10. Magnetoelectric Switching

Size: px
Start display at page:

Download "10. Magnetoelectric Switching"

Transcription

1 Beyond CMOS computing 10. Magnetoelectric Switching Dmitri Nikonov 1

2 Outline Magnetoelectric effect to improve spintronic switching Review of experiments on magnetoelectric switching: Magnetostrictive, Multiferroic, Surface anisotropy. Simulations to understand the effect and its use for fast switching 2

3 Spintronics in Need of Improvement current electrode free FM layer tunneling barrier fixed FM layer electrode STTRAM switched by spin transfer torque t stt em v g P I I B s nm ~ 0.4 c ns Switching time, optimistic E IV t ~ 50 A 0.1V 0.4ns 2 fj stt dd stt Switching Energy, optimistic Joule heat = bottleneck for spin torque energy 3

4 Energy, fj Benchmarks for Beyond-CMOS Devices 10 2 INVFO4 Constant Energy*Delay Inplane spin torque 10 1 Electronics Perp spin torque 10 0 GpnJ 10-1 CMOS HP 10-2 HetJTFET HomJTFET CMOS LP Delay, ps How to reduce delay and energy for spintronics?! 4

5 Pathways to Improve Magnetization Switching Spin torque, in-plane M Spin torque, perp. M 1. Spin Hall effect 2. Magnetoelectric effect, Focus of this lecture Researching new physics to improve spintronics 5

6 Magnetoelectric (ME) Effect Theory F electric magnetic 2 2 E / 2 H / 2 coupling EH 0 0 Energy D displacement 0 E H induction B 0 H E dd d dh direct Maxwell s equations db c de converse Should be equal. In typical materials, direct is 2-4x larger. α 2 μμ 0 εε 0 = εμ/c 2 units of s/m can be normalized to c=speed of light Magnetic and electric can be coupled, how to implement? 6

7 Coupling of Computational Variables Electronics E,I d χ E P α Straintronics σ S ε l M χ M Magnetoelasticity H,Is Spintronics 7

8 Physics of Magnetization Switching Electronics E,I d χ E P α σ S ε l M χ M Spin Torque H,Is Straintronics Spintronics Direct or mediated coupling of magnetic and electrical 8

9 Three Types of ME Effect Magnetostrictive (ME1) Multiferroic (ME2) Bk Strain E Surface anisotropy (ME3) E MgO Fe Various mechanisms under study 9

10 Shape Anisotropy = Demagnetization Origin = interaction between magnetic moments in different parts of the same nanomagnet. Uncompensated magnetic poles at the surface. Ferromagnet, e.g. CoFe or NiFe(permalloy) B dem =demagnetization field M=magnetization z y x M Energy = -M*B dem M M B dem B dem B dem Small B dem Small energy Easy axis Medium B dem Medium energy Large B dem Large energy Hard axis Shape and material anisotropy rule switching 10

11 Material Anisotropy B k =anisotropy field M=magnetization B k M B k M E B k KuV 2K M u s 2 1 mz Due to lattice distortion or stress, one preferred axis of magnetization with lower energy. Both directions along axis possible. Examples: FePt in L01 crystal structure, TbCoFe, CoNi or CoPt multilayers Shape and material anisotropy rule switching 11

12 Magnetostrictive Effect (ME1) Strain E B k FM PE 1. Piezoelectric (PE) material in contact with FM. Examples: oxides like PZT, PMN-PT, see below. 2. Voltage changes polarization of PE and induces stress. 3. Stress changes magnetization of FM. 4. Shows in change of hysteresis from linear to square E-filed creates stress, changes anisotropy 12

13 Magnetostrictive Switching (ME1) M H Magnetic field in-plane. Hysteresis: square = M along H, thin = M perp to H. T. Wu et al., Appl. Phys. Lett. 98, (2011), UCLA P. Shabadi et al., Proc. of Nanoarch, 107 (2011), UCR Hysteresis curve similar to magnetoresistance. 90 deg switch PMN-PT = [Pb(Mg 1/3 Nb 2/3 )O 3 ] (1 x) [PbTiO 3 ] x 13

14 Multiferroic BFO (ME2) Bi Fe O BiFeO 3 Ferroelectric (FE) below T C = 1100 K Fe atoms shift to corner of the cube in E- field L.W. Martin et al., J. Phys.: Condens. Matter 20, (2008), UC Berkeley 14

15 Multiferroic BFO (ME2) Bi Fe Fe Fe Fe O BiFeO 3 Ferroelectric (FE) below T C = 1100 K Fe atoms shift to corner of the cube in E- field Antiferromagnetic (AFM) below T N = 640 K Spins on Fe interchange in direction FE direction is orthogonal to AFM L.W. Martin et al., J. Phys.: Condens. Matter 20, (2008), UC Berkeley Coupling of electric and magnetic above room temperature Fe Fe Fe 15

16 Multiferroic : Domains Regular domains are formed (depending on the substrate and growth conditions) FE polarization (and thus spin polarization) changes at domain walls 109 domain wall 71 domain wall 180 domain wall Domain walls and their direction crucial in multiferroics 16

17 144nm Multiferroic Structure (ME2) Pt/Ti poling electrodes Pt/CoFe Pt/Ti leads BiFeO 3 DyScO 3 FM = CoFe on top of multiferroic BFO Voltage applied between two side electrodes Domains in BFO. Magnetization tied to polarization. Detected by anisotropic magnetoresistance current in plane. J. T. Heron et al., Phys. Rev. Lett. 107, (2011), UC Berkeley, Intel participation and funding 17

18 Multiferroic 180deg Switching (ME2) E=- 130k V/cm E=+ 130k V/cm 1. Switching FE polarization in each domain by 90deg 2. Resulting change of net polarization by 180deg 3. Magnetization in CoFe follows 4. Shows by change of magnetoresistance vs. angle of external magnetic field J. T. Heron et al., Phys. Rev. Lett. 107, (2011), UC Berkeley and Intel 18

