Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

Size: px
Start display at page:

Download "Fabrication and Measurement of Spin Devices. Purdue Birck Presentation"

Transcription

1 Fabrication and Measurement of Spin Devices Zhihong Chen School of Electrical and Computer Engineering Birck Nanotechnology Center, Discovery Park Purdue University Purdue Birck Presentation 7 th NCN - - NEEDS Summer School July 24,

2 Spin Transport in Lateral Structures V Spin Injection Contacts & Interfaces Spin Detection Non- local Measurements Spin Relaxation Transport Channel Spin Manipulation Spin Transfer Torque 2

3 1. Spin Injection! Choices of Contacts and Interfaces 3

4 Spin Injection Contact Choices E E E D D D D D E F E F E F Paramagnetic Contact P = 0 Ferromagnetic Contact P < 1 Half Metal Contact P = 1 Electron Spin Polarization: P = D (E F ) D (E F ) D (E F ) + D (E F ) 4

5 Spin Injection Ferromagnetic Properties 5µm(L) 5µm(W) 30nm(t) NiFe (Py) Film H 4µm(L) 800nm(W) 20nm(t) NiFe (Py) Bar H 0 AFM Topography Image MFM Phase Change Image H 5µm 0 5µm 0 Dimension Dependent Domain Structures 5µm 0 5µm 5

6 Spin Injection Ferromagnetic Properties 4µm$ 6

7 Spin Injection Ferromagnetic Properties Coercive Field of Py Nanomagnets from Spin Valve Measurements Switching Field (mt) W = 100nm W = 300nm FM Width H C! FM Thickness H C Py Thickness (nm) C.- C. Lin, et al., Nano Lett., 13, 5177 (2013) 7

8 Spin Injection Efficiency F µ (r C, P σc ) µ µ (r F, P σf ) µ Int (r N, P j ) N P j = r C P σc + r F P σ F r F + r C + r N r C = 0,r F << r N P j r F r N P σ F P σ F r F, Spin resistance in FM; P σf, Conductivity polarization in FM r N, Spin resistance in channel; Pj, Current polarization r C, Interface resistance; P σc, Conductivity polarization at Interface In the case of, r C = 0,r F r N P j = r F r N P σ F = λ F λ N σ N σ F P σ F If λ F = 10nm,λ N = 300nm, σ N σ F = 0.01,P σ F = 60% P j = 0.02% Ohmic Contact (r F = λ F σ F,r N = λ N σ N ) r C r F,r N P j P σc Resistive Contact / Spin Filter I. Zutic, et al., Reviews of Modern Physics, 76, 323 (2004) 8

9 Tunnelling Barrier Interface Control Thin Mismatched Conductivity Al thickness Optimal Thickness Thick Limited Current SiO 2 20 nm 5 4 Pd contact w/o Al 2 O 3 Py contact w/ 0.6nm Al 2 O 3 Py contact w/ 1.0nm Al 2 O 3 Al 2 O 3 /Graphene I Ds [µa/µm] nm R A =0.4 nm 0 nm AFM V G -V Dirac [V] 9

10 Tunnelling Barrier Interface Control 2 Py contact w/ 0.6nm Al 2 O 3 I Ds [µa/µm] V G -V Dirac [V] 2- Probe graphene I,V 90nm SiO 2 Si Al 2 O 3 R c [kω] Tunnelling Resistance ρ? [kω/?] Probe graphene + V - 90nm SiO 2 Si Al 2 O V G -V Dirac [V] V G -V Dirac [V] 10

11 Tunneling Barrier Interface Control Well Controlled Interface for Spin Injection into Graphene 11

12 2. Spin Detection! Non- local Spin Valve Measurements 12

13 Non- local Spin Valve Device V 13

14 Why Non- local? V" Local"Spin"Valve"" Local Local V" Non- local Non- local Non&local"Spin"Valve" Spin valve measurements of two Py/Cu/Py devices from reference: PRB, 67, (2003) Non- local Spin Valve Measurement: Fully separate charge current Less sensitive to AMR, Hall effect, and resistance fluctuations 14

15 Hanle Spin Precession Measurements Z Y B Field (z) V" X V(B z ) = ±I P j 2 e 2 NS 0 P(t)cos(ω Lt)exp( t /τ sf )dt ω L = gµ B B /! P(t) = 1 4π Dt exp( L2 / 4Dt) P j, τ sf, λ sf = Dτ sf F. Jedema, et al., Nature, 416, 713 (2002) 15

16 Graphene Non- local Spin Valve Device Injector: Py [300nm(w) 25nm(t) 2µm(l)] Detector: Py [400nm(w) 25nm(t) 2µm(l)] Interface Barrier: Oxidized 0.6nm Al B field X graphene - Au V + Py Py Au Al 2 O 3 Non- FM Contact: 30nm thick Ti/Pd/Au! Graphene Channel Width: W ch =900nm Spacing Between Py Contacts: L ch =300nm 90nm SiO 2 Si Gao, Y. et al., IEDM, (2012) 16

17 Spin Valve Measurements in Graphene Z Y X X B field (Y) graphene Au - V + Py Py 90nm SiO 2 Si Au Injector Detector Parallel 400nm 300nm Room Temperature Anti- parallel Gao, Y. et al., IEDM, (2012) 17

18 Spin Valve Measurements in Graphene Room Temperature Operation 0.5µm 0.42µm 0.2µm 0.4µm B field X graphene + 90nm SiO 2 Si V Py Py Py Py - Al 2 O 3 (a) µ µ µ (b) µ µ µ Another Type of Non- local Spin Devices: All four electrodes are ferromagnetic (c) µ µ (d) µ µ Gao, Y. et al., IEDM, (2012) 18 µ µ

