Mechanisms of lateral extrusion and exhumation during orogenic indentation of the Eastern Alps

Size: px
Start display at page:

Download "Mechanisms of lateral extrusion and exhumation during orogenic indentation of the Eastern Alps"

Transcription

1 Mechanisms of lateral extrusion and exhumation during orogenic indentation of the Eastern Alps Andreas Scharf, Silvia Favaro, Audrey Bertrand 1, Susanne Schneider, Mark Handy, Konrad Hammerschmidt, Sebastian Garcia, Claudio Rosenberg 2, Stefan Schmid 3 and colleagues at other institutions (see below). 1 Now at the Université Cergy-Pontoise, Cergy-Pontoise, France 2 Now at the Université Paul et Marie Curie, Paris, France 3 Now at ETH-Zürich, Switzerland The Tauern Window is the most prominent tectonic window of the Eastern Alps. It is also one of the few places in the Alps where one can see the entire history of Adria-Europe convergence, from subduction (84-45 Ma) through collision (40-23 Ma) to indentation of the Adriatic microplate (23 Ma - Present). The excellent exposure and vertical relief (c m) in the Tauern Window make this a good place to study such processes. The beautiful scenery makes the area even more attractive. We want to find out how folding and extensional exhumation were linked to orogenparallel motion. This is key to determining how Alpine-type mountain belts grow, both vertically and laterally, during plate indentation. Were the Eastern Alps pulled to the east during roll-back subduction in the Carpathians, or were they pushed to the east during indentation of the Adriatic microplate? So far, we have found that eastward motion of this part of the Alps during indentation of the Adriatic microplate involved increasing amounts of extensional exhumation going from the central part of the Tauern Window to its eastern margin. There, the entire window is bounded by a SE-dipping, low-angle extensional shear zone, the Katschberg mylonite belt. A similar low-angle extensional shear zone, the Brenner mylonite belt, dips to the west along the western boundary of the Tauern Window. The Katschberg belt was part of a system of stretching faults (in the sense of Means 1989) that was active during km-scale upright folding and doming. Our radiometric dating so far indicates that this coeval doming and lateral stretching occurred in Miocene time, primarily between 23 and 17 Ma in the eastern part of the Tauern Window, and between 23 and 11 Ma in the western part. One of the vexing problems still remaining is to reconcile the motions in the Tauern Window with the kinematics of Miocene-to-Recent subduction at the junction of the Eastern Alps, Carpathians and Dinarides. Do the structure in the orogenic crust mirror this subduction, or were the crust and mantle decoupled during indentation? We are pursuing these questions in an interdisciplinary fashion with a host of colleagues, including Roland Oberhänsli, Martin Ziemann (University of Potsdam), Ralf Schuster, Gerhard Pestal (Geological Survey of Austria), Bernhard Fügenschuh (University of

2 Innsbruck), and Stefan Schmid (ETH-Zürich). Our work is supported by grants from the German Science Foundation (Ha 2403/10, RO 2177/4, 2177/5). Fig.1: Tectonic overview of the project area after Schmid et al. in prep. Boxes indicate views in Figs.2 and 3.

3 Fig.2: View to SE of the southeastern part of the Tauern Window,. parallel to the Möll Valley. Locality is shown in Fig.1.

4 Fig.3: Type locality of the Katschberg Shear Zone at the Katschberg ski-resort (indicated in Fig. 1). View to the NNE shows European plate in the foowalll and Adriatic plate in the hangingwall of this shear zone. Fig.3: Group picture in the Mölltal area shows from left to the right: Mark Handy, Silvia Favaro, Andreas Scharf, Peter Gipper and Friedrich Hawemann. Abstracts 1. Favaro S., Handy M. R., Scharf A., Schuster R., and Pestal G., Exhumation structures in the Tauern Window and their relation to present-day crust-mantle structure in the Eastern Alps. Vol. 14, EGU , Vienna, Austria. 2. Favaro S., Schuster R., Handy M.R., Scharf A., and Pestal G., The Mallnitz synform and its relation to the Mölltal fault (Tauern Window, Eastern Alps, Austria). Vol. 14, EGU , Vienna, Austria. 3. Scharf A., Ziemann M. & Handy M.R., Peak-Temperature (Tp) estimates with Raman micro-spectroscopy on carbonaceous material (RSCM) as a tool for distinguishing tectonometamorphic regimes in the Tauern Window (Eastern Alps, Austria). EGU , Vienna, Austria.