19 Surface Anisotropy Switching (ME3) Modulation of surface anisotropy with applied bias. Origin = electric field at interfaces. Up to 90 deg switch. T. Maruyama et al., Nature Nano 4, 158 (2009), Osaka U. 19

20 Voltage Control of Coercivity(ME3) Starts with switching of magnetic anisotropy => coercive field changes, hysteresis loop shifts J. G. Alzate et al., IEDM (2012), UCLA 20

21 Surface Anisotropy 180deg Switching (ME3) Can switch by 180 degrees by playing with the hysteresis. Need external bias field Hbias. Heff =magnetoelectric field. J. G. Alzate et al., IEDM (2012), UCLA 21

22 Switching Characteristics (ME3) Relatively fast switching demonstrated for the first time (few ns) Combining ME switching with spin transfer torque (STT) lets get rid of the external bias field. J. G. Alzate et al., IEDM (2012), UCLA 22

23 Atomistic Modeling of Surface Anisotropy (ME3) E MgO Fe Energy U b Energy E F U b Momentum Fixed Layer MgO Free Layer Momentum NEGF quantum transport equations (tunneling, spin scattering) self-consistently coupled with Poisson equation and LLG equation (magnetic dynamic). Roksana Golizadeh-Mojarad (DTS) 23

24 Spin Density in Surface Anisotropy (ME3) E s = 0.0V/nm E s = -1.5V/nm MgO Fe MgO Fe inplane M x, nm x, nm Negative E field: - Shifts band edges for various spin directions - Transforms out-of-plane to in-plane magnet! Roksana Golizadeh-Mojarad (DTS) 24

25 Experiments on ME Switching Type Source E H alpha Structure MV/m Oe s/m su T. Maruyama et al., Nature Nano 4, 158 (2009) MgO/Fe ms X. He et al., Nat Mater. 9, 579 (2009) (Pd/Co)mult/Cr2O3 ms Y. Chen, APL 97, (2010) E-07 FeCoV/PMN-PT ms T. Brintlinger et al., Nano Lett. 10, 1219 (2010) FeGa/BTO ms T. Lahtinen et al., IEEE TM 47, 3768 (2011) CoFe/BTO ms N. Tiercelin et al., APL 99, (2011) (TbCo2/FeCo)mult/PZT mf J. T. Heron et al., PRL 107, (2011) CoFe/BFO ms T. Wu et al., APL 98, (2011) Ni/PMN-PT ms P. Shabadi et al., Nanoarch 107 (2011) Ni/PMN-PT ms T. Fitchorov et al., JAP 110, (2011) E-09 FeGa/PMN-PT su Y. Shiota et al., Nat. Mater. 11, 39 (2012) CoFe/MgO/Fe su W.-G. Wang et al., Nat. Mater. 11, 64 (2012) CoFeB/MgO/CoFeB su J. Zhu et al., PRL 108, (2012) CoFeB/MgO/CoFeB su J. G. Alzate et al., IEDM (2012) CoFeB/MgO/CoFeB 25

26 B, Tesla Comparison of ME switching experiments Best corner 100/c Wu Chen 1/c Fitchorov Tiercelin Heron Lahtinen He Brintlinger Shabadi 0.01/c Shiota Maruyama Alzate Zhu Wang Constant ME coefficient, E, MV/m Magnetostrictive (ME1) Multiferroic (ME2) Surface anisotropy (ME3) Magnetic and electric field varies with mechanism 26

27 Comparison of switching mechanisms Mechanism Pro Con Magnetostrictive Lowest E-field More robust mechanism Multiferroic Directional magnetoelectric field 180deg switching Surface anisotropy No additional materials 180deg switching with H-field or spin torque May not scale to thinner layers Change of anisotropy, not a directional field Exotic materials, difficult to fabricate Highest E-field Race is still one for the best switching mechanism 27

28 Magnetic Switching Improvement electrode piezoelectric free FM layer electrode Fewer layers. No spin polarized current involved. No need for tunneling oxide, MgO voltage t mag Switching time by rotation of magnetization 2 B bottleneck. What is effective field exactly? eff E Q V me me dd Switching energy small = charging a capacitor ME switching = time defined by anisotropy 28

29 Spin projections Static field switching 1 B me ~[0 sin(0.5) cos(0.5)] 0.5 m x m y 1 m z 0 m z Time [ns] -1 1 m y m x 1 Size = 30nm*30nm*6nm Anisotropy B k = 0.6T alpha = 0.1, B me =0.2T, t sw = 250ps B me Relaxation in a magnetic field is still slow 29

30 Precessional Switching B dem =demagnetization field M=magnetization B me =magnetoelectric field B dem B dem B me B me B dem B me gives a kick to M out of plane,creates large B dem B dem causes fast precession of M Remove B me, M falls into a stable state Caution: need a precise duration of the pulse, or flips back! Use demagnetization to switch without expense of energy 30

31 Spin projections Precessional in-plane ME switching B me m x m y 1 m z 0 m z Time [ns] -1 1 m y m x 1 B me Size = 60nm*20nm*3nm Anisotropy B k = 0T alpha = 0.01, B me =0.4T by voltage pulse, t pulse =26ps Precessional switching is much faster 31

32 Spin projections Precessional out-of-plane ME switching B me m x m y 1 m z 0 m z Time [ns] -1 1 m y m x 1 Size = 30nm*15nm*15nm Anisotropy B k = 0.5T alpha = 0.01, B me =0.4T, t pulse =30ps B me Precessional switching is much faster 32

33 B, Tesla Future direction for switching - precessional Best corner 100/c Wu Chen 1/c Fitchorov Tiercelin Heron Lahtinen He Brintlinger Shabadi 0.01/c Shiota Maruyama Alzate Zhu Wang E, MV/m Magnetostrictive (ME1) Multiferroic (ME2) surface anisotropy (ME3) B me ~0.05T needed for precessional switching. By stronger field, e.g. decreasing thickness. Not proven. Higher field required for precessional switching 33