19 Spin Valve Measurements in Metal (Py/Cu/Py) Py1: 500nm(w) 40nm(t) 2µm Py2: 100nm(w) 40nm(t) 14µm Spacing between Py: L ch =250nm Minor Loop F. Jedema, et al., Nature, 410, 345 (2001) 19

20 Junction Size Dependent Spin Valve Signal S j1 =1µm 200nm R~50µΩ S J1 S J2 S j2 =200nm 200nm R~120µΩ S j3 =60nm 200nm R~300µΩ S j4 =30nm 200nm R~600µΩ S J =l p w I+ I- w l p Py Cu V- S J3 S J4 ΔR R Py R Cu = λ Py / (σ PyS J ) λ Cu / (σ Cu S Cu ) 1 S J V+ T. Kimura, et al., Phys. Rev. B, 73, (2006) 20

21 3. Spin Relaxation! Choice of Spin Transport Channel 21

22 Spin Transport in Single Layer Graphene λ S =1.5~2µm Tombros, N. et al., Nature, 448, 571 (2007) λ S =4.5µm λ S =4.7µm 22 Zomer, P.J. et al., PRB, 86, (2012) Guimaraes, M. et al., Nano Lett., 12, 3512 (2012)

23 Extraction of Spin Diffusion Length and Polarization X graphen - Au V + Py P Au Al 2 O 3 90nm SiO 2 S R S = R i R P J P F 2 R F 4R N e L/λ S ( N 2 1 P + R N ) 2 J 1 P F 2 i=1 (1+ i=1 2 R i 2 R F R N 2 1 P + R N J 1 P ) 2 e 2 L/λ S F Spin Resistances: Interface Resistances: Polarization: R N = ρ Nλ S W Ch P J R i : R 1 = R 2 P F R F = ρ Fλ F R i R N S J R F R N S. Takahashi, et al., Phys. Rev. B., 67, (2003) 23

24 Extraction of Spin Diffusion Length and Polarization R S 4R N P J 2 ( R i R N ) 2 e L/λ S (1+ 2 R i R N ) 2 e 2 L/λ S Room Temperature: λ S ~ 4 µm; P J ~ 3.5% ρ Nλ S W Ch P 2 J e L/λ S R S(λ S,P J ) Same graphene materials Same device structures Gao, Y. et al., IEDM, (2012) 24

25 Extraction of Spin Diffusion Length and Polarization 0.4µm 0.5µm 0.42µm 0.2µm 0.4µm Py 3.6µm Py Py 3.6µm Py R S ρ Nλ S W Ch 90nm SiO 2 Si P 2 J e L/λ S Room Temperature: R s [Ω] λ S ~ 5.1 µm; P J ~ 4.0% L [µm] 25

26 Optimized Graphene Spin Devices Tunability in Graphene 1) Graphene Layer Number 2) Carrier Concentration λ S [µm] R S ρ Nλ S W Ch graphene + P 2 J e L/λ S # of layers V Py Py Au 90nm SiO 2 Si V G = 40V, V Dirac = - 20V Larger spin diffusion length found in multi- layer graphene Au - Al 2 O layer layer R s =0.44Ω layer R s =0.38Ω R s =0.04Ω

27 Optimized Graphene Spin Devices Tunability in Graphene 1) Graphene Layer Number 2) Carrier Concentration 7 layer graphene + Au V Py Py Au 90nm SiO 2 Si - Al 2 O Larger spin diffusion length is found at higher carrier concentration T"="300K" I λ S [µm] V + V Vg [V] 27

28 Spin Transport in Metal Co/Al 2 O 3 /Al/Al 2 O 3 /Co Room Temperature λ S ~ 350±50nm P J ~ 8±1% M. Costache, et al., Phys. Rev. B, 74, (2006) Py/Cu/Py Room Temperature λ S ~ 350±50nm P J ~ 2% F. Jedema, et al., Nature, 410, 345 (2001) 28

29 4. Spin Manipulation! Lateral Spin Transfer Torque 29

30 Spin Current Induced Magnetization Reversal in Py/Cu/Py W Cu =170nm, t Cu =65nm S Py, inj =80nm 170nm, t Py =20nm S Py, det =75nm 170nm, t Py =4nm L ch =270nm Achieved at 10K Larger spin valve signals due to: 1. Ultra- clean interface to minimize interfacial scattering 2. ΔR R Py R Cu S Cu S Py 1 P AP: Positive Current AP P: Negative Current T. Yang, et al., Nature Physics, 4, 851 (2008) 30

31 Spin Transfer Torque in Multi- layer Graphene C.- C. Lin, et al., Nano Lett., 13, 5177 (2013) Injector: 300nm (W) x 25 nm (H) Detector: 100nm (W) x 5nm (H) Spin Valve Measurement at 77k Switching field v.s. Py Thickness Detector [100nm (W) x 5nm (H)] Switching Injector [ 300nm (W) x 25 nm (H) ] Switching 31

32 Magnetic Field Assisted Spin Torque Measurement + V - Injector: 300nm (W) x 25 nm (H) Detector: 100nm (W) x 5nm (H) Spin Valve Measurement at 77k B =- 50mT + V - B =+4mT Detector [100nm (W) x 5nm (H)] Switching 33

33 Magnetic Field Assisted Spin Torque Measurement Torque B =+4mT P I + - V P R [Ω] Pulse I+ AP B R [Ω] AP Time [sec] B [mt] P à AP Switching B =+4mT P I + V - P No Torque R [Ω] Pulse I+ Time [sec] AP B R [Ω] B [mt] AP 35

34 Magnetic Field Assisted Spin Torque Measurement Torque V G = +40V, B = +4mT, T = 77k P à AP +4.5mA pulse No Torque +4mA pulse 36

35 Magnetic Field Assisted Spin Torque Measurement V G = +40V, B = +4mT, T = 77k B =+4mT P + V - P R [Ω] No Torque Pulse I- Time [sec] AP B R [Ω] B [mt] AP - 4.5mA pulse 37