5 4. Scharf A., Favaro S., Handy M.R. & Schmid S.M., Did Adriatic indentation or Carpathian roll-back subduction trigger rapid exhumation and lateral escape in the Eastern Alps? AGU 2011-T53D-06, San Francisco, U.S.A. 5. Schneider S. & Hammerschmidt, K., Dating ductile deformation, its onset, duration and termination: Examples from the western Tauern Window, Eastern Alps, Freiberg Colloquium 2012, Freiberg. 6. Bertrand A., Rosemberg C. & Garcia S., Fault slip analysis and late exhumation of the Tauern Window, Eastern Alps. Colloque en hommage à Jacques Angelier, Jussieu, Paris. 7. Favaro S., Hawemann F., Scharf A., Gipper P., Handy M.R. & Schmid, S.M., Tectonics of the eastern Tauern Window - Austria. GSA , Munich, Germany. 8. Scharf A., Favaro S., Handy M.R. & Schmid, S., Exhumation-related structures at the eastern margin of the Tauern Window (Eastern Alps). GSA , Munich, Germany. 9. Bertrand A., Rosemberg C., Garcia S., Gueydan F. & Fugenschuh B., Cooling Pattern, Fault-slip Analysis, and 2D Thermal Modelling in the Tauern Window. 10th Alpine Workshop CorseAlp2011, San Florant, Corse. 10. Favaro S., Hawemann F., Gipper P., Scharf A., Handy M.R., Schmid S.M., Stucture and Kinematics in the Sonnblick Area (Eastern Tauern Window - Austria). 10th Alpine Workshop CorseAlp2011, San Florant, Corse. 11. Scharf A., Favaro S., Handy M.R. & Schmid S.M., Exhumation-Related Structures at the Eastern Margin of the Tauern Window (Eastern Alps, Austria). 10th Alpine Workshop CorseAlp2011, San Florant, Corse. 12. Schneider S., Bertrand A. S., Favaro S., Garcia S., Hammerschmidt K., Handy M. R., Rosenberg C. L., Scharf A. and Schmid S. M., Erosive Denudation vs. Extensional Unroofing; A Discussion on Exhumation of the Tauern Window. 10 th Alpine Workshop CorseAlp2011, San Florant, Corse. 13. Bertrand A., Rosemberg C. & Garcia S., Fission track ages and Exhumation mechanisms of the Tauern Window, Eastern Alps. Vol. 12, EGU2010, Vienna, Austria. 14. Bertrand A., Rosemberg C. & Garcia S., Brittle deformation and exhumation mechanisms in the core of the Eastern Alps, the Tauern Window. Vol. 12, EGU2010, Vienna, Austria. 15. Scharf A., Schmid S.M. & Handy M.R., Coeval folding, extension and strike-slip faulting at the eastern end of an axial culmination in the Tauern Window (Eastern Alps). EGU , Vienna, Austria.

6 16. Schneider S., Rosenberg, C. L. & Hammerschmidt K., The Western Tauern Window (Eastern Alps): Timing and Interplay of Folds and Sinistral Shear Zones as Result of South-Alpine Indentation. Vol. 12, EGU , Vienna, Austria. 17. Schneider S., Hammerschmidt K. & Rosenberg C. L., Dating the Duration and Termination of Sinistral Shear in the Western Tauern Window: Implications for Indentation and Exhumation in the Eastern Alps. Vol. 12, EGU , Vienna, Austria. 18. Schneider S., Bertrand, A. S. & Rosenberg C. L., The Jaufen Fault: a Kinematic Link between the Tauern Window and South-Alpine Indentation. Vol. 12, EGU , Vienna, Austria. 19. Schneider S. & Hammerschmidt, K., Dating Deformation Using In-situ Techniques: Application of Rb-Sr and Ar-Ar Geochronology. Freiberg Colloquium. 20. Schneider S., Bungies N., Frütsch F., Kitzig C., Rosenberg C.L., Spanka M., von Nicolai C. & Wanner, M., Extent and Significance of Sinistral Shear along the South Western Border of the Tauern Window, Eastern Alps (Italy/Austria). Vol. 11, EGU , Vienna, Austria. 21. Schneider S. & Hammerschmidt, K., K-Ar Dating of Sinistral Deformation in the Upper Schieferhülle, South-Western Tauern Window (Eastern Alps). Vol. 11, EGU , Vienna, Austria. 22. Bertrand A., Rosemberg C. & Garcia S., Exhumation mechanisms of the Tauern window, Eastern-Alps. «AlpShop 2009», Cogne, Italy. 23. Scharf A., Handy M.R.,Hammerschmidt K., Rosenberg C.L & Oberhänsli R., Kinematics, Conditions and Timing of the Katschberg Normal Fault at the eastern end of the Tauern Window (Austria). «AlpShop 2009», Cogne, Italy. 24. Schneider S., Rosenberg, C. L. & Hammerschmidt K., Dating the Duration and Termination of Strike-Slip Displacements in the Tauern Window, Eastern Alps. «AlpShop 2009», Cogne, Italy. 25. Schneider S., Rosenberg, C. L. & Hammerschmidt K., In-situ Rb-Sr Dating of the SEMP Mylonites, Western Tauern Window, Eastern Alps. Vol. 9, EGU2007-A-09136, Vienna, Austria. 26. Schneider S. & Rosenberg, C. L., Kinematics of the SEMP-Fault in the Western Tauern Window (Stillupp Valley). 11 th TSK, Göttingen, Germany. Publications Rosenberg, C. L. & Schneider, S. 2008, The western termination of the SEMP fault (Eastern Alps) and its bearing on the exhumation of the Tauern Window. In: S. Siegesmund, B. Fügenschuh, and N. Froitzheim (eds.), Tectonic aspects of

7 the Alpine-Carpathian-Dinaride System, Geological Society of London, spec. publ., 298,

Changing patterns of exhumation and denudation in front of an advancing crustal indenter, Tauern Window (Eastern Alps)

Changing patterns of exhumation and denudation in front of an advancing crustal indenter, Tauern Window (Eastern Alps) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Tectonics Supporting Information for Changing patterns of exhumation and denudation in front of an advancing crustal

More information

Bernhard Fügenschuh Neil S. Mancktelow Stefan S. Schmid

Bernhard Fügenschuh Neil S. Mancktelow Stefan S. Schmid Int J Earth Sci (Geol Rundsch) (2012) 101:1451 1455 DOI 10.1007/s00531-011-0725-4 DISCUSSION Comment on Rosenberg and Garcia: Estimating displacement along the Brenner Fault and orogen-parallel extension

More information

NATURAL ENVIRONMENT. Geophysics

NATURAL ENVIRONMENT. Geophysics NATURAL ENVIRONMENT Geophysics Geodynamics Alpine, Carpathian and Dinaric mountain belts surround the Pannonian (Carpathian) Basin, of Neogene through Quaternary in age. The Cenozoic evolution of the Alpine-Pannonian

More information

Correlation of tectonic units from the Alps to Western Turkey

Correlation of tectonic units from the Alps to Western Turkey Correlation of tectonic units from the Alps to Western Turkey Stefan M. Schmid (ETH Zürich) with Daniel Bernoulli, Bernhard Fügenschuh, Alexandre Kounov, Liviu Matenco, Roland Oberhänsli, Senecio Schefer,