34 Energy, fj Benchmarks for Beyond-CMOS Devices Electronics INVFO4 Inplane spin torque Perp spin torque Constant Energy*Delay 10 0 GpnJ Spin Hall CMOS HP HetJTFET Precess ME Static ME CMOS LP HomJTFET Delay, ps Spin torque spintronics slower and higher energy 34

35 Summary Magnetoelectric switching is necessary to make spintronic devices competitive Magnetoelectric effect is under active investigation in universities, three mechanisms demonstrated: Magnetostrictive, Multiferroic, Surface anisotropy. Use of precession switching provides for fast, low energy write of magnetization Need materials with higher magnetoelectric field. 35

Directions for simulation of beyond-cmos devices. Dmitri Nikonov, George Bourianoff, Mark Stettler

Directions for simulation of beyond-cmos devices. Dmitri Nikonov, George Bourianoff, Mark Stettler Directions for simulation of beyond-cmos devices Dmitri Nikonov, George Bourianoff, Mark Stettler Outline Challenges and responses in nanoelectronic simulation Limits for electronic devices and motivation

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 1 Today s Topics 1.1 History of Spintronics 1.2 Fudamentals in Spintronics Spin-dependent transport GMR and TMR effect Spin injection

More information

Electric field control of magnetization using AFM/FM interfaces. Xiaoshan Xu

Electric field control of magnetization using AFM/FM interfaces. Xiaoshan Xu Electric field control of magnetization using AFM/FM interfaces Xiaoshan Xu Magnetoelectric effects α = μ 0 M E H M H = 0, E = 0 = 0 (General magnetoelectrics) M H = 0, E = 0 0, P H = 0, E = 0 0, (Multiferroics)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Reversible Electric Control of Exchange Bias in a Multiferroic Field Effect Device S. M. Wu 1, 2, Shane A. Cybart 1, 2, P. Yu 1, 2, M. D. Abrodos 1, J. Zhang 1, R. Ramesh 1, 2

More information

Low-power non-volatile spintronic memory: STT-RAM and beyond

Low-power non-volatile spintronic memory: STT-RAM and beyond IOP PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 46 (2013) 074003 (10pp) doi:10.1088/0022-3727/46/7/074003 Low-power non-volatile spintronic memory: STT-RAM and beyond K L Wang,

More information

Emerging spintronics-based logic technologies

Emerging spintronics-based logic technologies Center for Spintronic Materials, Interfaces, and Novel Architectures Emerging spintronics-based logic technologies Zhaoxin Liang Meghna Mankalale Jian-Ping Wang Sachin S. Sapatnekar University of Minnesota

More information

7. Basics of Magnetization Switching

7. Basics of Magnetization Switching Beyond CMOS computing 7. Basics of Magnetization Switching Dmitri Nikonov Dmitri.e.nikonov@intel.com 1 Outline Energies in a nanomagnet Precession in a magnetic field Anisotropies in a nanomagnet Hysteresis

More information

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR)

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR) Ferromagnetism and Electronic Transport There are a number of effects that couple magnetization to electrical resistance. These include: Ordinary magnetoresistance (OMR) Anisotropic magnetoresistance (AMR)

More information

Spin-torque nano-oscillators trends and challenging

Spin-torque nano-oscillators trends and challenging Domain Microstructure and Dynamics in Magnetic Elements Heraklion, Crete, April 8 11, 2013 Spin-torque nano-oscillators trends and challenging N H ext S Giovanni Finocchio Department of Electronic Engineering,

More information

Electric-field control of magnetic domain wall motion and local magnetization reversal

Electric-field control of magnetic domain wall motion and local magnetization reversal Electric-field control of magnetic domain wall motion and local magnetization reversal Tuomas H. E. Lahtinen, Kévin J. A. Franke and Sebastiaan van Dijken* NanoSpin, Department of Applied Physics, Aalto

More information

9. Spin Torque Majority Gate

9. Spin Torque Majority Gate eyond MOS computing 9. Spin Torque Majority Gate Dmitri Nikonov Thanks to George ourianoff Dmitri.e.nikonov@intel.com 1 Outline Spin majority gate with in-pane magnetization Spin majority gate with perpendicular

More information

-magnetic dipoles are largely analogous to electric dipole moments -both types of dipoles

-magnetic dipoles are largely analogous to electric dipole moments -both types of dipoles Student Name Date Manipulating Magnetization Electric dipole moment: Magnetic dipole moment: -magnetic dipoles are largely analogous to electric dipole moments -both types of dipoles -physical separation

More information

Optical studies of current-induced magnetization

Optical studies of current-induced magnetization Optical studies of current-induced magnetization Virginia (Gina) Lorenz Department of Physics, University of Illinois at Urbana-Champaign PHYS403, December 5, 2017 The scaling of electronics John Bardeen,

More information

Damping of magnetization dynamics

Damping of magnetization dynamics Damping of magnetization dynamics Andrei Kirilyuk! Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands 1 2 Landau-Lifshitz equation N Heff energy gain:! torque equation:

More information

MSE 7025 Magnetic Materials (and Spintronics)

MSE 7025 Magnetic Materials (and Spintronics) MSE 7025 Magnetic Materials (and Spintronics) Lecture 14: Spin Transfer Torque And the future of spintronics research Chi-Feng Pai cfpai@ntu.edu.tw Course Outline Time Table Week Date Lecture 1 Feb 24

More information

Quantum Transport Simula0on: A few case studies where it is necessary

Quantum Transport Simula0on: A few case studies where it is necessary Quantum Transport Simula0on: A few case studies where it is necessary Sayeef Salahuddin Laboratory for Emerging and Exploratory Devices (LEED) EECS, UC Berkeley sayeef@eecs.berkeley.edu The celebrated