36 Magnetic Field Assisted Spin Torque Measurement I + V - Injector: 300nm (W) x 25 nm (H) Detector: 100nm (W) x 5nm (H) B =+10mT Spin Valve Measurement at 77k I + V B =- 4mT Detector [100nm (W) x 5nm (H)] Switching 38

37 Magnetic Field Assisted Spin Torque Measurement I + V - Injector: 300nm (W) x 25 nm (H) Detector: 100nm (W) x 5nm (H) B =+10mT Spin Valve Measurement at 77k I + V B =- 4mT Detector [100nm (W) x 5nm (H)] Switching 39

38 Magnetic Field Assisted Spin Torque Measurement Torque V G = +40V, B = +4mT, T = 77k AP à P - 4.5mA pulse No Torque - 4mA pulse 40

39 Non- local Resistance vs. DC current at 77K Critical current 4.5mA for both Pà AP and APà P switching No spin torque observed for magnetic field < 4mT B assist =4mT B assist =-4mT V G =40V, T=77K C.- C. Lin, et al., Nano Lett., 13, 5177 (2013) 41

40 Control Experiment - - Current Induced Heating +4mA pulse Coercive Field Detector: ±3.5mT Injector: ±22mT! B ext =+2.5mT - 4mA pulse Only positive current pulse results in Pà AP switching evidence to exclude switching by current induced heating! 42

41 Control Experiment Oersted Field Spin Torque Effect O e r s t e d F i e l d Effect Switching Direction Magnetization Directions of I n j e c t o r a n d Detector Assisting Magnetic Field P AP +2.5mT +4mA P AP -2.5mT +4mA AP P -2.5mT -4mA P AP +2.5mT +4mA P AP -2.5mT -4mA AP P -2.5mT -4mA Current Pulse Coercive Field Detector: ±3.5mT Injector: ±22mT! B ext =- 2.5mT - 4mA pulse Only positive current pulse results in Pà AP switching evidence to exclude switching by Oersted field! 43

42 Asymmetric Contacts for Graphene Spin Valve L =0.4µm, W =1.0µm ρ =0.8kΩµm, λ S ~4µm, P C ~4% R c =2kΩ (with tunneling barrier) R c =1kΩ (without tunneling barrier) C.- C. Lin, et al., ACS Nano, 8, 3807 (2014) Noise Reduction: 8.4% à 4.5% 44

43 Improving Spin Transfer Torque Critical charge current for spin transfer torque at B =1mT:!! J double =45mA/µm 2! J single =33mA/µm 2 C.- C. Lin, et al., ACS Nano, 8, 3807 (2014) 45

44 Acknowledgements Students: Chia- Ching Lin, Yunfei Gao, Ashish V. Penumatcha, Vinh Quang Diep! Collaborators: Prof. Appenzeller, Prof. Da a! Funding Support: NRI INDEX Center, NCN NEEDS 46

ConceptGraphene. Small or medium-scale focused research project. WP4 Spin transport devices

ConceptGraphene. Small or medium-scale focused research project. WP4 Spin transport devices ConceptGraphene New Electronics Concept: Wafer-Scale Epitaxial Graphene Small or medium-scale focused research project WP4 Spin transport devices Deliverable 4.1 Report on spin transport in graphene on

More information

Hall Effect. Sergio O. Valenzuela. ICREA and Centre d Investigació en Nanociència i Nanotecnologia (ICN-CSIC), Barcelona.

Hall Effect. Sergio O. Valenzuela. ICREA and Centre d Investigació en Nanociència i Nanotecnologia (ICN-CSIC), Barcelona. Nonlocal Spin Detection and the Spin Hall Effect Sergio O. Valenzuela Sergio.Valenzuela.icn@uab.es ICREA and Centre d Investigació en Nanociència i Nanotecnologia (ICN-CSIC), Barcelona CEMAG 2009 Zaragoza,

More information

Enhancement of spin relaxation time in hydrogenated graphene spin-valve devices Wojtaszek, M.; Vera-Marun, I. J.; Maassen, T.

Enhancement of spin relaxation time in hydrogenated graphene spin-valve devices Wojtaszek, M.; Vera-Marun, I. J.; Maassen, T. University of Groningen Enhancement of spin relaxation time in hydrogenated graphene spin-valve devices Wojtaszek, M.; Vera-Marun, I. J.; Maassen, T.; van Wees, Bart Published in: Physical Review. B: Condensed

More information

Temperature dependence of spin diffusion length in silicon by Hanle-type spin. precession

Temperature dependence of spin diffusion length in silicon by Hanle-type spin. precession Temperature dependence of spin diffusion length in silicon by Hanle-type spin precession T. Sasaki 1,a), T. Oikawa 1, T. Suzuki 2, M. Shiraishi 3, Y. Suzuki 3, and K. Noguchi 1 SQ Research Center, TDK

More information

Spin Funneling for Enhanced Spin Injection into Ferromagnets: Supplementary Information

Spin Funneling for Enhanced Spin Injection into Ferromagnets: Supplementary Information Spin Funneling for Enhanced Spin Injection into Ferromagnets: Supplementary Information Shehrin Sayed, Vinh Q. Diep, Kerem Yunus Camsari, and Supriyo Datta School of Electrical and Computer Engineering,

More information

Effect of anisotropic spin absorption on the Hanle effect in lateral spin valves

Effect of anisotropic spin absorption on the Hanle effect in lateral spin valves SUPPLEMETARY IFORMATIO Effect of anisotropic spin absorption on the Hanle effect in lateral spin valves H. Idzuchi,*, Y. Fuuma,3, S. Taahashi 4,5, S. Maeawa 5,6 and Y. Otani,* Institute for Solid State