More information

Deformation of Rocks. Orientation of Deformed Rocks

Deformation of Rocks. Orientation of Deformed Rocks Deformation of Rocks Folds and faults are geologic structures caused by deformation. Structural geology is the study of the deformation of rocks and its effects. Fig. 7.1 Orientation of Deformed Rocks

More information

Chapter 15 Structures

Chapter 15 Structures Chapter 15 Structures Plummer/McGeary/Carlson (c) The McGraw-Hill Companies, Inc. TECTONIC FORCES AT WORK Stress & Strain Stress Strain Compressive stress Shortening strain Tensional stress stretching

More information

Crustal Deformation. Earth Systems 3209

Crustal Deformation. Earth Systems 3209 Crustal Deformation Earth Systems 3209 Crustal Deformation pg. 415 Refers to all changes in the original form and/or size of a rock body. May also produce changes in the location and orientation of rocks.

More information

December 21, Chapter 11 mountain building E.notebook. Feb 19 8:19 AM. Feb 19 9:28 AM

December 21, Chapter 11 mountain building E.notebook. Feb 19 8:19 AM. Feb 19 9:28 AM Mountains form along convergent plate boundaries. Typically (usually) if you look at a mountain range, you know that it is at a plate boundary (active continental margin) or has been some time in the past

More information

Earth Science, (Tarbuck/Lutgens) Chapter 10: Mountain Building

Earth Science, (Tarbuck/Lutgens) Chapter 10: Mountain Building Earth Science, (Tarbuck/Lutgens) Chapter 10: Mountain Building 1) A(n) fault has little or no vertical movements of the two blocks. A) stick slip B) oblique slip C) strike slip D) dip slip 2) In a(n) fault,

More information

Mountains and Mountain Building: Chapter 11

Mountains and Mountain Building: Chapter 11 Mountains and Mountain Building: Chapter 11 Objectives: 1)Explain how some of Earth s major mountain belts formed 2) Compare and contrast active and passive continental margins 3) Explain how compression,

More information

Earthquakes in Barcelonnette!

Earthquakes in Barcelonnette! Barcelonnette in the Ubaye valley : the landscape results of large deformations during the alpine orogene (40 5 Myr in this area) and the succession of Quaternary glaciations. The sedimentary rocks are

More information

Lecture 6 Folds, Faults and Deformation Dr. Shwan Omar

Lecture 6 Folds, Faults and Deformation Dr. Shwan Omar Fold: A fold is a bend or wrinkle of rock layers or foliation; folds form as a sequence of ductile deformation. Folding is the processes by which crustal forces deform an area of crust so that layers of

More information

Response of orogenic crust to indentation by Adriatic continental lithosphere!" Tauern Window, Eastern Alps (Austria) Silvia Favaro

Response of orogenic crust to indentation by Adriatic continental lithosphere! Tauern Window, Eastern Alps (Austria) Silvia Favaro Response of orogenic crust to indentation by Adriatic continental lithosphere!" Tauern Window, Eastern Alps (Austria) Kumulative Dissertation Von Silvia Favaro Zur Erlangung des Doktorgrades der Naturwissenschaften

More information

Strike-Slip Faults. ! Fault motion is parallel to the strike of the fault.

Strike-Slip Faults. ! Fault motion is parallel to the strike of the fault. Strike-Slip Faults! Fault motion is parallel to the strike of the fault.! Usually vertical, no hanging-wall/footwall blocks.! Classified by the relative sense of motion. " Right lateral opposite block

More information

Contractional Tectonics: Convergence and Collision

Contractional Tectonics: Convergence and Collision Contractional Tectonics: Convergence and Collision Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 4/12/2017 5:21 PM We Discuss Contractional Tectonics

More information

Structural deformation across the southwest Mina deflection, California-Nevada: Field studies in the Huntoon Springs area.

Structural deformation across the southwest Mina deflection, California-Nevada: Field studies in the Huntoon Springs area. Structural deformation across the southwest Mina deflection, California-Nevada: Field studies in the Huntoon Springs area. Eliya R. Hogan Advisor: Jeff Lee Introduction and purpose of study: The Mina deflection

More information

FINAL EXAM Crustal Deformation CONVERGE DIVERGENT PLATES MANTLE PLUMES FLUX BASALTIC GRANITIC

FINAL EXAM Crustal Deformation CONVERGE DIVERGENT PLATES MANTLE PLUMES FLUX BASALTIC GRANITIC Crustal Deformation Reading: Chapter 10 Pages 283-304 Review Questions 4, 6, 7, 10, 12, 15, 18, 20 FINAL EXAM NOON TO 2 PM, TUESDAY DEC. 5 HERE: Natural Science 101 BRING A SCAN TRON TURN IN YOUR REVIEW

More information

KEY CHAPTER 12 TAKE-HOME QUIZ INTERNAL STRUCTURES AND PROCESSES Score Part B = / 55 PART B

KEY CHAPTER 12 TAKE-HOME QUIZ INTERNAL STRUCTURES AND PROCESSES Score Part B = / 55 PART B GEOLOGY 12 KEY CHAPTER 12 TAKE-HOME QUIZ INTERNAL STRUCTURES AND PROCESSES Score Part B = / 55 PART B CHAPTER 12 Isostacy and Structural Geology 1. Using the terms below, label the following diagrams and

More information

Geologic Structures. Changes in the shape and/or orientation of rocks in response to applied stress

Geologic Structures. Changes in the shape and/or orientation of rocks in response to applied stress Geologic Structures Changes in the shape and/or orientation of rocks in response to applied stress Figure 15.19 Can be as big as a breadbox Or much bigger than a breadbox Three basic types Fractures >>>

More information

Chapter 10: Deformation and Mountain Building. Fig. 10.1

Chapter 10: Deformation and Mountain Building. Fig. 10.1 Chapter 10: Deformation and Mountain Building Fig. 10.1 OBJECTIVES Describe the processes of rock deformation and compare and contrast ductile and brittle behavior in rocks. Explain how strike and dip

More information

Convergent plate boundary.

