Topics Laramide Orogeny: Late Cretaceous to Early Eocene Reading: GSA DNAG volume 3, Ch. 6
|
|
- Jade Evans
- 10 months ago
- Views:
Transcription
1 Topics Laramide Orogeny: Late Cretaceous to Early Eocene Reading: GSA DNAG volume 3, Ch. 6 Late Cretaceous to early Eocene New patterns developed 5 main regions Tectonic interpretations Post-Laramide events Prior Andean Style Continental Margin Eastern fold and thrust belt Adjacent foreland basin Central magmatic arc system Flanking fore-arc and back-arc basins Accretionary complexes Shifting terrains along the coast Pre-Laramide Configuration Fold and thrust belt Magmatic arc Accretionary complexes New Laramide Patterns Uplifted thrust-blocks on craton Localized sedimentation Thick sedimentary accumulation Local thin-skinned foreland thrusting to the west Prior zones of magmatism in the central region cooled Uplift and erosion Laramide Elements Rocky Mountain foreland Fold and thrust belt Magmatic arc Pacific margin 1
2 Changing Zones of Magmatism Magmatism spread eastward To the south: Southern California and Arizona To the north: Idaho and Montana Changing Magmatic Patterns Idaho/Montana Mohave/Arizona Colorado Mineral Belt Main Regions Rocky Mountain foreland Cordilleran fold & thrust belt Sonoran and Mojave Deserts Magmatic arc Pacific margin Rocky Mountain Foreland Thick-skinned deformation Basin sedimentation Local magmatism Thick-Skinned Deformation East of miogeocline wedge and hinge line Thin sedimentary cover Pre-fractured anisotropic cratonic basement Deformation localized along zones of prior weakness Deep-seated thrust faults 2
3 Thick-skinned Deformation Basins bounded by medium-angle reverse faults Uplifts ramped Sedimentary decollement features Bounded by conjugate thrust faults opposite uplift Floating basement wedges East-west faults imply oblique or strike-slip component Other Features Uinta Mts, Utah (11) Thick-skinned Mechanism Basement cored uplift is due to middle or lower crust decoupling Mantle is not deformed beneath uplifts Laramide anticlines are probably located above similar deep uplifts Anticlines of the Williston Basin, edge of Black Hills Cordilleran Fold and Thrust Belt Frontal thrust belt on the east Thin-skinned thrusts Localized by hinge line between miogeocline and craton Hinterland on the west Thrust faults located deep in miogeoclinal sediments Also in craton Cordilleran Fold and Thrust Belt Cooling of western metamorphic belt during late Cretaceous Widespread Eocene volcanism accompanied deformation Challis volcanics Sanpoil volcanics Magmatic Arc Central section weakly magmatic Main zones shifted South into California and Arizona North into Idaho and Montana 3
4 Local Magmatism SW Montana/NW Wyoming Pioneer Batholith Elkhorn and Adel Volcanic Fields Colorado Mineral Belt Hypabyssal rocks Monzonite to syenite SE Arizona and SW New Mexico Calc-alkaline plutons and volcanics Northern Magmatism SW Montana & NW Wyoming Idaho-Montana Porphyry Belt Pioneer Batholith (83-67 Ma) Elkhorn (78-73 Ma) and Adel Volcanic Fields Laccolithic intrusions (54-45 Ma) Core of the Cascade Range Granitoid plutons (75-60 Ma) Tonalite to Granodiorite Some foliated to orthogneiss Dextral slip Colorado Mineral Belt Hypabyssal intrusions (70-50 Ma) Monzonite, granodiorite, syenite Associated ore deposits Mo, Sn, W, U, Th, (Au, Ag) Central Zone Volcanism Andesite volcanoes Older group (70-60 Ma) Younger group (54-44 Ma), similar to Eocene volcanism of the Challis and Absaraka volcanics to the north Sonoran and Mojave Desert Regions Plutonism and metamorphism Calc-Alkaline composition Biotite and two-mica granitoids Porphyry copper deposits Cu, Pb, Zn, (Au, Ag) Ductile flexure of crustal blocks 4
