Fundamental concepts of spintronics

Size: px
Start display at page:

Download "Fundamental concepts of spintronics"

Transcription

1 Fundamental concepts of spintronics Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, SFB 689

2 :outline: what is spintronics? spin injection spin-orbit coupling in solids (next lecture) spin devices conclusions: challenges I. Zutic, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76, 323 (2004) J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic, Semiconductor spintronics, Acta Phys. Slov, 57, 566 (2007)

3 what is spintronics? narrow (device): electronics with spin broad: umbrella for electron spin phenomena in solids

4 spintronics drive technology fundamental discoveries

5 The Nobel Prize in Physics 2007 The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2007 jointly to Albert Fert Unité Mixte de Physique CNRS/THALES, Université Paris-Sud, Orsay, France Peter Grünberg Forschungszentrum Jülich, Germany, "for the discovery of Giant Magnetoresistance".

6 Giant MagnetoResistance P. Grunberg et al. (1988), A. Fert et al. (1988) small resistance large resistance multilayers 30-40% at RT

7 GMR hard disk read heads From: IBM web site

8 SPINTRONICS GOALS spin control of electrical properties (I-V characteristics) electrical control of spin (magnetization)

9 SPINTRONICS 3 REQUIREMENTS EFFICIENT SPIN INJECTION F N SLOW SPIN SPIN CONTROL RELIABLE SPIN DETECTION Silsbee-Johnson spin-charge coupling

10 :(electrical) spin injection:

11 Johnson-Silsbee spin injection experiment Silsbee: emf appears in the proximity of a ferromagnetic metal and spinpolarized nonmagnetic metal (inverse of spin injection) R. Silsbee, Bull. Mag. Reson. 2, 284 (1980) M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985). E E δm μ 0 N (E) N (E) N (E) N (E) spin injection spin detection

12 visualizing spin injection S. A. Crooker et al., JAP, 101, (2007) S. A. Crooker at al., Science 309, 2191 (2005)

13 spin injection into silicon I. Appelbaum et al, Nature 447, 295 (2007) I. Zutic and J. Fabian, Nature (NW) 447, 269 (2007)

14 spin injection into graphene single-layer on a SiO 2 substrate, room temperature N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees Electronic spin transport and spin precession in single graphene layers at room temperature, Nature 448, 571 (2007) N. Tombros, S. Tanabe, A. Veligura, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees Anisotropic spin relaxation in graphene, arxiv:

15 Zincblende band structure (GaAs) optical orientation transitions (a) S 1/2 E CB (b) P 3/2 P 1/2 Γ 6 Γ 8 Γ 7 E g Δ so HH LH SO 0 k m j σ + 1/2 1/ σ + CB σ σ 3/2 1/2 1/2 3/ /2 1/2 SO HH,LH From: I. Zutic, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)

16 :spin relaxation:

17 :key concepts: spin relaxation and dephasing B Fe t=0, spin imbalance t=t 1, spin balance impurity phonon spin-orbit coupling

18 :key concepts: spin relaxation and dephasing Bloch eqs

19 Time-resolved Faraday rotation Source: web site of Awschalom s group ZnCdSe QW

20 mechanisms of spin relaxation Elliott-Yafet mechanism elemental metals and semiconductors Dyakonov-Perel mechanism Semiconductors without center of inversion symmetry Bir-Aronov-Pikus mechanism Heavily p-doped semiconductors Hyperfine interaction Electrons bound on impurity sites or confined In quantum dots J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic, Semiconductor spintronics, Acta Physica Slovaca, 57, 565 (2007)

21 spin relaxation in bulk n-gaas relaxation tim e(ns) τ τ τ τ τ τ R. I. Dzhioev et al., Phys. Rev. B 66, (2002)

22 spin relaxation in bulk n-si 100 spin relaxation time T 1 [ns] Temperature [K] D. Lepine, Phys. Rev. B 6, 436 (1972) J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic, Acta Physica Slovaca, 57, 565 (2007)

23 :spin devices: (spin detection)

24 :semiconductor spintronics devices: spin resonant diodes spin field-effect transistors magnetic semiconductor tunnel junction devices magnetic bipolar junction diodes and transistors spin optoelectronic devices spin galvanics devices spin Hall polarizeds spin-polarized semiconductor lasers spin pumping batteries spin-torque devices spin quantum computers...