More information

Lecture 6 NEW TYPES OF MEMORY

Lecture 6 NEW TYPES OF MEMORY Lecture 6 NEW TYPES OF MEMORY Memory Logic needs memory to function (efficiently) Current memories Volatile memory SRAM DRAM Non-volatile memory (Flash) Emerging memories Phase-change memory STT-MRAM (Ferroelectric

More information

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 Spin transfer torques in high anisotropy magnetic nanostructures S. Mangin 1, Y. enry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 1) Laboratoire de Physique des

More information

Advanced Lab Course. Tunneling Magneto Resistance

Advanced Lab Course. Tunneling Magneto Resistance Advanced Lab Course Tunneling Magneto Resistance M06 As of: 015-04-01 Aim: Measurement of tunneling magnetoresistance for different sample sizes and recording the TMR in dependency on the voltage. Content

More information

The Physics of Ferromagnetism

The Physics of Ferromagnetism Terunobu Miyazaki Hanmin Jin The Physics of Ferromagnetism Springer Contents Part I Foundation of Magnetism 1 Basis of Magnetism 3 1.1 Basic Magnetic Laws and Magnetic Quantities 3 1.1.1 Basic Laws of

More information

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials CHAPTER 2 MAGNETISM Magnetism plays a crucial role in the development of memories for mass storage, and in sensors to name a few. Spintronics is an integration of the magnetic material with semiconductor

More information

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation Fabrication and Measurement of Spin Devices Zhihong Chen School of Electrical and Computer Engineering Birck Nanotechnology Center, Discovery Park Purdue University Purdue Birck Presentation zhchen@purdue.edu

More information

Challenges for Materials to Support Emerging Research Devices

Challenges for Materials to Support Emerging Research Devices Challenges for Materials to Support Emerging Research Devices C. Michael Garner*, James Hutchby +, George Bourianoff*, and Victor Zhirnov + *Intel Corporation Santa Clara, CA + Semiconductor Research Corporation

More information

Classification of Dielectrics & Applications

Classification of Dielectrics & Applications Classification of Dielectrics & Applications DIELECTRICS Non-Centro- Symmetric Piezoelectric Centro- Symmetric Pyroelectric Non- Pyroelectric Ferroelectrics Non-Ferroelectric Piezoelectric Effect When

More information

Room Temperature Planar Hall Transistor

Room Temperature Planar Hall Transistor Room Temperature Planar Hall Transistor Bao Zhang 1, Kangkang Meng 1, Mei-Yin Yang 1, K. W. Edmonds 2, Hao Zhang 1, Kai-Ming Cai 1, Yu Sheng 1,3, Nan Zhang 1, Yang Ji 1, Jian-Hua Zhao 1, Kai-You Wang 1*

More information

Compact Modeling of STT-RAM and MeRAM A Verilog-A model of Magnetic Tunnel Junction Behavioral Dynamics

Compact Modeling of STT-RAM and MeRAM A Verilog-A model of Magnetic Tunnel Junction Behavioral Dynamics UNIVERSITY OF CALIFORNIA, LOS ANGELES Compact Modeling of STT-RAM and MeRAM A Verilog-A model of Magnetic Tunnel Junction Behavioral Dynamics Dheeraj Srinivasan 3/8/2013 +This work was done under the advisement

More information

From Spin Torque Random Access Memory to Spintronic Memristor. Xiaobin Wang Seagate Technology

From Spin Torque Random Access Memory to Spintronic Memristor. Xiaobin Wang Seagate Technology From Spin Torque Random Access Memory to Spintronic Memristor Xiaobin Wang Seagate Technology Contents Spin Torque Random Access Memory: dynamics characterization, device scale down challenges and opportunities

More information

Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction. devices. Cornell University, Ithaca, NY 14853

Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction. devices. Cornell University, Ithaca, NY 14853 Magnetic oscillations driven by the spin Hall ect in 3-terminal magnetic tunnel junction devices Luqiao Liu 1, Chi-Feng Pai 1, D. C. Ralph 1,2, R. A. Buhrman 1 1 Cornell University, Ithaca, NY 14853 2

More information

An Overview of Spintronics in 2D Materials

An Overview of Spintronics in 2D Materials An Overview of Spintronics in 2D Materials Wei Han ( 韩伟 ) 1 2014 ICQM Outline I. Introduction to spintronics (Lecture I) II. Spin injection and detection in 2D (Lecture I) III. Putting magnetic moment

More information

E lectric fields, rather than magnetic fields or current, are required to control magnetic moment directions in

E lectric fields, rather than magnetic fields or current, are required to control magnetic moment directions in OPEN SUBJECT AREAS: FERROELECTRICS AND MULTIFERROICS MAGNETIC DEVICES Received 14 October 2014 Accepted 28 November 2014 Published 16 December 2014 Correspondence and requests for materials should be addressed

More information

Contents. Acknowledgments

Contents. Acknowledgments MAGNETIC MATERIALS Fundamentals and Applications Second edition NICOLA A. SPALDIN University of California, Santa Barbara CAMBRIDGE UNIVERSITY PRESS Contents Acknowledgments page xiii I Basics 1 Review

More information

Page 1. A portion of this study was supported by NEDO.