5 Tectonic Interpretations Relatively rapid convergence Shallow angle of subduction Buoyancy of near horizontal slab Caused upward forces Tectonic Pattern Andean type continental margin Magmatic arc system Continuous subduction of the Farralon Plate 5
6 Pacific Plate Margin Local zones of metamorphism within the fold and thrust belt Fore-arc basins Strike-slip sedimentary basins Accretionary tectonic slices Late Cretaceous Margin Basins Allochthonous terranes Magmatic Arcs Metamorphic terranes Paleocene-Eocene Basins Puget Sound Olympic Mountains North Cascades Blue Mountains Klamath Mountains Franciscan Fm. Great Valley Southern California 6
7 Paleogeography Late Cretaceous Okanogan Highlands Klamath uplands Franciscan Terrane Great Valley Foreland Salinian Terrane Transverse Ranges Peninsular Ranges Paleogeography Paleocene-Eocene Extinct magmatic arc Olympic Peninsula Clarno Basin Tyee forearc basin Salinian Terrane Sur-Obispo Terrane Transverse Ranges California Borderland Post-Laramide Events Major zones of extension Normal faulting overprint Thick calc-alkaline volcanic sections Localized sedimentary basins Major strike-slip faulting 7
Section 10.1 The Nature of Volcanic Eruptions This section discusses volcanic eruptions, types of volcanoes, and other volcanic landforms.
Chapter 10 Section 10.1 The Nature of Volcanic Eruptions This section discusses volcanic eruptions, types of volcanoes, and other volcanic landforms. Reading Strategy Previewing Before you read the section,
Mountain Building. Mountain Building
Mountain Building Mountain building has occurred during the recent geologic past American Cordillera the western margin of the Americas from Cape Horn to Alaska Includes the Andes and Rocky Mountains Alpine
Chapter 10: Volcanoes and Other Igneous Activity Section 1: The Nature of Volcanic Eruptions I. Factors Affecting Eruptions Group # Main Idea:
Chapter 10: Volcanoes and Other Igneous Activity Section 1: The Nature of Volcanic Eruptions I. Factors Affecting Eruptions Group # A. Viscosity Group # B. Dissolved Gases Group # II. Volcanic Material
Evolution of Continents Chapter 20
Evolution of Continents Chapter 20 Does not contain complete lecture notes. Mountain belts Orogenesis the processes that collectively produce a mountain belt Includes folding, thrust faulting, metamorphism,
Cenozoic Magmatism and Mineral Deposits: Peru. Early Cenozoic. Cenozoic Tectonic Setting. Overview. Cenozoic Cordilleras
Cenozoic Magmatism and Mineral Deposits: Peru Sarah Black Jay Zambito Chaudhry Ahmed Cenozoic Tectonic Setting Early Cenozoic http://www.ucmp.berkeley.edu/geology/tecall1_4.mov http://www.scotese.com/
Sedimentary Basin Analysis http://eqsun.geo.arizona.edu/geo5xx/geos517/ Sedimentary basins can be classified based on the type of plate motions (divergent, convergent), type of the lithosphere, distance
GLY 155 Introduction to Physical Geology, W. Altermann. Press & Siever, compressive forces. Compressive forces cause folding and faulting.