More information

Spin injection. concept and technology

Spin injection. concept and technology Spin injection concept and technology Ron Jansen ャンセンロン Spintronics Research Center National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan Spin injection Transfer of spin

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 1 Today s Topics 1.1 History of Spintronics 1.2 Fudamentals in Spintronics Spin-dependent transport GMR and TMR effect Spin injection

More information

Enhanced spin orbit torques by oxygen incorporation in tungsten films

Enhanced spin orbit torques by oxygen incorporation in tungsten films Enhanced spin orbit torques by oxygen incorporation in tungsten films Timothy Phung IBM Almaden Research Center, San Jose, California, USA 1 Motivation: Memory devices based on spin currents Spin Transfer

More information

Room-Temperature Electron Spin Transport in a Highly Doped Si Channel. AIT, Akita Research Institute of Advanced Technology, Akita , Japan

Room-Temperature Electron Spin Transport in a Highly Doped Si Channel. AIT, Akita Research Institute of Advanced Technology, Akita , Japan Room-Temperature Electron Spin Transport in a Highly Doped Si Channel Toshio Suzuki*, Tomoyuki Sasaki 1, Tohru Oikawa 1, Masashi Shiraishi, Yoshishige Suzuki, and Kiyoshi Noguchi 1 AIT, Akita Research

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

Spin injection and the local Hall effect in InAs quantum wells

Spin injection and the local Hall effect in InAs quantum wells Spin injection and the local Hall effect in InAs quantum wells F.G. Monzon * and M.L. Roukes California Institute of Technology, Condensed Matter Physics 114-36, Pasadena CA 91125 We report on our efforts

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.16 Electrical detection of charge current-induced spin polarization due to spin-momentum locking in Bi 2 Se 3 by C.H. Li, O.M.J. van t Erve, J.T. Robinson,

More information

Spin Circuits: Bridge from Science to Devices

Spin Circuits: Bridge from Science to Devices Spin Circuits: Bridge from Science to Devices Spin Circuits Generation of spin potentials Propagation of spin potentials Building spin circuits What is the potential? Why electrons flow Q & A Forum *http://nanohub.org/groups/u

More information

Electric field control of magnetization using AFM/FM interfaces. Xiaoshan Xu

Electric field control of magnetization using AFM/FM interfaces. Xiaoshan Xu Electric field control of magnetization using AFM/FM interfaces Xiaoshan Xu Magnetoelectric effects α = μ 0 M E H M H = 0, E = 0 = 0 (General magnetoelectrics) M H = 0, E = 0 0, P H = 0, E = 0 0, (Multiferroics)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Direct observation of the spin-dependent Peltier effect J. Flipse, F. L. Bakker, A. Slachter, F. K. Dejene & B. J. van Wees A. Calculation of the temperature gradient We first derive an expression for

More information

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2 Silicon Spintronics Saroj P. Dash Chalmers University of Technology Microtechnology and Nanoscience-MC2 Göteborg, Sweden Acknowledgement Nth Netherlands University of Technology Sweden Mr. A. Dankert Dr.

More information

Magnon-drag thermopile

Magnon-drag thermopile Magnon-drag thermopile I. DEVICE FABRICATION AND CHARACTERIZATION Our devices consist of a large number of pairs of permalloy (NiFe) wires (30 nm wide, 20 nm thick and 5 µm long) connected in a zigzag

More information

Putting the Electron s Spin to Work Dan Ralph Kavli Institute at Cornell Cornell University

Putting the Electron s Spin to Work Dan Ralph Kavli Institute at Cornell Cornell University Putting the Electron s Spin to Work Dan Ralph Kavli Institute at Cornell Cornell University Yongtao Cui, Ted Gudmundsen, Colin Heikes, Wan Li, Alex Mellnik, Takahiro Moriyama, Joshua Parks, Sufei Shi,

More information

Physics and applications (I)

Physics and applications (I) Spintronics: Physics and applications (I) Malek Zareyan IPM, 15 TiR 1387 1 Very weak magnetic changes give rise to major differences in resistance in a GMR system (.( ١٩٨٨ GMR has made possible miniaturizing

More information

Citation for published version (APA): Filip, A. T. (2002). Spin polarized electron transport in mesoscopic hybrid devices s.n.

Citation for published version (APA): Filip, A. T. (2002). Spin polarized electron transport in mesoscopic hybrid devices s.n. University of Groningen Spin polarized electron transport in mesoscopic hybrid devices Filip, Andrei Teodor IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish

More information

CURRENT-INDUCED MAGNETIC DYNAMICS IN NANOSYSTEMS

CURRENT-INDUCED MAGNETIC DYNAMICS IN NANOSYSTEMS CURRENT-INDUCED MAGNETIC DYNAMICS IN NANOSYSTEMS J. Barna Department of Physics Adam Mickiewicz University & Institute of Molecular Physics, Pozna, Poland In collaboration: M Misiorny, I Weymann, AM University,

More information

Size-dependent Metal-insulator Transition Random Materials Crystalline & Amorphous Purely Electronic Switching

Size-dependent Metal-insulator Transition Random Materials Crystalline & Amorphous Purely Electronic Switching Nanometallic RRAM I-Wei Chen Department of Materials Science and Engineering University of Pennsylvania Philadelphia, PA 19104 Nature Nano, 6, 237 (2011) Adv Mater,, 23, 3847 (2011) Adv Func Mater,, 22,

More information

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR)

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR) Ferromagnetism and Electronic Transport There are a number of effects that couple magnetization to electrical resistance. These include: Ordinary magnetoresistance (OMR) Anisotropic magnetoresistance (AMR)

More information

All-Electrical Spin Field Effect Transistor in van der Waals Heterostructures at Room Temperature

All-Electrical Spin Field Effect Transistor in van der Waals Heterostructures at Room Temperature All-Electrical Spin Field Effect Transistor in van der Waals Heterostructures at Room Temperature André Dankert*, Saroj P. Dash Department of Microtechnology and Nanoscience, Chalmers University of Technology,