25 J. Fabian, A. Matos-Abiague, C. Ertler, and P. Stano, Semiconductor spintronics, Acta Phys. Slov, 57, 566 (2007)

26 International Technology Roadmap 2004 for Semiconductors: Emerging Research Logic Devices RSFQ 1-D structures resonant tunneling SET molecular QCA spin transistor risk 2005, 2006

27 International Technology Roadmap 2004 for Semiconductors: Emerging Research Logic Devices RSFQ 1-D structures resonant tunneling SET molecular QCA spin transistor risk 2007

28 detour: material case study: GaMnAs 5-15 % Mn p-doped (Mn replaces Ga) degenerate: p = /cm 3 Tc = 170 K ferromagnetism and carrier density coupled kλ about 3 (localization?) impurity or valence band? quantum coherence effects observed GaMnAs, from Jungwirth et al, Rev. Mod. Phys. 78, 809 (2006)

29 Where does GaMnAs fit? No good answer yet

30 magnetic Resonant Tunnel Diodes A. Slobodskyy et al, Phys. Rev. Lett. 90, (2003) C. Ertler and J. Fabian, Appl. Phys. Lett. 89, (2006) C. Ertler and J. Fabian, Phys. Rev. B (2007) ZnSe ZnSe BeZnSe BeZnSe ZnMnSe ZnMnSe b) ZnSe ZnSe Current (0-150 μa) 8% Mn T=1.3K 0T 3T 6T B 1.3 K a) Voltage (0-0.2 V) efficient spin filtering spin detection fast switching times coherence issues RT operation? Current Density (A/cm 2 ) x 105 T = 4.2 K Energy (mev) 100 out ΔV z (nm) 0 out 0 ΔV Voltage (V) 50 Δ E = 0 Δ E = 5 mev Δ E = 10 mev Δ E = 15 mev Δ E = 20 mev Δ E = 25 mev Δ E = 40 mev ΔV 3 out

31 :selfsustained magneto-electric oscillations in MRTDs: C. Ertler and J. Fabian, Phys. Rev. Lett. 101, (2008) Intrinsic bistability leads to temporal oscillations in the current, magnetizaion, and particle density (a) x j max (b) 20 j (a.u.) (c) j (a.u.) 10 5 I j min Voltage (mv) x II j tot j j Time (t*) Δ (mev) (d) n (1/cm 2 ) I Δ max Δ min Voltage (mv) 14 x Time (t*) II n tot n n

32 :nanospintronics: spin-based quantum information processing D. Loss and D. P. DiVincenzo, PRA 57, 120 (1998) single and few spins manipulation and detection spin relaxation and decoherence entanglement control (EDAP: Fabian and Hohenester, PRB 72, (R) 2005)

33 closing: challenges in spintronics room-temperature ferromagnetic semiconductors, n and p type, identification of mechanisms for ferromagnetic long-range order magnetic heterostructures: ferromagnetic quantum wells and quantum dots spin-polarized transport through magnetic interfaces and inhomogeneities, accurate determination of spin polarization of ferromagnets development of silicon (Si, Si:Ge) spintronics: spin injection, spin relaxation, magnetism (?), quantum dots demonstration of semiconductor spin transistors--power gain and magnetologic: spin FETs, bipolar spin transistors niche devices for GaMnAs or other dilute magnetic semiconductors, specific functionalities

34 closing: challenges in spintronics control of ferromagnetism by gating or current injection, spin-transfer torque spin dynamics and spin pumping phenomena in spin transport control of spin-orbit coupling by gate and doping, interface properties single channel devices Spin transport in carbon nanotubes, graphene spin quantum information processing: single and few spin manipulation, relaxation and decoherence, spin entanglement control

Spintronic device structures

Spintronic device structures Spintech V Krakow 7.7.2009 Spintronic device structures Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Giant Magnetoresistance (GMR) magnetoelectronics Tunneling Magnetoresistance

More information

Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg)

Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg) Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg) :Syllabus: 1. Introductory description 2. Elliott-Yafet spin relaxation and spin hot spots 3.

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 1 Today s Topics 1.1 History of Spintronics 1.2 Fudamentals in Spintronics Spin-dependent transport GMR and TMR effect Spin injection

More information

Introduction to Spintronics and Spin Caloritronics. Tamara Nunner Freie Universität Berlin

Introduction to Spintronics and Spin Caloritronics. Tamara Nunner Freie Universität Berlin Introduction to Spintronics and Spin Caloritronics Tamara Nunner Freie Universität Berlin Outline Format of seminar How to give a presentation How to search for scientific literature Introduction to spintronics

More information

Spin injection. concept and technology

Spin injection. concept and technology Spin injection concept and technology Ron Jansen ャンセンロン Spintronics Research Center National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan Spin injection Transfer of spin

More information

Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course

Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course by Mark Jarrel (Cincinnati University), from Ibach and

More information

All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes.