Press & Siever, 1995 compressive forces Compressive forces cause folding and faulting. faults 1 Uplift is followed by erosion, which creates new horizontal surface. lava flows Volcanic eruptions cover
Gravel Transport Can Determine Late Flood Tectonics
Chapter 23 Gravel Transport Can Determine Late Flood Tectonics The locations of all the quartzite gravel in the northwest states and adjacent Canada provide more information about the Flood than just reinforcing
Plate Tectonics. entirely rock both and rock
Plate Tectonics I. Tectonics A. Tectonic Forces are forces generated from within Earth causing rock to become. B. 1. The study of the origin and arrangement of Earth surface including mountain belts, continents,
Lecture Outlines PowerPoint. Chapter 10 Earth Science, 12e Tarbuck/Lutgens
Lecture Outlines PowerPoint Chapter 10 Earth Science, 12e Tarbuck/Lutgens 2009 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors
Chapter. Mountain Building
Chapter Mountain Building 11.1 Rock Deformation Factors Affecting Deformation Factors that influence the strength of a rock and how it will deform include temperature, confining pressure, rock type, and
Chapter 16. Mountain Building. Mountain Building. Mountains and Plate Tectonics. what s the connection?
Chapter 16 Mountains and Plate Tectonics what s the connection? Mountain Building Most crustal deformation occurs along plate margins. S.2 Active Margin Passive Margin Mountain Building Factors Affecting
Geologic Trips San Francisco and the Bay Area
Excerpt from Geologic Trips San Francisco and the Bay Area by Ted Konigsmark ISBN 0-9661316-4-9 GeoPress All rights reserved. No part of this book may be reproduced without written permission in writing,
Answers: Internal Processes and Structures (Isostasy)
Answers: Internal Processes and Structures (Isostasy) 1. Analyse the adjustment of the crust to changes in loads associated with volcanism, mountain building, erosion, and glaciation by using the concept
Learning Objectives (LO) What we ll learn today:!
Learning Objectives (LO) Lecture 13: Mountain Building Read: Chapter 10 Homework #11 due Tuesday 12pm What we ll learn today:! 1. Define the types of stress that are present in the crust! 2. Define the
Plate Tectonics. Structure of the Earth
Plate Tectonics Structure of the Earth The Earth can be considered as being made up of a series of concentric spheres, each made up of materials that differ in terms of composition and mechanical properties.
Chapter 3. Geology & Tectonics
Chapter 3 Geology & Tectonics 3.1 Geology The general geological features of Indonesia are shown in Figure 3.1. The basement formation is metamorphic and it is intruded with plutonic formations. They are
Do NOT open the test until instructed to do so.
Raw Score: Rank: School: Team Number: Names: Boyceville Invitational, December 2, 2017 Dynamic Planet Plate Tectonics and Geographical Impacts Do NOT open the test until instructed to do so. 2011 Tohoku
Plate Tectonics GEOL 101 Lecture 22 How Are Mountains Built?
Plate Tectonics GEOL 101 Lecture 22 How Are Mountains Built? The Grand Tetons, Wyoming First a Brief Review of Sea Floor Spreading Prop: Test 3 Invitations Break-Up of a Continent and Origin of an Ocean
The Mesozoic. Wednesday, November 30, 11
The Mesozoic Periods of the Mesozoic Triassic- First period of the Mesozoic era Jurassic Cretaceous- Last period of the Mesozoic era Breakup of Pangaea Stage one (Triassic) Rifting and volcanism, normal
The continental lithosphere
Simplicity to complexity: The continental lithosphere Reading: Fowler p350-377 Sampling techniques Seismic refraction Bulk crustal properties, thickness velocity profiles Seismic reflection To image specific
GEOLOGIC MAPS PART II
EARTH AND ENVIRONMENT THROUGH TIME LABORATORY - EES 1005 LABORATORY FIVE GEOLOGIC MAPS PART II Introduction Geologic maps of orogenic belts are much more complex than maps of the stable interior. Just
Non-ideal Subduction
Subduction zone cross sections Earthquake locations : black = teleseismic est. gray = local-array est. red line = top of slab seismicity blue line = center of slab seismicity Non-ideal Subduction Oblique