Page 1. A portion of this study was supported by NEDO. MRAM : Materials and Devices Current-induced Domain Wall Motion High-speed MRAM N. Ishiwata NEC Corporation Page 1 A portion of this study was supported by NEDO. Outline Introduction Positioning and direction

More information

ELECTRIC FIELD-DRIVEN TUNING OF MULTIFERROIC TRANSDUCERS AND ANTENNAS THROUGH CHANGES IN FIELD STRENGTH AND MATERIAL MORPHOLOGY

ELECTRIC FIELD-DRIVEN TUNING OF MULTIFERROIC TRANSDUCERS AND ANTENNAS THROUGH CHANGES IN FIELD STRENGTH AND MATERIAL MORPHOLOGY ELECTRIC FIELD-DRIVEN TUNING OF MULTIFERROIC TRANSDUCERS AND ANTENNAS THROUGH CHANGES IN FIELD STRENGTH AND MATERIAL MORPHOLOGY A Dissertation Presented by Trifon Ivanov Fitchorov to The Department of

More information

NONVOLATILE SPINTRONICS: PERSPECTIVES ON INSTANT-ON NONVOLATILE NANOELECTRONIC SYSTEMS

NONVOLATILE SPINTRONICS: PERSPECTIVES ON INSTANT-ON NONVOLATILE NANOELECTRONIC SYSTEMS SPIN Vol. 2, No. 2 (2012) 1250009 (22 pages) World Scienti c Publishing Company DOI: 10.1142/S2010324712500099 NONVOLATILE SPINTRONICS: PERSPECTIVES ON INSTANT-ON NONVOLATILE NANOELECTRONIC SYSTEMS K.

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Center for Spintronic Materials, Interfaces, and Novel Architectures. Voltage Controlled Antiferromagnetics and Future Spin Memory

Center for Spintronic Materials, Interfaces, and Novel Architectures. Voltage Controlled Antiferromagnetics and Future Spin Memory Center for Spintronic Materials, Interfaces, and Novel Architectures Voltage Controlled Antiferromagnetics and Future Spin Memory Maxim Tsoi The University of Texas at Austin Acknowledgments: H. Seinige,

More information

Gate voltage modulation of spin-hall-torque-driven magnetic switching. Cornell University, Ithaca, NY 14853

Gate voltage modulation of spin-hall-torque-driven magnetic switching. Cornell University, Ithaca, NY 14853 Gate voltage modulation of spin-hall-torque-driven magnetic switching Luqiao Liu 1, Chi-Feng Pai 1, D. C. Ralph 1,2 and R. A. Buhrman 1 1 Cornell University, Ithaca, NY 14853 2 Kavli Institute at Cornell,

More information

Recent Developments in Magnetoelectrics Vaijayanti Palkar

Recent Developments in Magnetoelectrics Vaijayanti Palkar Recent Developments in Magnetoelectrics Vaijayanti Palkar Department of Condensed Matter Physics & Materials Science Tata Institute of Fundamental Research Mumbai 400 005, India. Tata Institute of Fundamental

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.16 Electrical detection of charge current-induced spin polarization due to spin-momentum locking in Bi 2 Se 3 by C.H. Li, O.M.J. van t Erve, J.T. Robinson,

More information

Funding provided by the Los Alamos National Laboratory Directed Research and Development Program

Funding provided by the Los Alamos National Laboratory Directed Research and Development Program Combining ferroelectricity and magnetism: the low energy electrodynamics Diyar Talbayev Center for Integrated Nanotechnologies Los Alamos National Laboratory Acknowledgements Los Alamos National Laboratory

More information

Introduction to solid state physics

Introduction to solid state physics PHYS 342/555 Introduction to solid state physics Instructor: Dr. Pengcheng Dai Professor of Physics The University of Tennessee (Room 407A, Nielsen, 974-1509) Chapter 13: Dielectrics and ferroelectrics

More information

Memristive behavior in magnetoelectric devices

Memristive behavior in magnetoelectric devices Memristive behavior in magnetoelectric devices Concepts and Prospects T. Mathurin 1, N. Tiercelin 1, Y. Dusch 1, S. Giordano 1, D. Zakharov 1, V. Preobrazhensky 1 and P. Pernod 1 1 Groupe AIMAN-FILMS,

More information

MESL: Proposal for a Non-volatile Cascadable Magneto-Electric Spin Logic

MESL: Proposal for a Non-volatile Cascadable Magneto-Electric Spin Logic MESL: Proposal for a Non-volatile Cascadable Magneto-Electric Spin Logic Akhilesh Jaiswal 1,, and Kaushik Roy 1 1 School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907,

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

MatSci 224 Magnetism and Magnetic. November 5, 2003

MatSci 224 Magnetism and Magnetic. November 5, 2003 MatSci 224 Magnetism and Magnetic Materials November 5, 2003 How small is small? What determines whether a magnetic structure is made of up a single domain or many domains? d Single domain d~l d d >> l

More information

Wouldn t it be great if

Wouldn t it be great if IDEMA DISKCON Asia-Pacific 2009 Spin Torque MRAM with Perpendicular Magnetisation: A Scalable Path for Ultra-high Density Non-volatile Memory Dr. Randall Law Data Storage Institute Agency for Science Technology

More information

COHERENT/INCOHERENT MAGNETIZATION DYNAMICS OF NANOMAGNETIC DEVICES FOR ULTRA- LOW ENERGY COMPUTING

COHERENT/INCOHERENT MAGNETIZATION DYNAMICS OF NANOMAGNETIC DEVICES FOR ULTRA- LOW ENERGY COMPUTING Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2017 COHERENT/INCOHERENT MAGNETIZATION DYNAMICS OF NANOMAGNETIC DEVICES FOR ULTRA- LOW ENERGY COMPUTING Md

More information

Structural dynamics of PZT thin films at the nanoscale

Structural dynamics of PZT thin films at the nanoscale Mater. Res. Soc. Symp. Proc. Vol. 902E 2006 Materials Research Society 0902-T06-09.1 Structural dynamics of PZT thin films at the nanoscale Alexei Grigoriev 1, Dal-Hyun Do 1, Dong Min Kim 1, Chang-Beom

More information

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik Spin orbit torque driven magnetic switching and memory Debanjan Bhowmik Spin Transfer Torque Fixed Layer Free Layer Fixed Layer Free Layer Current coming out of the fixed layer (F2) is spin polarized in

More information

Magneto-Seebeck effect in spin-valve with in-plane thermal gradient

Magneto-Seebeck effect in spin-valve with in-plane thermal gradient Magneto-Seebeck effect in spin-valve with in-plane thermal gradient S. Jain 1, a), D. D. Lam 2, b), A. Bose 1, c), H. Sharma 3, d), V. R. Palkar 1, e), C. V. Tomy 3, f), Y. Suzuki 2, g) 1, h) and A. A.