All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes. All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes. M. Ehlert 1, C. Song 1,2, M. Ciorga 1,*, M. Utz 1, D. Schuh 1, D. Bougeard 1, and D. Weiss 1 1 Institute of Experimental

More information

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg SPINTRONICS Waltraud Buchenberg Faculty of Physics Albert-Ludwigs-University Freiburg July 14, 2010 TABLE OF CONTENTS 1 WHAT IS SPINTRONICS? 2 MAGNETO-RESISTANCE STONER MODEL ANISOTROPIC MAGNETO-RESISTANCE

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Topological insulators

Topological insulators http://www.physik.uni-regensburg.de/forschung/fabian Topological insulators Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 21.8.212 DFG SFB 689 what are topological

More information

Physics and applications (I)

Physics and applications (I) Spintronics: Physics and applications (I) Malek Zareyan IPM, 15 TiR 1387 1 Very weak magnetic changes give rise to major differences in resistance in a GMR system (.( ١٩٨٨ GMR has made possible miniaturizing

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Spintronics: a step closer to the "The Emperor's New Mind" Ferenc Simon

Spintronics: a step closer to the The Emperor's New Mind Ferenc Simon Spintronics: a step closer to the "The Emperor's New Mind" Ferenc Simon TU-Budapest, Institute of Physics Outline -I. Intro, spintronics -II. SOC,spin-relaxation mechanisms -III. The intuitive unified

More information

Recent developments in spintronic

Recent developments in spintronic Recent developments in spintronic Tomas Jungwirth nstitute of Physics ASCR, Prague University of Nottingham in collaboration with Hitachi Cambridge, University of Texas, Texas A&M University - Spintronics

More information

Spin-orbit proximity effects in graphene on TMDCs. Jaroslav Fabian

Spin-orbit proximity effects in graphene on TMDCs. Jaroslav Fabian Hvar, 4.10.2017 Spin-orbit proximity effects in graphene on TMDCs Jaroslav Fabian Institute for Theoretical Physics University of Regensburg SFB1277 GRK TI SPP 1666 SFB689 GRK1570 SPP 1538 Arbeitsgruppe

More information

Overview of Spintronics and Its place in the Semiconductor Industry Roadmap

Overview of Spintronics and Its place in the Semiconductor Industry Roadmap Overview of Spintronics and Its place in the Semiconductor Industry Roadmap Dmitri Nikonov Collaborators: George Bourianoff (Intel) David Awschalom, Wayne Lau (UCSB) 04/06/2004 DENikonov, Talk at Texas

More information

Spin-orbit coupling fields in Fe/GaAs heterostructures

Spin-orbit coupling fields in Fe/GaAs heterostructures Spin-orbit coupling fields in Fe/GaAs heterostructures Outline motivation a simplified model of the Fe/GaAs heterostructure extracting spin-orbit coupling parameters spin-orbit coupling field conclusions

More information

Material Science II. d Electron systems

Material Science II. d Electron systems Material Science II. d Electron systems 1. Electronic structure of transition-metal ions (May 23) 2. Crystal structure and band structure (June 13) 3. Mott s (June 20) 4. Metal- transition (June 27) 5.

More information

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2 Silicon Spintronics Saroj P. Dash Chalmers University of Technology Microtechnology and Nanoscience-MC2 Göteborg, Sweden Acknowledgement Nth Netherlands University of Technology Sweden Mr. A. Dankert Dr.

More information

Spin Transport in III-V Semiconductor Structures

Spin Transport in III-V Semiconductor Structures Spin Transport in III-V Semiconductor Structures Ki Wook Kim, A. A. Kiselev, and P. H. Song Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7911 We

More information

The story so far: Today:

The story so far: Today: The story so far: Devices based on ferromagnetism have found tremendous utility in technology. Ferromagnetism at the nm scale is increasingly important, and physical effects (e.g. superparamagnetism) not

More information

Optically controlled spin-polarization memory effect on Mn delta-doped heterostructures

Optically controlled spin-polarization memory effect on Mn delta-doped heterostructures Optically controlled spin-polarization memory effect on Mn delta-doped heterostructures M. A. G. Balanta 1,2,*, M. J. S. P. Brasil 1, F. Iikawa 1, Udson C. Mendes 1,3, J. A. Brum 1,Yu. A. Danilov 4, M.

More information

Giant Magnetoresistance

Giant Magnetoresistance Giant Magnetoresistance Zachary Barnett Course: Solid State II; Instructor: Elbio Dagotto; Semester: Spring 2008 Physics Department, University of Tennessee (Dated: February 24, 2008) This paper briefly

More information

Semiconductor Spintronics

Semiconductor Spintronics IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 1, NO. 1, MARCH 2002 19 Semiconductor Spintronics Hiro Akinaga and Hideo Ohno, Member, IEEE Abstract We review recent progress made in the field of semiconductor

More information

Directions for simulation of beyond-cmos devices. Dmitri Nikonov, George Bourianoff, Mark Stettler