Convergent plate boundary. Crustal Deformation Convergent plate boundary http://my.execpc.com/~acmelasr/mountains/geogramsnf.html Plate Tectonic Settings and Magma Where plates CONVERGE, water is driven off the subducting plate,

More information

FINAL EXAM Crustal Deformation CONVERGE DIVERGENT PLATES MANTLE PLUMES FLUX BASALTIC GRANITIC

FINAL EXAM Crustal Deformation CONVERGE DIVERGENT PLATES MANTLE PLUMES FLUX BASALTIC GRANITIC Crustal Deformation Reading: Chapter 10 Pages 283-294 FINAL EXAM 8 to 10 AM, THURSDAY DEC. 6 HERE: Natural Science 101 BRING A SCAN TRON TURN IN YOUR REVIEW QUESTIONS BEFORE THE TEST, PICK UP WHEN YOU

More information

DETACHMENT FAULTING AND THE METAMORPHIC CORE COMPLEX ON NAXOS, GREECE

DETACHMENT FAULTING AND THE METAMORPHIC CORE COMPLEX ON NAXOS, GREECE DETACHMENT FAULTING AND THE METAMORPHIC CORE COMPLEX ON NAXOS, GREECE EWGENIJ KOSSI RWTH Aachen University Field Course: Naxos 2014 - Group A Abstract Naxos is part of the exhumed metamorphic belt in the

More information

Continental Drift. & Plate Tectonics

Continental Drift. & Plate Tectonics Continental Drift & Plate Tectonics Alfred Wegener, a German scientist, proposed the hypothesis of CONTINENTAL DRIFT, in 1912. Hypothesis stated: All Earth s continents were once a single landmass (Pangaea)

More information

Stefan M. Schmid. 84th CONVENTION 2017 Ascona, Switzerland, Monte Verità, June 17 19, 2017

Stefan M. Schmid. 84th CONVENTION 2017 Ascona, Switzerland, Monte Verità, June 17 19, 2017 On the "root zone" of the Alpine nappes in the Ticino area (Ivrea Zone, Insubric line and gneisses of the Southern Steep Belt): Geometry and kinematics Stefan M. Schmid 84th CONVENTION 2017 Ascona, Switzerland,

More information

11.1 Rock Deformation

11.1 Rock Deformation Tarbuck Lutgens Mountain Building 11.1 Rock Deformation Factors Affecting Deformation Factors that influence the strength of a rock and how it will deform include temperature, confining pressure, rock

More information

Chapter. Mountain Building

Chapter. Mountain Building Chapter Mountain Building 11.1 Rock Deformation Factors Affecting Deformation Factors that influence the strength of a rock and how it will deform include temperature, confining pressure, rock type, and

More information

GEOL 321 Structural Geology and Tectonics

GEOL 321 Structural Geology and Tectonics GEOL 321 Structural Geology and Tectonics Geology 321 Structure and Tectonics will be given in Spring 2017. The course provides a general coverage of the structures produced by brittle and ductile rock

More information

Chapter 16. Mountain Building. Mountain Building. Mountains and Plate Tectonics. what s the connection?

Chapter 16. Mountain Building. Mountain Building. Mountains and Plate Tectonics. what s the connection? Chapter 16 Mountains and Plate Tectonics what s the connection? Mountain Building Most crustal deformation occurs along plate margins. S.2 Active Margin Passive Margin Mountain Building Factors Affecting

More information

Captain s Tryouts 2017

Captain s Tryouts 2017 Captain s Tryouts 2017 Dynamic Planet Test Written by: Araneesh Pratap (Chattahoochee High School) Name: Date: Answer all questions on the answer sheet. Point values are given next to each question or

More information

Learning Objectives (LO) What we ll learn today:!

Learning Objectives (LO) What we ll learn today:! Learning Objectives (LO) Lecture 13: Mountain Building Read: Chapter 10 Homework #11 due Tuesday 12pm What we ll learn today:! 1. Define the types of stress that are present in the crust! 2. Define the

More information

CONTINENTAL PLATE BOUNDARY ZONES

CONTINENTAL PLATE BOUNDARY ZONES CONTINENTAL PLATE BOUNDARY ZONES Plate boundaries initially viewed as narrow Now recognize that many plate boundaries - especially continental - are deformation zones up to 1000 km wide, with motion spread

More information

Isan deformation, magmatism and extensional kinematics in the Western Fold Belt of the Mount Isa Inlier

Isan deformation, magmatism and extensional kinematics in the Western Fold Belt of the Mount Isa Inlier Isan deformation, magmatism and extensional kinematics in the Western Fold Belt of the Mount Isa Inlier Rick Gordon Department of Earth Sciences University of Queensland A thesis submitted for examination

More information

Mission to Mars! IS EARTH THE ONLY PLANET TO EXPERIENCE PLATE TECTONICS?

Mission to Mars! IS EARTH THE ONLY PLANET TO EXPERIENCE PLATE TECTONICS? Mission to Mars! IS EARTH THE ONLY PLANET TO EXPERIENCE PLATE TECTONICS? PLATE TECTONICS Earth s crust is split up into several tectonic plates which are constantly moving around (about the same speed

More information

Klaus Gessner, Chris Wijns, Louis Moresi, Fabio Boschetti and Alison Ord

Klaus Gessner, Chris Wijns, Louis Moresi, Fabio Boschetti and Alison Ord Flow partitioning in the lithosphere during core complex formation: An interactive evolutionary computation approach using particle-in-cell finite elements Klaus Gessner, Chris Wijns, Louis Moresi, Fabio

More information

GLY 155 Introduction to Physical Geology, W. Altermann. Press & Siever, compressive forces. Compressive forces cause folding and faulting.