Rocks and the Rock Cycle. Banded Iron Formation
Rocks and the Rock Cycle Banded Iron Formation Rocks Big rocks into pebbles, Pebbles into sand. I really hold a million, million Rocks here in my hand. Florence Parry Heide How do rocks change? How are
Tectonic plates of the world
Mountain Building Tectonic plates of the world ISOSTACY Isostatic Rebound crust rises as a result of removal of mass This iceberg also demonstrates the process of isostatic rebound. Types of Mountains
180 points. 1. Lava erupts through an opening in Earth s crust called a. 2. A bowl-shaped depression that forms around the vent of a volcano is a
CHAPTER 18 Volcanism SECTION 18.1 Volcanoes In your textbook, read about the anatomy of a volcano and volcanic material. Completes each statement or answer the question. 25 points 180 points volcano. In
TYPES OF SEDIMENTARY BASINS, MECHANISM OF BASIN FORMATION & PETROLEUM HABITAT BY S. K.BISWAS
TYPES OF SEDIMENTARY BASINS, MECHANISM OF BASIN FORMATION & PETROLEUM HABITAT BY S. K.BISWAS BASIN DEFINITION, CHARACTERISTICS & CLASSIFICATION A sedimentary basin is a structurally morphotectonic depression
Movement of the Earth s Crust: Formation of: Mountain s Plateau's and Dome s
Movement of the Earth s Crust: Formation of: Mountain s Plateau's and Dome s References Information taken from several places including Prentice Hall Earth Science: @ http://www.eram.k12.ny.us/education/components/docmgr/default.php?sectiondetaili
Geologic History of Texas: The Making of Texas Over 1.5 Billion Years
# 4 Geologic History of Texas: The Making of Texas Over 1.5 Billion Years Dr. Richard Kyle March 24, 2000 Produced by and for Hot Science - Cool Talks by the Environmental Science Institute. We request
Plate Tectonics Unit II: Plate Boundaries (3.5 pts)
T. James Noyes, El Camino College Plate Tectonics Unit II: The Plate Boundaries (Topic 11A-2) page 1 Name: Section: Plate Tectonics Unit II: Plate Boundaries (3.5 pts) Plate Boundaries We will now discuss
Structural Geology of the Mountains
Structural Geology of the Mountains Clinton R. Tippett Shell Canada Limited, Calgary, Alberta clinton.tippett@shell.ca INTRODUCTION The Southern Rocky Mountains of Canada (Figure 1) are made up of several
NC Earth Science Essential Standards
NC Earth Science Essential Standards EEn. 2.1 Explain how processes and forces affect the Lithosphere. EEn. 2.1.1 Explain how the rock cycle, plate tectonics, volcanoes, and earthquakes impact the Lithosphere.
PHYSIOGRAPHIC REGIONS OF THE LOWER 48 UNITED STATES
PHYSIOGRAPHIC REGIONS OF THE LOWER 48 UNITED STATES LAURENTIAN UPLAND 1. Superior Upland ATLANTIC PLAIN 2. Continental Shelf (not on map) 3. Coastal Plain a. Embayed section b. Sea Island section c. Floridian
Chapter. Graphics by Tasa Graphic Arts. Inc.
Earth Chapter Plate Science 9 Tectonics Graphics by Tasa Graphic Arts. Inc. 1 I. Earth s surface is made up of lithospheric plates. A. Lithospheric plates are composed of the crust and part of the upper
Geology 101. Reading Guide for Plate Tectonics
Geology 101 Chapter 1: Plate Tectonics (p. 21) Reading Guide for Plate Tectonics Name You should have read this section during the first week of the quarter. You should re-read this section and review
2 Britain s oldest rocks: remnants of
Britain s oldest rocks: remnants of Archaean crust 15 2 Britain s oldest rocks: remnants of Archaean crust 2.1 Introduction Owing to the complex nature of extremely old deformed rocks, the standard methods
MAR110 Lecture #5 Plate Tectonics-Earthquakes
1 MAR110 Lecture #5 Plate Tectonics-Earthquakes Figure 5.0 Plate Formation & Subduction Destruction The formation of the ocean crust from magma that is upwelled into a pair of spreading centers. Pairs
Ore deposits related to intermediate to felsic intrusions Porphyry Base Metal (Cu-Mo) Deposits. - GLY 361 Lecture 7
Ore deposits related to intermediate to felsic intrusions Porphyry Base Metal (Cu-Mo) Deposits - GLY 361 Lecture 7 Ore deposits related to intermediate to felsic intrusions Deposits associated with the
Figure 1. Examples of vector displacement diagrams for two and three-plate systems.