Directions for simulation of beyond-cmos devices. Dmitri Nikonov, George Bourianoff, Mark Stettler Directions for simulation of beyond-cmos devices Dmitri Nikonov, George Bourianoff, Mark Stettler Outline Challenges and responses in nanoelectronic simulation Limits for electronic devices and motivation

More information

ABSTRACT OF THE DISSERTATION. Tuning of Spin Dependent Reflection at Ferromagnet/GaAs Interfaces. Yan Li

ABSTRACT OF THE DISSERTATION. Tuning of Spin Dependent Reflection at Ferromagnet/GaAs Interfaces. Yan Li ABSTRACT OF THE DISSERTATION Tuning of Spin Dependent Reflection at Ferromagnet/GaAs Interfaces by Yan Li Doctor of Philosophy, Graduate Program in Physics University of California, Riverside, August 2010

More information

SEMICONDUCTOR SPINTRONICS FOR QUANTUM COMPUTATION

SEMICONDUCTOR SPINTRONICS FOR QUANTUM COMPUTATION SEMICONDUCTOR SPINTRONICS FOR QUANTUM COMPUTATION MICHAEL E. FLATTÉ (michael flatte@mailaps.org) Optical Science and Technology Center, Department of Physics and Astronomy, and Department of Electrical

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

Spin Switch and Spin Amplifier: Magnetic Bipolar Transistor in the Saturation Regime

Spin Switch and Spin Amplifier: Magnetic Bipolar Transistor in the Saturation Regime Vol. 106 (2004) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXIII International School of Semiconducting Compounds, Jaszowiec 2004 Spin Switch and Spin Amplifier: Magnetic Bipolar Transistor in the

More information

Spintronics at Nanoscale

Spintronics at Nanoscale Colloquium@NTHU Sep 22, 2004 Spintronics at Nanoscale Hsiu-Hau Lin Nat l Tsing-Hua Univ & Nat l Center for Theoretical Sciences What I have been doing Spintronics: Green s function theory for diluted magnetic

More information

Optical studies of current-induced magnetization

Optical studies of current-induced magnetization Optical studies of current-induced magnetization Virginia (Gina) Lorenz Department of Physics, University of Illinois at Urbana-Champaign PHYS403, December 5, 2017 The scaling of electronics John Bardeen,

More information

Electrical spin-injection into semiconductors

Electrical spin-injection into semiconductors Electrical spin-injection into semiconductors L. W. Molenkamp Physikalisches Institut Universität Würzburg Am Hubland 97074 Würzburg Germany Contents Motivation The usual approach Theoretical treatment

More information

Max-Planck-Institut für Metallforschung Stuttgart. Towards Spin Injection into Silicon. Saroj Prasad Dash. Dissertation an der Universität Stuttgart

Max-Planck-Institut für Metallforschung Stuttgart. Towards Spin Injection into Silicon. Saroj Prasad Dash. Dissertation an der Universität Stuttgart Max-Planck-Institut für Metallforschung Stuttgart Towards Spin Injection into Silicon Saroj Prasad Dash Dissertation an der Universität Stuttgart Bericht Nr. 203 August 2007 Towards Spin Injection into

More information

Chapter 1 Electronic and Photonic Materials - DMS. Diluted Magnetic Semiconductor (DMS)

Chapter 1 Electronic and Photonic Materials - DMS. Diluted Magnetic Semiconductor (DMS) Diluted Magnetic Semiconductor (DMS) 1 Properties of electron Useful! Charge Electron Spin? Mass 2 Schematic of a Spinning & Revolving Particle Spinning Revolution 3 Introduction Electronics Industry Uses

More information

Coherent Spin Polarization in an AC-Driven Mesoscopic Device

Coherent Spin Polarization in an AC-Driven Mesoscopic Device Coherent Spin Polarization in an AC-Driven Mesoscopic Device Mina Danial Asham, Walid A. Zein, Adel H. Phillips Faculty of Engineering, Benha University, Benha, Egypt E-mail: minadanial@yahoo.com Faculty

More information

Temperature dependence of spin diffusion length in silicon by Hanle-type spin. precession

Temperature dependence of spin diffusion length in silicon by Hanle-type spin. precession Temperature dependence of spin diffusion length in silicon by Hanle-type spin precession T. Sasaki 1,a), T. Oikawa 1, T. Suzuki 2, M. Shiraishi 3, Y. Suzuki 3, and K. Noguchi 1 SQ Research Center, TDK

More information

Spintronics: Combination of Nanotechnology & Superconductivity

Spintronics: Combination of Nanotechnology & Superconductivity Spintronics: Combination of Nanotechnology & Superconductivity Neelam Kushwaha*, Shailesh Kumar**, Raju Kushwaha*** & Dr. Praveen Jain Email id- neelu.kush@gmail.com,shailugautam@yahoo.co.in Sadhu Vaswani