GLY 155 Introduction to Physical Geology, W. Altermann. Press & Siever, compressive forces. Compressive forces cause folding and faulting. Press & Siever, 1995 compressive forces Compressive forces cause folding and faulting. faults 1 Uplift is followed by erosion, which creates new horizontal surface. lava flows Volcanic eruptions cover

More information

Curriculum Vitae. Postdoctoral Research Associate and Lecturer (Wissenschaftliche Mitarbeiterin), Freie Universität Berlin, Germany

Curriculum Vitae. Postdoctoral Research Associate and Lecturer (Wissenschaftliche Mitarbeiterin), Freie Universität Berlin, Germany Dr. Eline Le Breton MSc and PhD in Geology Docteur Agrégée en Sciences de la Terre Research Interests Curriculum Vitae Malteserstr. 74-100 12249 Berlin Germany eline.lebreton@fu-berlin.de Phone: +49 30

More information

Section 2: How Mountains Form

Section 2: How Mountains Form Section 2: How Mountains Form Preview Objectives Mountain Ranges and Systems Plate Tectonics and Mountains Types of Mountains Objectives Identify the types of plate collisions that form mountains. Identify

More information

Global Tectonics. Kearey, Philip. Table of Contents ISBN-13: Historical perspective. 2. The interior of the Earth.

Global Tectonics. Kearey, Philip. Table of Contents ISBN-13: Historical perspective. 2. The interior of the Earth. Global Tectonics Kearey, Philip ISBN-13: 9781405107778 Table of Contents Preface. Acknowledgments. 1. Historical perspective. 1.1 Continental drift. 1.2 Sea floor spreading and the birth of plate tectonics.

More information

Structure and history of the Kern Canyon fault system: introduction and thesis overview

Structure and history of the Kern Canyon fault system: introduction and thesis overview 1 Chapter 1 Structure and history of the Kern Canyon fault system: introduction and thesis overview Exposures of fault zones from the surface to deep levels afford an opportunity to study the transition

More information

Distribution of Continents Mid-ocean Ridges Trenches. Deformation Metamorphism Volcanism Earthquakes

Distribution of Continents Mid-ocean Ridges Trenches. Deformation Metamorphism Volcanism Earthquakes Earthquakes and Plate Tectonics Global Problems in Geology Distribution of Continents Mid-ocean Ridges Trenches Orogenic Belts Deformation Metamorphism Volcanism Earthquakes Development of Continental

More information

NAME HOMEWORK ASSIGNMENT #4 MATERIAL COVERS CHAPTERS 19, 20, 21, & 2

NAME HOMEWORK ASSIGNMENT #4 MATERIAL COVERS CHAPTERS 19, 20, 21, & 2 NAME HOMEWORK ASSIGNMENT #4 MATERIAL COVERS CHAPTERS 19, 20, 21, & 2 Assignment is due the beginning of the class period on December 14, 2004. Mark answers on a scantron sheet, which will be provided.

More information

Answers: Internal Processes and Structures (Isostasy)

Answers: Internal Processes and Structures (Isostasy) Answers: Internal Processes and Structures (Isostasy) 1. Analyse the adjustment of the crust to changes in loads associated with volcanism, mountain building, erosion, and glaciation by using the concept

More information

TECTONIC AND STRUCTURAL CONTROLS ON INTRUSION- RELATED DEPOSITS IN THE NORTHERN PART OF SREDNA GORA ZONE, BULGARIA NIKOLAY PETROV & KAMELIA NEDKOVA

TECTONIC AND STRUCTURAL CONTROLS ON INTRUSION- RELATED DEPOSITS IN THE NORTHERN PART OF SREDNA GORA ZONE, BULGARIA NIKOLAY PETROV & KAMELIA NEDKOVA TECTONIC AND STRUCTURAL CONTROLS ON INTRUSION- RELATED DEPOSITS IN THE NORTHERN PART OF SREDNA GORA ZONE, BULGARIA NIKOLAY PETROV & KAMELIA NEDKOVA INVESTIGATED AREA Praveshka Lakavica deposit Elatsite

More information

Plate Boundaries & Resulting Landforms

Plate Boundaries & Resulting Landforms Plate Boundaries & Resulting Landforms Divergent Plate Boundaries (plates being pulled apart) Type: oceanic plates Description: rising magma gently lifts the crust creating a ridge. The flow of convection

More information

Kumulative Dissertation von. Andreas Scharf

Kumulative Dissertation von. Andreas Scharf Lateral extrusion and exhumation of orogenic crust during indentation by rigid Adriatic continental lithosphere tectonic evolution of the eastern Tauern Window (Eastern Alps, Austria) Kumulative Dissertation

More information

Preface and Overview. Folded strata in the mountains of Italy (ca AD), Leonardo da Vinci

Preface and Overview. Folded strata in the mountains of Italy (ca AD), Leonardo da Vinci Preface and Overview Folded strata in the mountains of Italy (ca. 1500 AD), Leonardo da Vinci Models of Mountain Building and Associated Deformation as represented by G.P. Scrope Deformation Feature: Scales

More information

Use a highlighter to mark the most important parts, or the parts. you want to remember in the background information.