More information

MRAM: Device Basics and Emerging Technologies

MRAM: Device Basics and Emerging Technologies MRAM: Device Basics and Emerging Technologies Matthew R. Pufall National Institute of Standards and Technology 325 Broadway, Boulder CO 80305-3337 Phone: +1-303-497-5206 FAX: +1-303-497-7364 E-mail: pufall@boulder.nist.gov

More information

Nanoscale magnetic imaging with single spins in diamond

Nanoscale magnetic imaging with single spins in diamond Nanoscale magnetic imaging with single spins in diamond Ania Bleszynski Jayich UC Santa Barbara Physics AFOSR Nanoelectronics Review Oct 24, 2016 Single spin scanning magnetometer Variable temperature

More information

Holcomb Group Capabilities

Holcomb Group Capabilities Holcomb Group Capabilities Synchrotron Radiation & Ultrafast Optics West Virginia University mikel.holcomb@mail.wvu.edu The Physicists New Playground The interface is the device. - Herbert Kroemer, beginning

More information

Nonvolatile CMOS Circuits Using Magnetic Tunnel Junction

Nonvolatile CMOS Circuits Using Magnetic Tunnel Junction November 3-4, 2011 Berkeley, CA, USA Nonvolatile CMOS Circuits Using Magnetic Tunnel Junction Hideo Ohno 1,2 1 Center for Spintronics Integrated Systems, Tohoku University, Japan 2 Laboratory for Nanoelectronics

More information

100 Tesla multishot. 60 Tesla long pulse. Los Alamos branch of the Magnet Lab Pulsed magnetic fields

100 Tesla multishot. 60 Tesla long pulse. Los Alamos branch of the Magnet Lab Pulsed magnetic fields Los Alamos branch of the Magnet Lab Pulsed magnetic fields 100 Tesla multishot 100 80 60 40 20 Magnetic field (T) 0 0 0.5 1 1.5 2 2.5 3 time (s) 60 Tesla long pulse 60 40 20 0 0 1 2 3 time (s) Magnetization,

More information

Dynamic response of converse magnetoelectric effect in a PMN-PT-based multiferroic heterostructure

Dynamic response of converse magnetoelectric effect in a PMN-PT-based multiferroic heterostructure Appl Phys A DOI 10.1007/s00339-010-5726-9 Dynamic response of converse magnetoelectric effect in a PMN-PT-based multiferroic heterostructure Yajie Chen Trifon Fitchorov Anton L. Geiler Jinsheng Gao Carmine

More information

Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material

Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material Mahendra DC 1, Mahdi Jamali 2, Jun-Yang Chen 2, Danielle

More information

High-density magnetoresistive random access memory operating at ultralow voltage at room temperature

High-density magnetoresistive random access memory operating at ultralow voltage at room temperature Received 4 Jun Accepted 6 Oct Published Nov DOI:.38/ncomms564 High-density magnetoresistive random access memory operating at ultralow voltage at room temperature Jia-Mian Hu,, Zheng Li, Long-Qing Chen

More information

Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model

Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model Siying Liu, Hongyi Zhang, Hao Yu * Department of Mathematical Sciences, Xi an Jiaotong-Liverpool University,

More information

Current-induced switching in a magnetic insulator

Current-induced switching in a magnetic insulator In the format provided by the authors and unedited. DOI: 10.1038/NMAT4812 Current-induced switching in a magnetic insulator Can Onur Avci, Andy Quindeau, Chi-Feng Pai 1, Maxwell Mann, Lucas Caretta, Astera

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 1.138/NPHYS98 Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer Takayuki Nozaki 1,*, 3, Yoichi Shiota 1, Shinji Miwa 1,

More information

Supplementary Information for. Non-volatile memory based on ferroelectric photovoltaic effect

Supplementary Information for. Non-volatile memory based on ferroelectric photovoltaic effect Supplementary Information for Non-volatile memory based on ferroelectric photovoltaic effect Rui Guo 1, Lu You 1, Yang Zhou 1, Zhi Shiuh Lim 1, Xi Zou 1, Lang Chen 1, R. Ramesh 2, Junling Wang 1* 1 School

More information

Enhanced spin orbit torques by oxygen incorporation in tungsten films

Enhanced spin orbit torques by oxygen incorporation in tungsten films Enhanced spin orbit torques by oxygen incorporation in tungsten films Timothy Phung IBM Almaden Research Center, San Jose, California, USA 1 Motivation: Memory devices based on spin currents Spin Transfer

More information

Recent developments in spintronic

Recent developments in spintronic Recent developments in spintronic Tomas Jungwirth nstitute of Physics ASCR, Prague University of Nottingham in collaboration with Hitachi Cambridge, University of Texas, Texas A&M University - Spintronics

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Large voltage-induced netic anisotropy change in a few atomic layers of iron T. Maruyama 1, Y. Shiota 1, T. Noaki 1, K. Ohta 1, N. Toda 1, M. Miuguchi 1, A. A. Tulapurkar 1, T.