More information

From Hall Effect to TMR

From Hall Effect to TMR From Hall Effect to TMR 1 Abstract This paper compares the century old Hall effect technology to xmr technologies, specifically TMR (Tunnel Magneto-Resistance) from Crocus Technology. It covers the various

More information

Limitations in the Tunability of the Spin Resonance of 2D Electrons in Si by an Electric Current

Limitations in the Tunability of the Spin Resonance of 2D Electrons in Si by an Electric Current Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXVI International School of Semiconducting Compounds, Jaszowiec 2007 Limitations in the Tunability of the Spin Resonance of 2D Electrons

More information

Lecture I. Spin Orbitronics

Lecture I. Spin Orbitronics Lecture I Spin Orbitronics Alireza Qaiumzadeh Radboud University (RU) Institute for Molecules and Materials (IMM) Theory of Condensed Matter group (TCM) What We Talk About When We Talk About Spin Orbitronics

More information

Universal valence-band picture of. the ferromagnetic semiconductor GaMnAs

Universal valence-band picture of. the ferromagnetic semiconductor GaMnAs Universal valence-band picture of the ferromagnetic semiconductor GaMnAs Shinobu Ohya *, Kenta Takata, and Masaaki Tanaka Department of Electrical Engineering and Information Systems, The University of

More information

Spintronics: electron spin coherence, entanglement, and transport

Spintronics: electron spin coherence, entanglement, and transport Superlattices and Microstructures, Vol. 27, No. 5/6, 2000 doi:10.1006/spmi.2000.0829 Available online at http://www.idealibrary.com on Spintronics: electron spin coherence, entanglement, and transport

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Spin Dynamics in Single GaAs Nanowires

Spin Dynamics in Single GaAs Nanowires 1 Dr. Max Mustermann Referat Kommunikation & Marketing Verwaltung Spin Dynamics in Single GaAs Nanowires F. Dirnberger, S. Furthmeier, M. Forsch, A. Bayer, J. Hubmann, B. Bauer, J. Zweck, E. Reiger, C.

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 13 th 2016.7.11 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Outline today Laughlin s justification Spintronics Two current

More information

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS Second Edition B.K. RIDLEY University of Essex CAMBRIDGE UNIVERSITY PRESS Contents Preface Introduction 1 Simple Models of the Electron-Phonon Interaction

More information

Decay of spin polarized hot carrier current in a quasi. one-dimensional spin valve structure arxiv:cond-mat/ v1 [cond-mat.mes-hall] 10 Oct 2003

Decay of spin polarized hot carrier current in a quasi. one-dimensional spin valve structure arxiv:cond-mat/ v1 [cond-mat.mes-hall] 10 Oct 2003 Decay of spin polarized hot carrier current in a quasi one-dimensional spin valve structure arxiv:cond-mat/0310245v1 [cond-mat.mes-hall] 10 Oct 2003 S. Pramanik and S. Bandyopadhyay Department of Electrical

More information

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor From nanophysics research labs to cell phones Dr. András Halbritter Department of Physics associate professor Curriculum Vitae Birth: 1976. High-school graduation: 1994. Master degree: 1999. PhD: 2003.

More information

Semiconductor device structures are traditionally divided into homojunction devices

Semiconductor device structures are traditionally divided into homojunction devices 0. Introduction: Semiconductor device structures are traditionally divided into homojunction devices (devices consisting of only one type of semiconductor material) and heterojunction devices (consisting

More information

Spin Injection into a Graphene Thin Film at Room Temperature

Spin Injection into a Graphene Thin Film at Room Temperature Spin Injection into a Graphene Thin Film at Room Temperature Megumi Ohishi, Masashi Shiraishi*, Ryo Nouchi, Takayuki Nozaki, Teruya Shinjo, and Yoshishige Suzuki Graduate School of Engineering Science,

More information

Spintronics. Seminar report SUBMITTED TO: SUBMITTED BY:

Spintronics.  Seminar report SUBMITTED TO: SUBMITTED BY: A Seminar report On Spintronics Submitted in partial fulfillment of the requirement for the award of degree of Electronics SUBMITTED TO: SUBMITTED BY: www.studymafia.org www.studymafia.org Preface I have

More information

Lecture I. Spin Orbitronics

Lecture I. Spin Orbitronics Lecture I Spin Orbitronics Alireza Qaiumzadeh Radboud University (RU) Institute for Molecules and Materials (IMM) Theory of Condensed Matter group (TCM) What We Talk About When We Talk About Spin Orbitronics

More information

Classification of Solids

Classification of Solids Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples

More information

An Overview of Spintronics in 2D Materials

An Overview of Spintronics in 2D Materials An Overview of Spintronics in 2D Materials Wei Han ( 韩伟 ) 1 2014 ICQM Outline I. Introduction to spintronics (Lecture I) II. Spin injection and detection in 2D (Lecture I) III. Putting magnetic moment

More information

ConceptGraphene. Small or medium-scale focused research project. WP4 Spin transport devices

ConceptGraphene. Small or medium-scale focused research project. WP4 Spin transport devices ConceptGraphene New Electronics Concept: Wafer-Scale Epitaxial Graphene Small or medium-scale focused research project WP4 Spin transport devices Deliverable 4.1 Report on spin transport in graphene on

More information

SEMICONDUCTOR SPINTRONICS

SEMICONDUCTOR SPINTRONICS SEMICONDUCTOR SPINTRONICS Jaroslav Fabian, 1,a Alex Matos-Abiague a, Christian Ertler a, Peter Stano, 2,a Igor Žutić b a Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany

More information

Optically induced Hall effect in semiconductors

Optically induced Hall effect in semiconductors Optically induced Hall effect in semiconductors M. Idrish Miah 1,2 and E. MacA. Gray 1 1 Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111, Australia. 2 Department

More information

Narrow-Gap Semiconductors, Spin Splitting With no Magnetic Field and more.. Giti Khodaparast Department of Physics Virginia Tech

Narrow-Gap Semiconductors, Spin Splitting With no Magnetic Field and more.. Giti Khodaparast Department of Physics Virginia Tech Narrow-Gap Semiconductors, Spin Splitting With no Magnetic Field and more.. Giti Khodaparast Department of Physics Virginia Tech Supported by: NFS-DMR-0507866 AFOSR Young Investigator Award University

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

2005 EDP Sciences. Reprinted with permission.

2005 EDP Sciences. Reprinted with permission. H. Holmberg, N. Lebedeva, S. Novikov, J. Ikonen, P. Kuivalainen, M. Malfait, and V. V. Moshchalkov, Large magnetoresistance in a ferromagnetic GaMnAs/GaAs Zener diode, Europhysics Letters 71 (5), 811 816

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

EXTRINSIC SEMICONDUCTOR

EXTRINSIC SEMICONDUCTOR EXTRINSIC SEMICONDUCTOR In an extrinsic semiconducting material, the charge carriers originate from impurity atoms added to the original material is called impurity [or] extrinsic semiconductor. This Semiconductor

More information

Theory of spin-polarized bipolar transport in magnetic p-n junctions

Theory of spin-polarized bipolar transport in magnetic p-n junctions Theory of spin-polarized bipolar transport in magnetic p-n junctions Jaroslav Fabian Institute for Theoretical Physics, Karl-Franzens University, Universitätsplatz 5, 8010 Graz, Austria Igor Žutić and

More information

arxiv:cond-mat/ v3 [cond-mat.mes-hall] 17 Mar 2000

arxiv:cond-mat/ v3 [cond-mat.mes-hall] 17 Mar 2000 arxiv:cond-mat/9912040v3 [cond-mat.mes-hall] 17 Mar 2000 SIMD 99 PROCEEDINGS Spintronics: electron spin coherence, entanglement, and transport S. Das Sarma, Jaroslav Fabian, Xuedong Hu, Igor Žutić Department

More information

A gate-variable spin current demultiplexer based on graphene

A gate-variable spin current demultiplexer based on graphene A gate-variable spin current demultiplexer based on graphene Li Su 1,,3,, Xiaoyang Lin 1,, Youguang Zhang 1, Arnaud Bournel,3, Yue Zhang 1, Jacques-Olivier Klein,3, Weisheng Zhao 1,*, and Albert ert 1,4

More information

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction D. Chiba 1, 2*, Y. Sato 1, T. Kita 2, 1, F. Matsukura 1, 2, and H. Ohno 1, 2 1 Laboratory

More information

Designing interfaces for Spin Injection into Organic Molecular Solids: A Surface Science Approach

Designing interfaces for Spin Injection into Organic Molecular Solids: A Surface Science Approach Designing interfaces for Spin Injection into Organic Molecular Solids: A Surface Science Approach SESAPS November 11, 2016 Jingying Wang, Drew Deloach, Dan Dougherty Department of Physics and Organic and

More information

Expecting the unexpected in the spin Hall effect: from fundamental to practical

Expecting the unexpected in the spin Hall effect: from fundamental to practical Expecting the unexpected in the spin Hall effect: from fundamental to practical JAIRO SINOVA Texas A&M University Institute of Physics ASCR Institute of Physics ASCR Tomas Jungwirth, Vít Novák, et al Hitachi

More information

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation Fabrication and Measurement of Spin Devices Zhihong Chen School of Electrical and Computer Engineering Birck Nanotechnology Center, Discovery Park Purdue University Purdue Birck Presentation zhchen@purdue.edu