Figure 1. Examples of vector displacement diagrams for two and three-plate systems. Figure 2. Relationships between pole of rotation, great circles, ridge segments, small circles, transforms and fracture
Captain s Tryouts 2017
Captain s Tryouts 2017 Dynamic Planet Test Written by: Araneesh Pratap (Chattahoochee High School) Name: Date: Answer all questions on the answer sheet. Point values are given next to each question or
Name Student ID Exam 2c GEOL 1113 Fall 2009
Name Student ID Exam 2c GEOL 1113 Fall 2009 1. When a marine geologist collects a core of undeformed ocean-floor sediment, she knows that the youngest layer is on the top of the core and the oldest is
Topic 5: The Dynamic Crust (workbook p ) Evidence that Earth s crust has shifted and changed in both the past and the present is shown by:
Topic 5: The Dynamic Crust (workbook p. 65-85) Evidence that Earth s crust has shifted and changed in both the past and the present is shown by: --sedimentary horizontal rock layers (strata) are found
6. In the diagram below, letters A and B represent locations near the edge of a continent.
1. Base your answer to the following question on the cross section below and on your knowledge of Earth science. The cross section represents the distance and age of ocean-floor bedrock found on both sides
6 Exhumation of the Grampian
73 6 Exhumation of the Grampian mountains 6.1 Introduction Section 5 discussed the collision of an island arc with the margin of Laurentia, which led to the formation of a major mountain belt, the Grampian
Chapter 4 Rocks & Igneous Rocks
Chapter 4 Rocks & Igneous Rocks Rock Definition A naturally occurring consolidated mixture of one or more minerals e.g, marble, granite, sandstone, limestone Rock Definition Must naturally occur in nature,
ANNOUNCEMENTS. Neighbor MEET & GREET. Turn to Neighbor: What is the difference between accretionary wedges and terranes?
ANNOUNCEMENTS THIS WEEK Thursday class: Please bring scissors! NEXT WEEK Wed CLASS: Bring a mechanical compass if have one. Neighbor MEET & GREET 1. Each person take out a sheet of paper and write LEGIBLY
Lecture 24: Convergent boundaries November 22, 2006
Lecture 24: Convergent boundaries November 22, 2006 Convergent boundaries are characterized by consumption of oceaninc crust in subduction zones, with attendant arc volcanism, metamorphism and uplift.