Use a highlighter to mark the most important parts, or the parts. you want to remember in the background information. P a g e 1 Name A Fault Model Purpose: To explore the types of faults and how they affect the geosphere Background Information: A fault is an area of stress in the earth where broken rocks slide past each

More information

IV OTHER TYPES OF BASINS

IV OTHER TYPES OF BASINS IV OTHER TYPES OF BASINS 1-Strike-slip basins 2-Cratonic basins 3 Late orogenic basins and more 1 Tectonic setting of strike-slip faulting Woodcock 1986 2 Seismic examples of stike-slip faults «!Flower

More information

Lateral extrusion and tectonic escape in Ilan Plain of northeastern Taiwan

Lateral extrusion and tectonic escape in Ilan Plain of northeastern Taiwan Lateral extrusion and tectonic escape in Ilan Plain of northeastern Taiwan Angelier, J., Chang, T.Y., Hu, J.C., Chang, C.P., Siame, L., Lee, J.C., Deffontaines, B., Chu, H.T, Lu, C.Y., Does extrusion occur

More information

How to Build a Mountain and other Geologic Structures. But first, questions

How to Build a Mountain and other Geologic Structures. But first, questions How to Build a Mountain and other Geologic Structures But first, questions Questions your students might ask How were Montana s mountains formed? How old are the mountains? What are the different ways

More information

YORK CASTLE HIGH SCHOOL CHRISTMAS TERM EXAMINATIONS GEOGRAPHY Duration 1 1 /2 HRS.

YORK CASTLE HIGH SCHOOL CHRISTMAS TERM EXAMINATIONS GEOGRAPHY Duration 1 1 /2 HRS. GRADE 9 YORK CASTLE HIGH SCHOOL CHRISTMAS TERM EXAMINATIONS GEOGRAPHY Duration 1 1 /2 HRS. Name: 1. Label the internal structure of the earth provided below. WRITE on the space provide. Oceanic Crust/Upper

More information

Cretaceous Tertiary Contraction, Shear and Inversion in the Western Barents Sea

Cretaceous Tertiary Contraction, Shear and Inversion in the Western Barents Sea Cretaceous Tertiary Contraction, Shear and Inversion in the Western Barents Sea Roy H. Gabrielsen,* Jan Inge Faleide*, Karen A. Leever*,** * Department of Geosciences, University of Oslo GeoForschungZentrum

More information

Deformation of the Crust

Deformation of the Crust Deformation of the Crust Review Choose the best response. Write the letter of that choice in the space provided. 1. The state of balance between the thickness of the crust and the depth at which it rides

More information

Continental Margin Geology of Korea : Review and constraints on the opening of the East Sea (Japan Sea)

Continental Margin Geology of Korea : Review and constraints on the opening of the East Sea (Japan Sea) Continental Margin Geology of Korea : Review and constraints on the opening of the East Sea (Japan Sea) Han-Joon Kim Marine Satellite & Observation Tech. Korea Ocean Research and Development Institute

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Crustal Deformation and Mountain Building Chapter 17 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois College Jennifer

More information

1. occurs when the oceanic crust slides under the continental crust.

1. occurs when the oceanic crust slides under the continental crust. 1. occurs when the oceanic crust slides under the continental crust. 2. What type of stress is shown? 3. Where two plates slide past one another is called a boundary. 4. What type of stress is shown? 5.

More information

Plaattektoniek en Mickey Mouse: de bewegingen van de Aarde en de geologie van Marokko. G. Bertotti - TUDelft

Plaattektoniek en Mickey Mouse: de bewegingen van de Aarde en de geologie van Marokko. G. Bertotti - TUDelft Plaattektoniek en Mickey Mouse: de bewegingen van de Aarde en de geologie van Marokko G. Bertotti - TUDelft Moving continents Continent with matching boundaries Same fauna in different continents Similar

More information

What Causes Rock to Deform?

What Causes Rock to Deform? Crustal Deformation Earth, Chapter 10 Chapter 10 Crustal Deformation What Causes Rock to Deform? Deformation is a general term that refers to all changes in the shape or position of a rock body in response

More information

Chapter 4 Section 3, 4. Deforming the Earth s Crust

Chapter 4 Section 3, 4. Deforming the Earth s Crust Chapter 4 Section 3, 4 Deforming the Earth s Crust Deformation The process by which the shape of a rock changes because of stress Stress The amount of force per unit area on a given material Compression

More information

Plate Tectonics - Demonstration

Plate Tectonics - Demonstration Name: Reference: Prof. Larry Braile - Educational Resources Copyright 2000. L. Braile. Permission granted for reproduction for non-commercial uses. http://web.ics.purdue.edu/~braile/indexlinks/educ.htm

More information

Plate Tectonics. Structure of the Earth

Plate Tectonics. Structure of the Earth Plate Tectonics Structure of the Earth The Earth can be considered as being made up of a series of concentric spheres, each made up of materials that differ in terms of composition and mechanical properties.

More information

UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS

UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS ROCK DEFORMATION Tectonic forces exert different types of stress on rocks in different geologic environments. STRESS The first, called confining stress

More information

Directed Reading. Section: How Mountains Form MOUNTAIN RANGES AND SYSTEMS. Skills Worksheet

Directed Reading. Section: How Mountains Form MOUNTAIN RANGES AND SYSTEMS. Skills Worksheet Skills Worksheet Directed Reading Section: How Mountains Form 1. How high is Mount Everest? a. about 1980 km above sea level b. more than 8 km below sea level c. more than 8 km above sea level d. more

More information

Lecture 9 faults, folds and mountain building

Lecture 9 faults, folds and mountain building Lecture 9 faults, folds and mountain building Rock deformation Deformation = all changes in size, shape, orientation, or position of a rock mass Structural geology is the study of rock deformation Deformation

More information

TECTONOTHERMAL EVOLUTION OF THE CENTRAL-WESTERN CARPATHIANS AND THEIR FORELAND

TECTONOTHERMAL EVOLUTION OF THE CENTRAL-WESTERN CARPATHIANS AND THEIR FORELAND TECTONOTHERMAL EVOLUTION OF THE CENTRAL-WESTERN CARPATHIANS AND THEIR FORELAND Ph.D. candidate: ADA CASTELLUCCIO, III course Tutor: Prof. MASSIMILIANO ZATTIN Co-tutor: Prof. STEFANO MAZZOLI Cycle: XXVII