More information

Spin Hall effect clocking of nanomagnetic logic without a magnetic field

Spin Hall effect clocking of nanomagnetic logic without a magnetic field SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2013.241 Spin Hall effect clocking of nanomagnetic logic without a magnetic field (Debanjan Bhowmik *, Long You *, Sayeef Salahuddin) Supplementary Section

More information

Ferromagnetism. In free space, the flux density and magnetizing field strength are related by the expression

Ferromagnetism. In free space, the flux density and magnetizing field strength are related by the expression 1 Ferromagnetism B In free space, the flux density and magnetizing field strength are related by the expression H B =µ 0 H µ 0 =4π x 10-7 H.m -1, the permeability of free space. 2 Ferromagnetism B H For

More information

Supporting Information

Supporting Information Supporting Information Structural Evidence for Strong Coupling between Polarization Rotation and Lattice Strain in Monoclinic Relaxor Ferroelectrics Hui Liu, Jun Chen,*, Longlong Fan, Yang Ren, Lei Hu,

More information

A multilevel nonvolatile magnetoelectric memory based on memtranstor

A multilevel nonvolatile magnetoelectric memory based on memtranstor A multilevel nonvolatile magnetoelectric memory based on memtranstor Jianxin Shen, Junzhuang Cong, Dashan Shang, Yisheng Chai, Shipeng Shen, Kun Zhai, and Young Sun Beijing National Laboratory for Condensed

More information

Switching Current Study: Hysteresis Measurement of Ferroelectric Capacitors using Current-Voltage Measurement Method

Switching Current Study: Hysteresis Measurement of Ferroelectric Capacitors using Current-Voltage Measurement Method Chapter 7 Switching Current Study: Hysteresis Measurement of Ferroelectric Capacitors using Current-Voltage Measurement Method 7-1. Introduction Over the past few decades, various methods for obtaining

More information

A Technology-Agnostic MTJ SPICE Model with User-Defined Dimensions for STT-MRAM Scalability Studies

A Technology-Agnostic MTJ SPICE Model with User-Defined Dimensions for STT-MRAM Scalability Studies A Technology-Agnostic MTJ SPICE Model with User-Defined Dimensions for STT-MRAM Scalability Studies Model download website: mtj.umn.edu Jongyeon Kim 1, An Chen 2, Behtash Behin-Aein 2, Saurabh Kumar 1,

More information

Electric field control of magnetism in oxide heterostructures

Electric field control of magnetism in oxide heterostructures Electric field control of magnetism in oxide heterostructures Manuel Bibes Unité Mixte de Physique CNRS / Thales, Palaiseau Université Paris Saclay (FRANCE) http://oxitronics.wordpress.com manuel.bibes@cnrs-thales.fr

More information

Understanding the Magnetic Ground States for Improper Multiferroic Materials

Understanding the Magnetic Ground States for Improper Multiferroic Materials Wright State University CORE Scholar Physics Seminars Physics 4-11-2013 Understanding the Magnetic Ground States for Improper Multiferroic Materials Jason T. Haraldsen Follow this and additional works

More information

0.002 ( ) R xy

0.002 ( ) R xy a b z 0.002 x H y R xy () 0.000-0.002 0 90 180 270 360 (degree) Supplementary Figure 1. Planar Hall effect resistance as a function of the angle of an in-plane field. a, Schematic of the planar Hall resistance

More information

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid Magnetism Electromagnetic Fields in a Solid SI units cgs (Gaussian) units Total magnetic field: B = μ 0 (H + M) = μ μ 0 H B = H + 4π M = μ H Total electric field: E = 1/ε 0 (D P) = 1/εε 0 D E = D 4π P

More information

Perpendicular MTJ stack development for STT MRAM on Endura PVD platform

Perpendicular MTJ stack development for STT MRAM on Endura PVD platform Perpendicular MTJ stack development for STT MRAM on Endura PVD platform Mahendra Pakala, Silicon Systems Group, AMAT Dec 16 th, 2014 AVS 2014 *All data in presentation is internal Applied generated data

More information

Electrical writing of magnetic and resistive multistates in CoFe films deposited onto Pb[Zr x Ti 1-x ]O 3

Electrical writing of magnetic and resistive multistates in CoFe films deposited onto Pb[Zr x Ti 1-x ]O 3 Electrical writing of magnetic and resistive multistates in CoFe films deposited onto Pb[Zr x Ti 1-x ]O 3 V. Iurchuk, B. Doudin, J. Bran and B. Kundys Institut de Physique et Chimie des Matériaux de Strasbourg

More information

Supplementary Figure 1. Magnetic domain configuration under out-of-plane field application. (a), (b) MTXM images showing magnetic domain state

Supplementary Figure 1. Magnetic domain configuration under out-of-plane field application. (a), (b) MTXM images showing magnetic domain state Supplementary Figure 1. Magnetic domain configuration under out-of-plane field application. (a), (b) MTXM images showing magnetic domain state acquired at a given out-ofplane magnetic field. Bright and

More information

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Rays have come a long way Application to Magnetic Systems 1 µm 1895 1993 2003 http://www-ssrl.slac.stanford.edu/stohr/index.htm

More information

Nanoxide electronics

Nanoxide electronics Nanoxide electronics Alexey Kalabukhov Quantum Device Physics Laboratory MC2, room D515 Alexei.kalaboukhov@chalmers.se Playing Lego with oxide materials: G. Rijnders, D.H.A. Blank, Nature 433, 369 (2005)

More information

Probing Magnetic Order with Neutron Scattering

Probing Magnetic Order with Neutron Scattering Probing Magnetic Order with Neutron Scattering G.J. Mankey, V.V. Krishnamurthy, F.D. Mackey and I. Zoto University of Alabama in collaboration with J.L. Robertson and M.L. Crow Oak Ridge National Laboratory

More information

Enhancement of magnetoelectric coupling in multiferroic composites via FEM simulation

Enhancement of magnetoelectric coupling in multiferroic composites via FEM simulation Enhancement of magnetoelectric coupling in multiferroic composites via FEM simulation *Artjom Avakian 1), Andreas Ricoeur 2) 1), 2) Institute of Mechanics, University of Kassel, Kassel 34125, Germany 1)

More information

Piezoelectric materials for MEMS applications Hiroshi Funakubo Tokyo Institute of Technology