Plate Tectonics. Goal 2.1
Plate Tectonics Goal 2.1 Lesson 1 Plate Tectonics: An Overview Think About It Look at the map below. Which two continents look like they d fit together? Focus Question How do Earth s tectonic plates cause
Farallon and Kula Plates David Reed
Farallon and Kula Plates David Reed Off of the Pacific Coast of North American lie the remnants of old tectonic plates. They current go by the name of the Cocos Plate (currently located in Central America)
1.4 Notes: Plates Converge or Scrape Past Each Other Think About Tectonic Plates Push Together at Convergent Boundaries
1.4 Notes: Plates Converge or Scrape Past Each Other Think About If new crust is created at divergent boundaries, why does the total amount of crust on Earth stay the same? Tectonic Plates Push Together
Plate Boundaries & Resulting Landforms
Plate Boundaries & Resulting Landforms Divergent Plate Boundaries (plates being pulled apart) Type: oceanic plates Description: rising magma gently lifts the crust creating a ridge. The flow of convection
Chapter Two. Figure 02_02. Geography of the Ocean Basins. The Sea Floor
Chapter Two The Sea Floor Geography of the Ocean Basins Figure 02_02 The world ocean is the predominant feature on the Earth in total area. In the Northern Hemisphere, 61% of the total area is ocean. In
Geology of the Pacific Northwest
Geology of the Pacific Northwest Pat Pringle photo, April 16, 1983 Group sedimentary northeast of Ashford of Eocene age
24. Ocean Basins p
24. Ocean Basins p. 350-372 Background The majority of the planet is covered by ocean- about %. So the majority of the Earth s crust is. This crust is hidden from view beneath the water so it is not as
Marine Science and Oceanography
Marine Science and Oceanography Marine geology- study of the ocean floor Physical oceanography- study of waves, currents, and tides Marine biology study of nature and distribution of marine organisms Chemical
Chapter Overview. Evidence for Continental Drift. Plate Tectonics. Evidence for Continental Drift. Evidence for Continental Drift 9/28/2010
Chapter Overview CHAPTER 2 Plate Tectonics and the Ocean Floor Much evidence supports plate tectonics theory. Different plate boundaries have different features. Tectonic plates continue to move today.
Geology 1 st Semester Exam YSBAT
1. What is the role of a geologist? Geology 1 st Semester Exam YSBAT 2016-2017 2. Earth is subdivided into three main layers based on what? 3. What features do you find at divergent boundaries? 4. Rock
There are numerous seams on the surface of the Earth
Plate Tectonics and Continental Drift There are numerous seams on the surface of the Earth Questions and Topics 1. What are the theories of Plate Tectonics and Continental Drift? 2. What is the evidence
Goal 2.1 Forces in the Lithosphere. Volcanic Activity
Goal 2.1 Forces in the Lithosphere Volcanic Activity Lesson 3 Volcanoes, Part 1 Think About It What happens when you shake a can of soda and then open it? Focus Question How does the composition of magma
Igneous Rocks. Igneous Rocks. Genetic Classification of
Igneous Rocks Fig. 5.1 Genetic Classification of Igneous Rocks Intrusive: crystallized from slowly cooling magma intruded within the Earth s crust; e.g. granite, gabbro 1 Fig. 5.2 Genetic Classification
Overview of Indonesian Geothermal System
Overview of Indonesian Geothermal System The Resources Beyond High Enthalpy Magmatic/Volcanic Systems By Dr.Eng. Suryantini ITB 4/3/2017 1 Outline Current Condition of Indonesian Geothermal Resources and
Introduction. Introduction. Introduction 10/15/2014. The Agents of Metamorphism. Metamorphism. and Metamorphic Rocks
Introduction Metamorphism The transformation of rocks, usually beneath Earth's surface, as the result of heat, pressure, and/or fluid activity, produces metamorphic rocks Metamorphism and Metamorphic Rocks
Mesozoic Earth History Million years ago Triassic Jurassic Cretaceous
Mesozoic Earth History 245-65 Million years ago Triassic Jurassic Cretaceous Geologic Time Scale www.geo.ucalgary.ca/~macrae/timescale/time_scale.gif Main Happenings in Mesozoic Breakup of Pangaea Lots
Geos Orogeny-mountain building: existing mountain belts are the result of Cenozoic tectonics. Cenozoic tectonism and climate.