More information

Recent developments in spintronic

Recent developments in spintronic Recent developments in spintronic Tomas Jungwirth nstitute of Physics ASCR, Prague University of Nottingham in collaboration with Hitachi Cambridge, University of Texas, Texas A&M University - Spintronics

More information

Spin Torque and Magnetic Tunnel Junctions

Spin Torque and Magnetic Tunnel Junctions Spin Torque and Magnetic Tunnel Junctions Ed Myers, Frank Albert, Ilya Krivorotov, Sergey Kiselev, Nathan Emley, Patrick Braganca, Greg Fuchs, Andrei Garcia, Ozhan Ozatay, Eric Ryan, Jack Sankey, John

More information

Spin injection, accumulation, and precession in a mesoscopic nonmagnetic metal island Zaffalon, M; van Wees, Bart

Spin injection, accumulation, and precession in a mesoscopic nonmagnetic metal island Zaffalon, M; van Wees, Bart University of Groningen Spin injection, accumulation, and precession in a mesoscopic nonmagnetic metal island Zaffalon, M; van Wees, Bart Published in: Physical Review. B: Condensed Matter and Materials

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Trilayer graphene is a semimetal with a gate-tuneable band overlap M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo and S. Tarucha

More information

introduction: what is spin-electronics?

introduction: what is spin-electronics? Spin-dependent transport in layered magnetic metals Patrick Bruno Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany Summary: introduction: what is spin-electronics giant magnetoresistance (GMR)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION University of Groningen Direct observation of the spin-dependent Peltier effect Flipse, J.; Bakker, F. L.; Slachter, A.; Dejene, F. K.; van Wees, Bart Published in: Nature Nanotechnology DOI: 10.1038/NNANO.2012.2

More information

All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes.

All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes. All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes. M. Ehlert 1, C. Song 1,2, M. Ciorga 1,*, M. Utz 1, D. Schuh 1, D. Bougeard 1, and D. Weiss 1 1 Institute of Experimental

More information

Supplementary material: Nature Nanotechnology NNANO D

Supplementary material: Nature Nanotechnology NNANO D Supplementary material: Nature Nanotechnology NNANO-06070281D Coercivities of the Co and Ni layers in the nanowire spin valves In the tri-layered structures used in this work, it is unfortunately not possible

More information

Molecular Spintronics using -Electron Molecules

Molecular Spintronics using -Electron Molecules 2008.12.18 TU-Dresden Molecular Spintronics using -Electron Molecules Masashi Shiraishi 1. Osaka University, Japan. 2. JST-PRESTO, Japan Co-workers in this study Osaka University Prof. Yoshishige Suzuki

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS576 Colossal Enhancement of Spin-Orbit Coupling in Weakly Hydrogenated Graphene Jayakumar Balakrishnan 1,, *, Gavin Kok Wai Koon 1,, 3, *, Manu Jaiswal 1,,, Antonio H. Castro Neto 1,,

More information

arxiv: v3 [cond-mat.mtrl-sci] 11 Aug 2008

arxiv: v3 [cond-mat.mtrl-sci] 11 Aug 2008 Non-ohmic spin transport in n-type doped silicon Hyuk-Jae Jang, Jing Xu, Jing Li, Biqin Huang, and Ian Appelbaum Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware,

More information

Observation of the intrinsic inverse spin Hall effect in Ni 80 Fe 20. Yuichiro Ando, Teruya Shinjo and Masashi Shiraishi * #

Observation of the intrinsic inverse spin Hall effect in Ni 80 Fe 20. Yuichiro Ando, Teruya Shinjo and Masashi Shiraishi * # Observation of the intrinsic inverse spin Hall effect in Ni 80 Fe 20 Ayaka Tsukahara #, Yuta Kitamura #, Eiji Shikoh, Yuichiro Ando, Teruya Shinjo and Masashi Shiraishi * # Graduate School of Engineering

More information

Fundamental concepts of spintronics

Fundamental concepts of spintronics Fundamental concepts of spintronics Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 24. 8. 2008 SFB 689 :outline: what is spintronics? spin injection spin-orbit

More information

Emerging Interconnect Technologies for CMOS and beyond-cmos Circuits

Emerging Interconnect Technologies for CMOS and beyond-cmos Circuits Emerging Interconnect Technologies for CMOS and beyond-cmos Circuits Sou-Chi Chang, Rouhollah M. Iraei Vachan Kumar, Ahmet Ceyhan and Azad Naeemi School of Electrical & Computer Engineering Georgia Institute

More information

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors Douglas Natelson Department of Physics and Astronomy Department of Electrical and Computer Engineering Rice Quantum Institute

More information

An Overview of Spintronics in 2D Materials

An Overview of Spintronics in 2D Materials An Overview of Spintronics in 2D Materials Wei Han ( 韩伟 ) 1 2014 ICQM Outline I. Introduction to spintronics (Lecture I) II. Spin injection and detection in 2D (Lecture I) III. Putting magnetic moment

More information

Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy (SPM) http://ww2.sljus.lu.se/staff/rainer/spm.htm Scanning Probe Microscopy (FYST42 / FAFN30) Scanning Probe Microscopy (SPM) overview & general principles March 23 th, 2018 Jan Knudsen, room K522, jan.knudsen@sljus.lu.se

More information

X-ray Imaging and Spectroscopy of Individual Nanoparticles

X-ray Imaging and Spectroscopy of Individual Nanoparticles X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland Intensity [a.u.] 1.4 1.3 1.2 1.1 D 8 nm 1 1 2 3 1.0 770

More information

Atomistic Modeling of Phase-engineered MoS2 Channel for the Decananometer Scale Digital Switches

Atomistic Modeling of Phase-engineered MoS2 Channel for the Decananometer Scale Digital Switches EECS Research Students Symposium 2017 Atomistic Modeling of Phase-engineered MoS2 Channel for the Decananometer Scale Digital Switches Overview Abundance in nature and commonly used as lubricant Bandgap

More information

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information.