Piezoelectric materials for MEMS applications Hiroshi Funakubo Tokyo Institute of Technology Piezoelectric materials for MEMS applications Hiroshi Funakubo Tokyo Institute of Technology MEMS Engineer Forum 2016/5/11 11:50-12:15 Content 1. Introduction 2. Processing 3. Materials Matter Content

More information

Influence of exchange bias on magnetic losses in CoFeB/MgO/CoFeB tunnel junctions

Influence of exchange bias on magnetic losses in CoFeB/MgO/CoFeB tunnel junctions Influence of exchange bias on magnetic losses in CoFeB/MgO/CoFeB tunnel junctions Ryan Stearrett Ryan Stearrett, W. G. Wang, Xiaoming Kou, J. F. Feng, J. M. D. Coey, J. Q. Xiao, and E. R. Nowak, Physical

More information

Demonstration of a strain-mediated magnetoelectric write and read unit in a Co60Fe20B20/ Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructure

Demonstration of a strain-mediated magnetoelectric write and read unit in a Co60Fe20B20/ Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructure Demonstration of a strain-mediated magnetoelectric write and read unit in a Co60Fe20B20/ Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructure Tingting Shen 1,3, aibhav Ostwal 2,3, Kerem Y. Camsari 2, Joerg Appenzeller

More information

Nanoxide electronics

Nanoxide electronics Nanoxide electronics Alexey Kalabukhov Quantum Device Physics Laboratory MC2, room D515 Alexei.kalaboukhov@chalmers.se Playing Lego with oxide materials: G. Rijnders, D.H.A. Blank, Nature 433, 369 (2005)

More information

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface Pramod Verma Indian Institute of Science, Bangalore 560012 July 24, 2014 Pramod Verma

More information

Time resolved transport studies of magnetization reversal in orthogonal spin transfer magnetic tunnel junction devices

Time resolved transport studies of magnetization reversal in orthogonal spin transfer magnetic tunnel junction devices Invited Paper Time resolved transport studies of magnetization reversal in orthogonal spin transfer magnetic tunnel junction devices Georg Wolf a, Gabriel Chaves-O Flynn a, Andrew D. Kent a, Bartek Kardasz

More information

Conductivity of a disordered ferromagnetic monoatomic film

Conductivity of a disordered ferromagnetic monoatomic film Materials Science-Poland, Vol. 6, No. 4, 008 Conductivity of a disordered ferromagnetic monoatomic film A. PAJA *, B. J. SPISAK Faculty of Physics and Applied Computer Science, AGH University of Science

More information

Planar Hall Effect in Magnetite (100) Films

Planar Hall Effect in Magnetite (100) Films Planar Hall Effect in Magnetite (100) Films Xuesong Jin, Rafael Ramos*, Y. Zhou, C. McEvoy and I.V. Shvets SFI Nanoscience Laboratories, School of Physics, Trinity College Dublin, Dublin 2, Ireland 1 Abstract.

More information

The exchange interaction between FM and AFM materials

The exchange interaction between FM and AFM materials Chapter 1 The exchange interaction between FM and AFM materials When the ferromagnetic (FM) materials are contacted with antiferromagnetic (AFM) materials, the magnetic properties of FM materials are drastically

More information

A brief history with Ivan. Happy Birthday Ivan. You are now closer to 70!

A brief history with Ivan. Happy Birthday Ivan. You are now closer to 70! A brief history with Ivan Happy Birthday Ivan You are now closer to 70! My brief history with Ivan 1986: I was a graduate student at UCSD, without a thesis advisor and not sure what I was going to do.

More information

Spin injection. concept and technology

Spin injection. concept and technology Spin injection concept and technology Ron Jansen ャンセンロン Spintronics Research Center National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan Spin injection Transfer of spin

More information

Lahtinen, Tuomas H.E.; Franke, Kevin; van Dijken, Sebastiaan Electric-field control of magnetic domain wall motion and local magnetization reversal

Lahtinen, Tuomas H.E.; Franke, Kevin; van Dijken, Sebastiaan Electric-field control of magnetic domain wall motion and local magnetization reversal Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Lahtinen, Tuomas H.E.; Franke, Kevin;

More information

Coupling of heat and spin currents at the nanoscale in cuprates and metallic multilayers

Coupling of heat and spin currents at the nanoscale in cuprates and metallic multilayers Coupling of heat and spin currents at the nanoscale in cuprates and metallic multilayers David G. Cahill, Greg Hohensee, and Gyung-Min Choi Department of Materials Science and Engineering University of

More information

Antiferromagnetic Spintronics

Antiferromagnetic Spintronics Lecture II Antiferromagnetic Spintronics Alireza Qaiumzadeh Radboud University (RU) Institute for Molecules and Materials (IMM) Theory of Condensed Matter group (TCM) Interesting but useless! Nobel Lectures

More information

Ferroelectric Characterization of La BiFeO3/ Bi0.5(Na0.85K0.15)0.5TiO3 Nano-composite Films

Ferroelectric Characterization of La BiFeO3/ Bi0.5(Na0.85K0.15)0.5TiO3 Nano-composite Films University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 2016 Ferroelectric Characterization of La BiFeO3/ Bi0.5(Na0.85K0.15)0.5TiO3

More information

Magnetic domain theory in dynamics

Magnetic domain theory in dynamics Chapter 3 Magnetic domain theory in dynamics Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand for fast response and high density data storage devices, for

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 2 Today s Topics 2.1 Anomalous Hall effect and spin Hall effect 2.2 Spin Hall effect measurements 2.3 Interface effects Anomalous Hall

More information

Emerging Interconnect Technologies for CMOS and beyond-cmos Circuits

Emerging Interconnect Technologies for CMOS and beyond-cmos Circuits Emerging Interconnect Technologies for CMOS and beyond-cmos Circuits Sou-Chi Chang, Rouhollah M. Iraei Vachan Kumar, Ahmet Ceyhan and Azad Naeemi School of Electrical & Computer Engineering Georgia Institute

More information