More information

Continental collision with finite indenter strength: 2. European Eastern Alps

Continental collision with finite indenter strength: 2. European Eastern Alps TECTONICS, VOL. 24,, doi:10.1029/2004tc001741, 2005 Continental collision with finite indenter strength: 2. European Eastern Alps Jörg Robl and Kurt Stüwe Institut für Erdwissenschaften, Universität Graz,

More information

Faults, folds and mountain building

Faults, folds and mountain building Faults, folds and mountain building Mountain belts Deformation Orogens (Oro = Greek all changes for mountain, in size, shape, genesis orientation, = Greek for or formation) position of a rock mass Structural

More information

Sedimentary Basin Analysis http://eqsun.geo.arizona.edu/geo5xx/geos517/ Sedimentary basins can be classified based on the type of plate motions (divergent, convergent), type of the lithosphere, distance

More information

Crustal Deformation Earth - Chapter Pearson Education, Inc.

Crustal Deformation Earth - Chapter Pearson Education, Inc. Crustal Deformation Earth - Chapter 10 Structural Geology Structural geologists study the architecture and processes responsible for deformation of Earth s crust. A working knowledge of rock structures

More information

Chapter 2. Earthquake and Damage

Chapter 2. Earthquake and Damage EDM Report on the Chi-Chi, Taiwan Earthquake of September 21, 1999 2.1 Earthquake Fault 2.1.1 Tectonic Background The island of Taiwan is located in the complex junction where the Eurasian and Philippine

More information

Boundaries, Stresses, and Faults OH MY! How do geologic events change and shape Earth s surface?

Boundaries, Stresses, and Faults OH MY! How do geologic events change and shape Earth s surface? Boundaries, Stresses, and Faults OH MY! How do geologic events change and shape Earth s surface? Remember The Lithosphere is made of The CRUST + The Upper Rigid Mantle Plates may be called by different

More information

Mountains are then built by deforming crust: Deformation & Mountain Building. Mountains form where stresses are high!

Mountains are then built by deforming crust: Deformation & Mountain Building. Mountains form where stresses are high! Deformation & Mountain Building Where are mountains located? Deformation and Folding Mountain building Mountains form where stresses are high! Mountains form at all three types of plate boundaries where

More information

Imaging Moho topography beneath the Alps by multdisciplinary seismic tomography

Imaging Moho topography beneath the Alps by multdisciplinary seismic tomography Imaging Moho topography beneath the Alps by multdisciplinary seismic tomography Edi Kissling ETH Zürich SPP short course February 1+2, 218, Berlin, Germany Alpine Moho map from CSS Moho uncertainty derived

More information

Composition of the earth, Geologic Time, and Plate Tectonics

Composition of the earth, Geologic Time, and Plate Tectonics Composition of the earth, Geologic Time, and Plate Tectonics Layers of the earth Chemical vs. Mechanical Chemical : Mechanical: 1) Core: Ni and Fe 2) Mantle: Mostly Peridotite 3) Crust: Many different

More information

Spaceborne radar applications in Geology

Spaceborne radar applications in Geology 216 051 ESATM-17 December 2005 Spaceborne radar applications in Geology An introduction to imaging radar, and application examples of ERS SAR in Geology and Geomorphology European Spate Agency Agente spatiale

More information

Coeval high-pressure metamorphism, thrusting, strike-slip, and extensional shearing in the Tauern Window, Eastern Alps

Coeval high-pressure metamorphism, thrusting, strike-slip, and extensional shearing in the Tauern Window, Eastern Alps TECTONICS, VOL. 27,, doi:10.1029/2007tc002193, 2008 Coeval high-pressure metamorphism, thrusting, strike-slip, and extensional shearing in the Tauern Window, Eastern Alps Johannes Glodny, 1 Uwe Ring, 2

More information

Topics Laramide Orogeny: Late Cretaceous to Early Eocene Reading: GSA DNAG volume 3, Ch. 6

Topics Laramide Orogeny: Late Cretaceous to Early Eocene Reading: GSA DNAG volume 3, Ch. 6 Topics Laramide Orogeny: Late Cretaceous to Early Eocene Reading: GSA DNAG volume 3, Ch. 6 Late Cretaceous to early Eocene New patterns developed 5 main regions Tectonic interpretations Post-Laramide events

More information

Wide-angle observations of ALP 2002 shots on the TRANSALP profile: Linking the two DSS projects

Wide-angle observations of ALP 2002 shots on the TRANSALP profile: Linking the two DSS projects Tectonophysics 414 (2006) 71 78 www.elsevier.com/locate/tecto Wide-angle observations of ALP 2002 shots on the TRANSALP profile: Linking the two DSS projects Florian Bleibinhaus a, *, Ewald Brückl b ALP

More information

Plate Tectonics and the cycling of Earth materials

Plate Tectonics and the cycling of Earth materials Plate Tectonics and the cycling of Earth materials Plate tectonics drives the rock cycle: the movement of rocks (and the minerals that comprise them, and the chemical elements that comprise them) from

More information

Unit 4 Lesson 7 Mountain Building

Unit 4 Lesson 7 Mountain Building Indiana Standards 7.2.4 Explain how convection currents in the mantle cause lithospheric plates to move causing fast changes like earthquakes and volcanic eruptions, and slow changes like creation of mountains

More information

Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education

Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education Tibetan Plateau and Himalaya -southern Asia 11.00.a VE 10X

More information

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building Updated by: Rick Oches, Professor of Geology & Environmental Sciences Bentley University Waltham, Massachusetts Based on slides prepared

More information

Activity Pacific Northwest Tectonic Block Model

Activity Pacific Northwest Tectonic Block Model Activity Pacific Northwest Tectonic Block Model The Cascadia tectonic margin is caught between several tectonic forces, during the relentless motions of the giant Pacific Plate, the smaller subducting

More information

Plate Tectonics GEOL 101 Lecture 22 How Are Mountains Built?