More information

Spin-polarized current amplification and spin injection in magnetic bipolar transistors

Spin-polarized current amplification and spin injection in magnetic bipolar transistors Spin-polarized current amplification and spin injection in magnetic bipolar transistors Jaroslav Fabian Institute for Theoretical Physics, Karl-Franzens University, Universitätsplatz 5, 8010 Graz, Austria

More information

Optical Manipulation of an Electron Spin in Quantum Dots

Optical Manipulation of an Electron Spin in Quantum Dots Optical Manipulation of an Electron Spin in Quantum Dots Al. L. Efros Naval Research Laoratory, Washington DC, USA Acknowledgements: DARPA/QuIST and ONR Kavli Institute for Theoretical Physics, UC Santa

More information

Datta-Das type spin-field effect transistor in non-ballistic regime

Datta-Das type spin-field effect transistor in non-ballistic regime Datta-Das type spin-field effect transistor in non-ballistic regime Munekazu Ohno 1, Kanji Yoh 1,2 1 Research Center for Integrated Quantum Electronics, Hokkaido University, Sapporo, 060-8628, Japan 2

More information

All-Electrical Spin Field Effect Transistor in van der Waals Heterostructures at Room Temperature

All-Electrical Spin Field Effect Transistor in van der Waals Heterostructures at Room Temperature All-Electrical Spin Field Effect Transistor in van der Waals Heterostructures at Room Temperature André Dankert*, Saroj P. Dash Department of Microtechnology and Nanoscience, Chalmers University of Technology,

More information

Spintranszport és spindinamika nanorendszerekben Simon Ferenc

Spintranszport és spindinamika nanorendszerekben Simon Ferenc Spintranszport és spindinamika nanorendszerekben Simon Ferenc BME Motivation Outline - Spintronics intro -Experimental methods -The Elliott-Yafet theory -Its generalization -Dessert Spintronics 1996 DARPA

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 9 th 2016.6.13 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Site for uploading answer sheet Outline today Answer to the question

More information

Quantum Phenomena & Nanotechnology (4B5)

Quantum Phenomena & Nanotechnology (4B5) Quantum Phenomena & Nanotechnology (4B5) The 2-dimensional electron gas (2DEG), Resonant Tunneling diodes, Hot electron transistors Lecture 11 In this lecture, we are going to look at 2-dimensional electron

More information

Localization effects in magnetic two-dimensional hole system: from weak to strong localization Ursula Wurstbauer

Localization effects in magnetic two-dimensional hole system: from weak to strong localization Ursula Wurstbauer Localization effects in magnetic two-dimensional hole system: from weak to strong localization Ursula Wurstbauer Columbia University, New York, USA Collaborators Prof. Dr. Werner Wegscheider University

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Outline - Goals of the course. What is electronic device?

More information

Transient grating measurements of spin diffusion. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

Transient grating measurements of spin diffusion. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab Transient grating measurements of spin diffusion Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab LBNL, UC Berkeley and UCSB collaboration Chris Weber, Nuh Gedik, Joel Moore, JO UC Berkeley

More information

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES CRR Report Number 29, Winter 2008 SPIN TRANSFER TORQUES IN HIGH ANISOTROPY AGNETIC NANOSTRUCTURES Eric Fullerton 1, Jordan Katine 2, Stephane angin 3, Yves Henry 4, Dafine Ravelosona 5, 1 University of

More information

Persistent spin helix in spin-orbit coupled system. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

Persistent spin helix in spin-orbit coupled system. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab Persistent spin helix in spin-orbit coupled system Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab Persistent spin helix in spin-orbit coupled system Jake Koralek, Chris Weber, Joe Orenstein

More information

introduction: what is spin-electronics?

introduction: what is spin-electronics? Spin-dependent transport in layered magnetic metals Patrick Bruno Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany Summary: introduction: what is spin-electronics giant magnetoresistance (GMR)

More information

Magnetic semiconductors. (Dilute) Magnetic semiconductors

Magnetic semiconductors. (Dilute) Magnetic semiconductors Magnetic semiconductors We saw last time that: We d like to do spintronics in semiconductors, because semiconductors have many nice properties (gateability, controllable spin-orbit effects, long spin lifetimes).

More information

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor T (K) 1 5 Fe.8 Co.2 Si ρ xy (µω cm) J.F. DiTusa N. Manyala LSU Y. Sidis D.P. Young G. Aeppli UCL Z. Fisk FSU T C 1 Nature Materials 3, 255-262 (24)

More information

Hall Effect. Sergio O. Valenzuela. ICREA and Centre d Investigació en Nanociència i Nanotecnologia (ICN-CSIC), Barcelona.