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. A.A. Baker,, 2 A.I. Figueroa, 2 L.J. Collins-McIntyre, G. van der Laan, 2 and T., a) Hesjedal )

More information

arxiv: v1 [cond-mat.mtrl-sci] 28 Jul 2008

arxiv: v1 [cond-mat.mtrl-sci] 28 Jul 2008 Current induced resistance change of magnetic tunnel junctions with ultra-thin MgO tunnel barriers Patryk Krzysteczko, 1, Xinli Kou, 2 Karsten Rott, 1 Andy Thomas, 1 and Günter Reiss 1 1 Bielefeld University,

More information

United Nations Educational, Scientific and Cultural Organization and International Atomic Energy Agency

United Nations Educational, Scientific and Cultural Organization and International Atomic Energy Agency Available at: http://publications.ictp.it IC/2010/033 United Nations Educational, Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

SPICE Modeling of STT-RAM for Resilient Design. Zihan Xu, Ketul Sutaria, Chengen Yang, Chaitali Chakrabarti, Yu (Kevin) Cao School of ECEE, ASU

SPICE Modeling of STT-RAM for Resilient Design. Zihan Xu, Ketul Sutaria, Chengen Yang, Chaitali Chakrabarti, Yu (Kevin) Cao School of ECEE, ASU SPICE odeling of STT-RA for Resilient Design Zihan Xu, Ketul Sutaria, Chengen Yang, Chaitali Chakrabarti, Yu (Kevin) Cao School of ECEE, ASU OUTLINE - 2 - Heterogeneous emory Design A Promising Candidate:

More information

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT S. Krompiewski Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland OUTLINE 1. Introductory

More information

Fermi Level Pinning at Electrical Metal Contacts. of Monolayer Molybdenum Dichalcogenides

Fermi Level Pinning at Electrical Metal Contacts. of Monolayer Molybdenum Dichalcogenides Supporting information Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides Changsik Kim 1,, Inyong Moon 1,, Daeyeong Lee 1, Min Sup Choi 1, Faisal Ahmed 1,2, Seunggeol

More information

Ferromagnetism and Anomalous Hall Effect in Graphene

Ferromagnetism and Anomalous Hall Effect in Graphene Ferromagnetism and Anomalous Hall Effect in Graphene Jing Shi Department of Physics & Astronomy, University of California, Riverside Graphene/YIG Introduction Outline Proximity induced ferromagnetism Quantized

More information

Spin Orbit Coupling (SOC) in Graphene

Spin Orbit Coupling (SOC) in Graphene Spin Orbit Coupling (SOC) in Graphene MMM, Mirko Rehmann, 12.10.2015 Motivation Weak intrinsic SOC in graphene: [84]: Phys. Rev. B 80, 235431 (2009) [85]: Phys. Rev. B 82, 125424 (2010) [86]: Phys. Rev.

More information

From Spin Torque Random Access Memory to Spintronic Memristor. Xiaobin Wang Seagate Technology

From Spin Torque Random Access Memory to Spintronic Memristor. Xiaobin Wang Seagate Technology From Spin Torque Random Access Memory to Spintronic Memristor Xiaobin Wang Seagate Technology Contents Spin Torque Random Access Memory: dynamics characterization, device scale down challenges and opportunities

More information

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Rays have come a long way Application to Magnetic Systems 1 µm 1895 1993 2003 http://www-ssrl.slac.stanford.edu/stohr/index.htm

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

MRAM: Device Basics and Emerging Technologies

MRAM: Device Basics and Emerging Technologies MRAM: Device Basics and Emerging Technologies Matthew R. Pufall National Institute of Standards and Technology 325 Broadway, Boulder CO 80305-3337 Phone: +1-303-497-5206 FAX: +1-303-497-7364 E-mail: pufall@boulder.nist.gov

More information

Transient grating measurements of spin diffusion. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

Transient grating measurements of spin diffusion. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab Transient grating measurements of spin diffusion Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab LBNL, UC Berkeley and UCSB collaboration Chris Weber, Nuh Gedik, Joel Moore, JO UC Berkeley

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/327/5966/662/dc Supporting Online Material for 00-GHz Transistors from Wafer-Scale Epitaxial Graphene Y.-M. Lin,* C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y.

More information

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Spin electronics at the nanoscale Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Principles of spin electronics: ferromagnetic metals spin accumulation Resistivity of homogeneous

More information

2 Title: "Ultrathin flexible electronic device based on tunneling effect: a flexible ferroelectric tunnel

2 Title: Ultrathin flexible electronic device based on tunneling effect: a flexible ferroelectric tunnel Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 208 Supplementary information 2 Title: "Ultrathin flexible electronic device

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Spin Currents in a 2D Electron Gas

Spin Currents in a 2D Electron Gas Spin Currents in a 2D Electron Gas Joshua Folk UBC Asilomar, 2007 Thanks to: My group Sergey Frolov (postdoc) Ananth Venkatesan (postdoc) Mark Lundeberg (PhD) Wing Wa Yu (Masters) Yuan Ren (Masters) Chung-Yu

More information

Nanosecond spin relaxation times in single layer graphene spin. valves with hexagonal boron nitride tunnel barriers

Nanosecond spin relaxation times in single layer graphene spin. valves with hexagonal boron nitride tunnel barriers Nanosecond spin relaxation times in single layer graphene spin valves with hexagonal boron nitride tunnel barriers Simranjeet Singh 1, Jyoti Katoch 1, Jinsong Xu 1, Cheng Tan 2, Tiancong Zhu 1, Walid Amamou

More information

Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid

Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid V.Zayets * Spintronic Research Center, National Institute of Advanced Industrial Science and Technology

More information

Strong-electric-field effects and antenna resonances in single-wall carbon nanotube films

Strong-electric-field effects and antenna resonances in single-wall carbon nanotube films Strong-electric-field effects and antenna resonances in single-wall carbon nanotube films Dalius Seliuta Center for Physical Sciences and Technology, Vilnius, Lithuania Liudas Subačius, Irmantas Kašalynas,

More information

University of Groningen. Taking topological insulators for a spin de Vries, Eric Kornelis

University of Groningen. Taking topological insulators for a spin de Vries, Eric Kornelis University of Groningen Taking topological insulators for a spin de Vries, Eric Kornelis IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it.

