Tutorial 3. Dipl.Kfm. Johannes Metzler Basic econometrics Tutorial 3 Dipl.Kfm. Introduction Some of you were asking about material to revise/prepare econometrics fundamentals. First of all, be aware that I will not be too technical, only as

More information

Problem Set 2: Box-Jenkins methodology

Problem Set 2: Box-Jenkins methodology Problem Set : Box-Jenkins methodology 1) For an AR1) process we have: γ0) = σ ε 1 φ σ ε γ0) = 1 φ Hence, For a MA1) process, p lim R = φ γ0) = 1 + θ )σ ε σ ε 1 = γ0) 1 + θ Therefore, p lim R = 1 1 1 +

More information

Multiple Regression. Peerapat Wongchaiwat, Ph.D.

Multiple Regression. Peerapat Wongchaiwat, Ph.D. Peerapat Wongchaiwat, Ph.D. wongchaiwat@hotmail.com The Multiple Regression Model Examine the linear relationship between 1 dependent (Y) & 2 or more independent variables (X i ) Multiple Regression Model

More information

Applied Econometrics (MSc.) Lecture 3 Instrumental Variables

Applied Econometrics (MSc.) Lecture 3 Instrumental Variables Applied Econometrics (MSc.) Lecture 3 Instrumental Variables Estimation - Theory Department of Economics University of Gothenburg December 4, 2014 1/28 Why IV estimation? So far, in OLS, we assumed independence.

More information

Simple and Multiple Linear Regression

Simple and Multiple Linear Regression Sta. 113 Chapter 12 and 13 of Devore March 12, 2010 Table of contents 1 Simple Linear Regression 2 Model Simple Linear Regression A simple linear regression model is given by Y = β 0 + β 1 x + ɛ where

More information

STAT420 Midterm Exam. University of Illinois Urbana-Champaign October 19 (Friday), :00 4:15p. SOLUTIONS (Yellow)

STAT420 Midterm Exam. University of Illinois Urbana-Champaign October 19 (Friday), :00 4:15p. SOLUTIONS (Yellow) STAT40 Midterm Exam University of Illinois Urbana-Champaign October 19 (Friday), 018 3:00 4:15p SOLUTIONS (Yellow) Question 1 (15 points) (10 points) 3 (50 points) extra ( points) Total (77 points) Points

More information

Multivariate Regression Analysis

Multivariate Regression Analysis Matrices and vectors The model from the sample is: Y = Xβ +u with n individuals, l response variable, k regressors Y is a n 1 vector or a n l matrix with the notation Y T = (y 1,y 2,...,y n ) 1 x 11 x

More information

Applied Statistics and Econometrics

Applied Statistics and Econometrics Applied Statistics and Econometrics Lecture 5 Saul Lach September 2017 Saul Lach () Applied Statistics and Econometrics September 2017 1 / 44 Outline of Lecture 5 Now that we know the sampling distribution

More information

An Introduction to Mplus and Path Analysis

An Introduction to Mplus and Path Analysis An Introduction to Mplus and Path Analysis PSYC 943: Fundamentals of Multivariate Modeling Lecture 10: October 30, 2013 PSYC 943: Lecture 10 Today s Lecture Path analysis starting with multivariate regression

More information

Recent Advances in the Field of Trade Theory and Policy Analysis Using Micro-Level Data

Recent Advances in the Field of Trade Theory and Policy Analysis Using Micro-Level Data Recent Advances in the Field of Trade Theory and Policy Analysis Using Micro-Level Data July 2012 Bangkok, Thailand Cosimo Beverelli (World Trade Organization) 1 Content a) Classical regression model b)

More information

1 Quantitative Techniques in Practice

1 Quantitative Techniques in Practice 1 Quantitative Techniques in Practice 1.1 Lecture 2: Stationarity, spurious regression, etc. 1.1.1 Overview In the rst part we shall look at some issues in time series economics. In the second part we

More information

Answer all questions from part I. Answer two question from part II.a, and one question from part II.b.

Answer all questions from part I. Answer two question from part II.a, and one question from part II.b. B203: Quantitative Methods Answer all questions from part I. Answer two question from part II.a, and one question from part II.b. Part I: Compulsory Questions. Answer all questions. Each question carries

More information

Economics 536 Lecture 7. Introduction to Specification Testing in Dynamic Econometric Models

Economics 536 Lecture 7. Introduction to Specification Testing in Dynamic Econometric Models University of Illinois Fall 2016 Department of Economics Roger Koenker Economics 536 Lecture 7 Introduction to Specification Testing in Dynamic Econometric Models In this lecture I want to briefly describe

More information

Econ 1123: Section 2. Review. Binary Regressors. Bivariate. Regression. Omitted Variable Bias

Econ 1123: Section 2. Review. Binary Regressors. Bivariate. Regression. Omitted Variable Bias Contact Information Elena Llaudet Sections are voluntary. My office hours are Thursdays 5pm-7pm in Littauer Mezzanine 34-36 (Note room change) You can email me administrative questions to ellaudet@gmail.com.

More information

Hint: The following equation converts Celsius to Fahrenheit: F = C where C = degrees Celsius F = degrees Fahrenheit

Hint: The following equation converts Celsius to Fahrenheit: F = C where C = degrees Celsius F = degrees Fahrenheit Amherst College Department of Economics Economics 360 Fall 2014 Exam 1: Solutions 1. (10 points) The following table in reports the summary statistics for high and low temperatures in Key West, FL from

More information

Wednesday, October 17 Handout: Hypothesis Testing and the Wald Test

Wednesday, October 17 Handout: Hypothesis Testing and the Wald Test Amherst College Department of Economics Economics 360 Fall 2012 Wednesday, October 17 Handout: Hypothesis Testing and the Wald Test Preview No Money Illusion Theory: Calculating True] o Clever Algebraic

More information

Applied Quantitative Methods II

Applied Quantitative Methods II Applied Quantitative Methods II Lecture 4: OLS and Statistics revision Klára Kaĺıšková Klára Kaĺıšková AQM II - Lecture 4 VŠE, SS 2016/17 1 / 68 Outline 1 Econometric analysis Properties of an estimator

More information