Geos 432-2 Cenozoic tectonism and climates; climate change Orogeny-mountain building: existing mountain belts are the result of Cenozoic tectonics Cenozoic tectonism and climate Movement of continents
Composition of the earth, Geologic Time, and Plate Tectonics
Composition of the earth, Geologic Time, and Plate Tectonics Layers of the earth Chemical vs. Mechanical Chemical : Mechanical: 1) Core: Ni and Fe 2) Mantle: Mostly Peridotite 3) Crust: Many different
Plate tectonics model for the continental collisions during Late Paleozoic
Alleghanian orogeny During Late Paleozoic, northwestern Africa collided with southeastern North America, causing the Alleghanian orogeny, and building the Appalachian mountains. The orogeny began during
Red Sea Basins. by Prof. Dr. Abbas Mansour
Red Sea Basins TECTONO-SEDIMENTARY EVOLUTION OF THE NW PARTS OF THE RED SEA The pre-rift rift by Prof. Dr. Abbas Mansour 1.a. The Precambrian basement and the inherited structural pattern of the rift
Why Does Oceanic Crust Sink Beneath Continental Crust At Convergent Boundaries
Why Does Oceanic Crust Sink Beneath Continental Crust At Convergent Boundaries What is the process by which oceanic crust sinks beneath a deep-ocean Why does oceanic crust sink beneath continental crust
Section 3 Deforming Earth s Crust
Section 3 Deforming Earth s Crust Key Concept Tectonic plate motions deform Earth s crust. Deformation causes rock layers to bend and break and causes mountains to form. What You Will Learn Stress is placed
Structural Geology Lab. The Objectives are to gain experience
Geology 2 Structural Geology Lab The Objectives are to gain experience 1. Drawing cross sections from information given on geologic maps. 2. Recognizing folds and naming their parts on stereoscopic air
Phanerozoic (last 0.54 by) Tectonics Climate Life
Phanerozoic (last 0.54 by) Tectonics Climate Life Tools for Locating Past Continent Positions Fossils depending on climate Alignment of geological features Geometrical fit of continental margins Similarity
Dynamic Crust Practice
1. Base your answer to the following question on the cross section below and on your knowledge of Earth science. The cross section represents the distance and age of ocean-floor bedrock found on both sides
2. Explain why there are these two predominate elevations. (Hint: think about isostasy and the type of materials we used to demonstrate buoyancy).
IDS 102 Plate Tectonics Questions Part I: Observations- Four maps of world are positioned around the room. Answer the questions associated with each map and record your general observations about the maps.
Shape Earth. Plate Boundaries. Building. Building
Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Lesson 4 Chapter Wrap-Up Forces That Shape Earth Landforms at Plate Boundaries Mountain Building Continent Building How is Earth s surface shaped by plate
The Lithosphere and the Tectonic System. The Structure of the Earth. Temperature 3000º ºC. Mantle
The Lithosphere and the Tectonic System Objectives: Understand the structure of the planet Earth Review the geologic timescale as a point of reference for the history of the Earth Examine the major relief
2 The Geology and Tectonics of the Tohoku Region
2 The Geology and Tectonics of the Tohoku Region Japan is part of the "Ring of Fire," the belt of earthquakes and volcanic activity that distinguishes the active margins of the Pacific Ocean from the passive
Marine Sedimentary Basins
Marine Sedimentary Basins Paul Mann* Department of Earth and Atmospheric Sciences, 312 Science & Research 1, University of Houston, Houston, TX, USA Synonyms Active margin basins; Oceanic basins; Passive
Karl Mueller QUATERNARY RIFT FLANK UPLIFT OF THE PENINSULAR RANGES IN BAJA AND SOUTHERN CALIFORNIA BY REMOVAL OF MANTLE LITHOSPHERE
QUATERNARY RIFT FLANK UPLIFT OF THE PENINSULAR RANGES IN BAJA AND SOUTHERN CALIFORNIA BY REMOVAL OF MANTLE LITHOSPHERE August 2013 Quaternary Rift Flank Uplift of the Peninsular Ranges in Baja and Southern
Plates & Boundaries The earth's continents are constantly moving due to the motions of the tectonic plates.
Plates & Boundaries The earth's continents are constantly moving due to the motions of the tectonic plates. As you can see, some of the plates contain continents and others are mostly under the ocean.
Magma. Objectives. Describe factors that affect the formation of magma. Compare and contrast the different types of magma. Vocabulary.