More information

Magnetic bubblecade memory based on chiral domain walls

Magnetic bubblecade memory based on chiral domain walls Magnetic bubblecade memory based on chiral domain walls Kyoung-Woong Moon, Duck-Ho Kim, Sang-Cheol Yoo, Soong-Geun Je, Byong Sun Chun, Wondong Kim, Byoung-Chul Min, Chanyong Hwang & Sug-Bong Choe 1. Sample

More information

MSE 7025 Magnetic Materials (and Spintronics)

MSE 7025 Magnetic Materials (and Spintronics) MSE 7025 Magnetic Materials (and Spintronics) Lecture 14: Spin Transfer Torque And the future of spintronics research Chi-Feng Pai cfpai@ntu.edu.tw Course Outline Time Table Week Date Lecture 1 Feb 24

More information

Spring Semester 2012 Final Exam

Spring Semester 2012 Final Exam Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters

More information

Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction. devices. Cornell University, Ithaca, NY 14853

Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction. devices. Cornell University, Ithaca, NY 14853 Magnetic oscillations driven by the spin Hall ect in 3-terminal magnetic tunnel junction devices Luqiao Liu 1, Chi-Feng Pai 1, D. C. Ralph 1,2, R. A. Buhrman 1 1 Cornell University, Ithaca, NY 14853 2

More information

Spin-orbit proximity effects in graphene on TMDCs. Jaroslav Fabian

Spin-orbit proximity effects in graphene on TMDCs. Jaroslav Fabian Hvar, 4.10.2017 Spin-orbit proximity effects in graphene on TMDCs Jaroslav Fabian Institute for Theoretical Physics University of Regensburg SFB1277 GRK TI SPP 1666 SFB689 GRK1570 SPP 1538 Arbeitsgruppe

More information

HALL EFFECT AND MAGNETORESISTANCE MEASUREMENTS ON PERMALLOY Py THIN FILMS AND Py/Cu/Py MULTILAYERS

HALL EFFECT AND MAGNETORESISTANCE MEASUREMENTS ON PERMALLOY Py THIN FILMS AND Py/Cu/Py MULTILAYERS Journal of Optoelectronics and Advanced Materials, Vol. 4, No. 1, March 2002, p. 79-84 HALL EFFECT AND MAGNETORESISTANCE MEASUREMENTS ON PERMALLOY Py THIN FILMS AND Py/Cu/Py MULTILAYERS M. Volmer, J. Neamtu

More information

GMR Read head. Eric Fullerton ECE, CMRR. Introduction to recording Basic GMR sensor Next generation heads TMR, CPP-GMR UCT) Challenges ATE

GMR Read head. Eric Fullerton ECE, CMRR. Introduction to recording Basic GMR sensor Next generation heads TMR, CPP-GMR UCT) Challenges ATE GMR Read head Eric Fullerton ECE, CMRR Introduction to recording Basic GMR sensor Next generation heads TMR, CPP-GMR UCT) Challenges ATE 1 Product scaling 5 Mbyte 100 Gbyte mobile drive 8 Gbyte UCT) ATE

More information

Wouldn t it be great if

Wouldn t it be great if IDEMA DISKCON Asia-Pacific 2009 Spin Torque MRAM with Perpendicular Magnetisation: A Scalable Path for Ultra-high Density Non-volatile Memory Dr. Randall Law Data Storage Institute Agency for Science Technology

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/30/2007 MOSFETs Lecture 4 Reading: Chapter 17, 19 Announcements The next HW set is due on Thursday. Midterm 2 is next week!!!! Threshold and Subthreshold

More information

Spintronics and thermoelectrics in exfoliated and epitaxial graphene van den Berg, Jan Jasper

Spintronics and thermoelectrics in exfoliated and epitaxial graphene van den Berg, Jan Jasper University of Groningen Spintronics and thermoelectrics in exfoliated and epitaxial graphene van den Berg, Jan Jasper IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure Yabin Fan, 1,,* Pramey Upadhyaya, 1, Xufeng Kou, 1, Murong Lang, 1 So Takei, 2 Zhenxing

More information

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H.

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Tolk Department of Physics and Astronomy Vanderbilt University,

More information

Giant Magnetoresistance

Giant Magnetoresistance Giant Magnetoresistance This is a phenomenon that produces a large change in the resistance of certain materials as a magnetic field is applied. It is described as Giant because the observed effect is

More information

arxiv: v1 [cond-mat.mes-hall] 6 Jul 2012

arxiv: v1 [cond-mat.mes-hall] 6 Jul 2012 Spin transport in high quality suspended graphene devices arxiv:1207.1572v1 [cond-mat.mes-hall] 6 Jul 2012 Marcos H. D. Guimarães, A. Veligura, P. J. Zomer, T. Maassen, I. J. Vera-Marun, N. Tombros, and

More information

Spin injection and absorption in antiferromagnets

Spin injection and absorption in antiferromagnets Spin injection and absorption in antiferromagnets L. Frangou (PhD), P. Merodio (PhD 2014), G. Forestier (Post-Doc), A. Ghosh, S. Oyarzún, S. Auffret, U. Ebels, M. Chshiev, H. Béa, L. Vila, O. Boulle, G.