Hall Effect. Sergio O. Valenzuela. ICREA and Centre d Investigació en Nanociència i Nanotecnologia (ICN-CSIC), Barcelona. Nonlocal Spin Detection and the Spin Hall Effect Sergio O. Valenzuela Sergio.Valenzuela.icn@uab.es ICREA and Centre d Investigació en Nanociència i Nanotecnologia (ICN-CSIC), Barcelona CEMAG 2009 Zaragoza,

More information

Spin caloritronics in magnetic/non-magnetic nanostructures and graphene field effect devices Dejene, Fasil

Spin caloritronics in magnetic/non-magnetic nanostructures and graphene field effect devices Dejene, Fasil University of Groningen Spin caloritronics in magnetic/non-magnetic nanostructures and graphene field effect devices Dejene, Fasil DOI: 10.1038/nphys2743 IMPORTANT NOTE: You are advised to consult the

More information

arxiv: v1 [cond-mat.mes-hall] 6 Jul 2012

arxiv: v1 [cond-mat.mes-hall] 6 Jul 2012 Spin transport in high quality suspended graphene devices arxiv:1207.1572v1 [cond-mat.mes-hall] 6 Jul 2012 Marcos H. D. Guimarães, A. Veligura, P. J. Zomer, T. Maassen, I. J. Vera-Marun, N. Tombros, and

More information

Spintronics. Kishan K. Sinha. Xiaoshan Xu s Group Department of Physics and Astronomy University of Nebraska-Lincoln

Spintronics. Kishan K. Sinha. Xiaoshan Xu s Group Department of Physics and Astronomy University of Nebraska-Lincoln Spintronics by Kishan K. Sinha Xiaoshan Xu s Group Department of Physics and Astronomy University of Nebraska-Lincoln What is spintronics? In conventional electronics, motion of electrons is controlled

More information

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of 1 Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of the spin noise spectra calculated with Eq. (2) for

More information

Controlling spin relaxation in hexagonal BN-encapsulated graphene with a transverse electric field

Controlling spin relaxation in hexagonal BN-encapsulated graphene with a transverse electric field Controlling spin relaxation in hexagonal BN-encapsulated graphene with a transverse electric field M. H. D. Guimarães, P. J. Zomer, J. Ingla-Aynés, J. C. Brant, N. Tombros, and B. J. van Wees Physics of

More information

Supplementary material: Nature Nanotechnology NNANO D

Supplementary material: Nature Nanotechnology NNANO D Supplementary material: Nature Nanotechnology NNANO-06070281D Coercivities of the Co and Ni layers in the nanowire spin valves In the tri-layered structures used in this work, it is unfortunately not possible

More information

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions?

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions? Electronics with 2D Crystals: Scaling extender, or harbinger of new functions? 1 st Workshop on Data Abundant Systems Technology Stanford, April 2014 Debdeep Jena (djena@nd.edu) Electrical Engineering,

More information

Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009

Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009 Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009 Overview Background A brief history GMR and why it occurs TMR structure What is spin transfer? A novel device A future

More information

Honors Research Thesis. Engineering at The Ohio State University. Dominic Labanowski Department of Electrical and Computer Engineering

Honors Research Thesis. Engineering at The Ohio State University. Dominic Labanowski Department of Electrical and Computer Engineering Imaging Spin Properties using Spatially Varying Magnetic Fields Honors Research Thesis Presented in Partial Fulfillment of the Requirements for the Degree Bachelor of Science with Honors Research Distinction

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

Photo-Induced Anomalous Hall Effect and the Electrical Detection of Spin Current in Nonmagnetic Semiconductors

Photo-Induced Anomalous Hall Effect and the Electrical Detection of Spin Current in Nonmagnetic Semiconductors Photo-Induced Anomalous Hall Effect and the Electrical Detection of Spin Current in Nonmagnetic Semiconductors Mohammad Idrish Miah B.Sc. (Hons.), Jahangirnagar University, 1991 M.Sc., Jahangirnagar University,

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Outline - Goals of the course. What is electronic device?

More information

Spin Orbit Coupling (SOC) in Graphene

Spin Orbit Coupling (SOC) in Graphene Spin Orbit Coupling (SOC) in Graphene MMM, Mirko Rehmann, 12.10.2015 Motivation Weak intrinsic SOC in graphene: [84]: Phys. Rev. B 80, 235431 (2009) [85]: Phys. Rev. B 82, 125424 (2010) [86]: Phys. Rev.

More information

Quantum control of spin qubits in silicon

Quantum control of spin qubits in silicon Quantum control of spin qubits in silicon Belita Koiller Instituto de Física Universidade Federal do Rio de Janeiro Brazil II Quantum Information Workshop Paraty, 8-11 September 2009 Motivation B.E.Kane,

More information