Plate Tectonics GEOL 101 Lecture 22 How Are Mountains Built? Plate Tectonics GEOL 101 Lecture 22 How Are Mountains Built? The Grand Tetons, Wyoming First a Brief Review of Sea Floor Spreading Prop: Test 3 Invitations Break-Up of a Continent and Origin of an Ocean

More information

Strike-slip tectonics in arc-continent collision; the Eastern Timor example

Strike-slip tectonics in arc-continent collision; the Eastern Timor example Strike-slip tectonics in arc-continent collision; the Eastern Timor example RUI DIAS Escola de Ciências e Tecnologia da Universidade de Évora; Centro de Geofísica de Évora; Centro Ciência Viva de Estremoz.

More information

Plate Tectonics. Theory of Plate Tectonics. What is Plate Tectonics. Plate Tectonics Plate Boundaries Causes of Plate Tectonics

Plate Tectonics. Theory of Plate Tectonics. What is Plate Tectonics. Plate Tectonics Plate Boundaries Causes of Plate Tectonics Theory of Plate Tectonics Plate Tectonics Plate Boundaries Causes of Plate Tectonics Plate Tectonics What is Plate Tectonics The Earth s crust and upper mantle are broken into sections called plates Plates

More information

6 Exhumation of the Grampian

6 Exhumation of the Grampian 73 6 Exhumation of the Grampian mountains 6.1 Introduction Section 5 discussed the collision of an island arc with the margin of Laurentia, which led to the formation of a major mountain belt, the Grampian

More information

Movement of the Earth s Crust: Formation of: Mountain s Plateau's and Dome s

Movement of the Earth s Crust: Formation of: Mountain s Plateau's and Dome s Movement of the Earth s Crust: Formation of: Mountain s Plateau's and Dome s References Information taken from several places including Prentice Hall Earth Science: @ http://www.eram.k12.ny.us/education/components/docmgr/default.php?sectiondetaili

More information

Plate Tectonics. Goal 2.1

Plate Tectonics. Goal 2.1 Plate Tectonics Goal 2.1 Lesson 1 Plate Tectonics: An Overview Think About It Look at the map below. Which two continents look like they d fit together? Focus Question How do Earth s tectonic plates cause

More information

Description of faults

Description of faults GLG310 Structural Geology Description of faults Horizontal stretch Crustal thickness Regional elevation Regional character Issues Normal Thrust/reverse Strike-slip >1 1 in one direction and < 1 in

More information

10. Paleomagnetism and Polar Wandering Curves.

10. Paleomagnetism and Polar Wandering Curves. Map of ocean floor Evidence in Support of the Theory of Plate Tectonics 10. Paleomagnetism and Polar Wandering Curves. The Earth's magnetic field behaves as if there were a bar magnet in the center of

More information

08GSA, James McLelland Symposium

08GSA, James McLelland Symposium Ben van der Pluijm and Eric Tohver with Eric Essene, and Jay Busch, Michael Cosca, James Cureton, Katherine Carlson, Jerry Magloughlin, Klaus Mezger, Mark Rathmell, Margaret Streepey, Mary Ellen Tuccillo.

More information

GSTT Technical Note. September 4, Field Trip - Northern Range. Western (Mid-Crustal) Tectonic Domain. STOP 1: Upper Lady Chancellor Road

GSTT Technical Note. September 4, Field Trip - Northern Range. Western (Mid-Crustal) Tectonic Domain. STOP 1: Upper Lady Chancellor Road GSTT Technical Note September 4, 2001 P.O. Box 3524, La Romain, Trinidad and Tobago W.I Web address: www.gstt.org, Editor: millikm1@bp.com Field Trip - Northern Range Systematic east to west variations

More information

Exam Deformatie en Metamorfose van de Korst Educatorium zaal ALFA

Exam Deformatie en Metamorfose van de Korst Educatorium zaal ALFA Naam Studentnummer... Exam Deformatie en Metamorfose van de Korst Educatorium zaal ALFA Do not forget to put your name and student number on each of the question and answer sheets and to return both of

More information

Description of faults

Description of faults GLG310 Structural Geology Description of faults Horizontal stretch Crustal thickness Regional elevation Regional character Issues Normal Thrust/reverse Strike-slip >1 1 in one direction and < 1 in

More information

Fault-Zone Properties arid Earthquake Rupture Dynamics

Fault-Zone Properties arid Earthquake Rupture Dynamics Fault-Zone Properties arid Earthquake Rupture Dynamics Eiichi Fukuyama National Research Institute for Earth Science,and Disaster Prevention Tsukuba, Japan i ':-> i' ' -':'.." \,' " '' L VH ELSEVIER AMSTERDAM

More information

Features of Tectonic Plates

Features of Tectonic Plates Features of Tectonic Plates PowerPoint 12.2 The Earth s Layers Crust Brittle Continental crust composed mainly of granite Oceanic crust composed mainly of basalt Mantle Denser than the crust Upper is molten

More information

Structural Geology and Geology Maps Lab

Structural Geology and Geology Maps Lab Structural Geology and Geology Maps Lab Mesa College Geology 101 Lab Ray Rector: Instructor Structural Geology Lab Pre-Lab Resources Pre-Lab Internet Links 1) Fundamentals of Structural Geology 2) Visualizing

More information

Plate Tectonics: The New Paradigm

Plate Tectonics: The New Paradigm Earth s major plates Plate Tectonics: The New Paradigm Associated with Earth's strong, rigid outer layer: Known as the lithosphere Consists of uppermost mantle and overlying crust Overlies a weaker region

More information