More information

Concepts in Spin Electronics

Concepts in Spin Electronics Concepts in Spin Electronics Edited by Sadamichi Maekawa Institutefor Materials Research, Tohoku University, Japan OXFORD UNIVERSITY PRESS Contents List of Contributors xiii 1 Optical phenomena in magnetic

More information

Spin Injection into a Graphene Thin Film at Room Temperature

Spin Injection into a Graphene Thin Film at Room Temperature Spin Injection into a Graphene Thin Film at Room Temperature Megumi Ohishi, Masashi Shiraishi*, Ryo Nouchi, Takayuki Nozaki, Teruya Shinjo, and Yoshishige Suzuki Graduate School of Engineering Science,

More information

Planar Organic Photovoltaic Device. Saiful I. Khondaker

Planar Organic Photovoltaic Device. Saiful I. Khondaker Planar Organic Photovoltaic Device Saiful I. Khondaker Nanoscience Technology Center and Department of Physics University of Central Florida http://www.physics.ucf.edu/~khondaker W Metal 1 L ch Metal 2

More information

Focused-ion-beam milling based nanostencil mask fabrication for spin transfer torque studies. Güntherodt

Focused-ion-beam milling based nanostencil mask fabrication for spin transfer torque studies. Güntherodt Focused-ion-beam milling based nanostencil mask fabrication for spin transfer torque studies B. Özyilmaz a, G. Richter, N. Müsgens, M. Fraune, M. Hawraneck, B. Beschoten b, and G. Güntherodt Physikalisches

More information

Supporting Information

Supporting Information Supporting Information Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits Yuanda Liu, and Kah-Wee Ang* Department of Electrical and Computer Engineering National University

More information

Spin transfer torque devices utilizing the giant spin Hall effect of tungsten

Spin transfer torque devices utilizing the giant spin Hall effect of tungsten Spin transfer torque devices utilizing the giant spin Hall effect of tungsten Chi-Feng Pai, 1,a) Luqiao Liu, 1 Y. Li, 1 H. W. Tseng, 1 D. C. Ralph 1,2 and R. A. Buhrman 1 1 Cornell University, Ithaca,

More information

Chapter 103 Spin-Polarized Scanning Tunneling Microscopy

Chapter 103 Spin-Polarized Scanning Tunneling Microscopy Chapter 103 Spin-Polarized Scanning Tunneling Microscopy Toyo Kazu Yamada Keywords Spin-polarized tunneling current Spin polarization Magnetism 103.1 Principle Spin-polarized scanning tunneling microscopy

More information

Theory of Electrical Characterization of Semiconductors

Theory of Electrical Characterization of Semiconductors Theory of Electrical Characterization of Semiconductors P. Stallinga Universidade do Algarve U.C.E.H. A.D.E.E.C. OptoElectronics SELOA Summer School May 2000, Bologna (It) Overview Devices: bulk Schottky

More information

TEMPERATURE DEPENDENCE OF TUNNEL MAGNETORESISTANCE OF IrMn BASED MTJ

TEMPERATURE DEPENDENCE OF TUNNEL MAGNETORESISTANCE OF IrMn BASED MTJ MOLECULAR PHYSICS REPORTS 40 (2004) 192-199 TEMPERATURE DEPENDENCE OF TUNNEL MAGNETORESISTANCE OF IrMn BASED MTJ P. WIŚNIOWSKI 1, T. STOBIECKI 1, M. CZAPKIEWICZ, J. WRONA 1, M. RAMS 2, C. G. KIM 3, M.

More information

10. Magnetoelectric Switching

10. Magnetoelectric Switching Beyond CMOS computing 10. Magnetoelectric Switching Dmitri Nikonov Dmitri.e.nikonov@intel.com 1 Outline Magnetoelectric effect to improve spintronic switching Review of experiments on magnetoelectric switching:

More information

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000 Final Report Superconducting Qubits for Quantum Computation Contract MDA904-98-C-A821/0000 Project Director: Prof. J. Lukens Co-project Director: Prof. D. Averin Co-project Director: Prof. K. Likharev

More information

NiCl2 Solution concentration. Etching Duration. Aspect ratio. Experiment Atmosphere Temperature. Length(µm) Width (nm) Ar:H2=9:1, 150Pa

NiCl2 Solution concentration. Etching Duration. Aspect ratio. Experiment Atmosphere Temperature. Length(µm) Width (nm) Ar:H2=9:1, 150Pa Experiment Atmosphere Temperature #1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1,

More information

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg SPINTRONICS Waltraud Buchenberg Faculty of Physics Albert-Ludwigs-University Freiburg July 14, 2010 TABLE OF CONTENTS 1 WHAT IS SPINTRONICS? 2 MAGNETO-RESISTANCE STONER MODEL ANISOTROPIC MAGNETO-RESISTANCE

More information

Spin transport and relaxation mechanism in disordered organic film

Spin transport and relaxation mechanism in disordered organic film pin transport and relaxation mechanism in disordered organic film Motoi Kimata 1, Daisuke Nozaki 1, Yasuhiro Niimi 1, Hiroyui Tajima 2, YoshiChika Otani 1, 3 1 Institute for olid tate Physics, University

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:.38/nature09979 I. Graphene material growth and transistor fabrication Top-gated graphene RF transistors were fabricated based on chemical vapor deposition (CVD) grown graphene on copper (Cu). Cu foil

More information

Contact Engineering of Two-Dimensional Layered Semiconductors beyond Graphene

Contact Engineering of Two-Dimensional Layered Semiconductors beyond Graphene Contact Engineering of Two-Dimensional Layered Semiconductors beyond Graphene Zhixian Zhou Department of Physics and Astronomy Wayne State University Detroit, Michigan Outline Introduction Ionic liquid

More information