Magma Objectives Describe factors that affect the formation of magma. Compare and contrast the different types of magma. Vocabulary viscosity Magma Magma The ash that spews from some volcanoes can form
Plate Tectonics 3. Where Does All the Extra Crust Go?
Plate Tectonics 3 Where Does All the Extra Crust Go? Unless otherwise noted the artwork and photographs in this slide show are original and by Burt Carter. Permission is granted to use them for non-commercial,
Geologic Evolution of Latin America. Plate Tectonics: General Concepts & Applications to Latin America
Geologic Evolution of Latin America Plate Tectonics: General Concepts & Applications to Latin America Structure of Earth: 3 major divisions of Core, Mantle, and Crust Upper mantle differs in the way that
4. Starting with a supercontinent, order the following tectonic actions of the Wilson cycle from oldest (1) to most recent (4)
Geology 101 Sample final exam (Chapters 1 9, 13, 16) Open textbook, notes, handouts, labs, field trip module, group projects, midterm exams, calculators. No collaboration. 100 points total, two hours.
Structural Style in the Peel Region, NWT and Yukon
Structural Style in the Peel Region, NWT and Yukon Adriana Taborda* Husky Energy and University of Calgary, Calgary, AB Adriana.Taborda@huskyenergy.ca and Deborah Spratt University of Calgary, Calgary,
Before 2 billion years -?? no rocks preserved
California Geology California Geology Science Content Standards for California Public Schools 6 th Grade Focus on Earth Sciences Students know how to explain major features of California geology (including
Plate Tectonics. The Grand Unifying Theory of Geology. Earth s lithosphere is divided into a number of pieces, called plates
Plate Tectonics The Grand Unifying Theory of Geology Earth s lithosphere is divided into a number of pieces, called plates These plates of rigid lithosphere ride over the softer, ductile asthenosphere
Staple this part to part one of lab 6 and turn in. Lab 6, part two: Structural geology (analysis)
Geology 101 Staple this part to part one of lab 6 and turn in Lab 6, part two: Structural geology (analysis) Recall that the objective of this lab is to describe the geologic structures of Cougar Mountain
Lecture Outline Friday January 12 Friday January 19, 2018
Lecture Outline Friday January 12 Friday January 19, 2018 Questions?? Key Points for today The structure of the Earth Introduction to Plate Tectonic Theory and Convection Chapter 2 Development of the Plate
Geological Evolution of Bago-Yoma Basin, Onshore Myanmar*
Geological Evolution of Bago-Yoma Basin, Onshore Myanmar* Seehapol Utitsan 1, Teekayu Benjawan 1, Suppakarn Thanatit 1, Wirote Wetmongkongorn 1, U. Soe Than 2, Khun Hline Myint 1, and Ler Bwe Wah 1 Search
YORK CASTLE HIGH SCHOOL CHRISTMAS TERM EXAMINATIONS GEOGRAPHY Duration 1 1 /2 HRS.
GRADE 9 YORK CASTLE HIGH SCHOOL CHRISTMAS TERM EXAMINATIONS GEOGRAPHY Duration 1 1 /2 HRS. Name: 1. Label the internal structure of the earth provided below. WRITE on the space provide. Oceanic Crust/Upper
Foundations of Earth Science Seventh Edition
Chapter 5 Lecture Outline Foundations of Earth Science Seventh Edition Plate Tectonics: A Scientific Revolution Unfolds Natalie Bursztyn Utah State University From Continental Drift to Plate Tectonics
Cenozoic Extensional Basin Development and Sedimentation in SW Montana
Cenozoic Extensional Basin Development and Sedimentation in SW Montana Robert C. Thomas Department of Environmental Sciences, The University of Montana Western, Dillon, MT 59725, (406) 683-7615, r_thomas@umwestern.edu
GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition
Grotzinger Jordan Understanding Earth Sixth Edition Chapter 4: IGNEOUS ROCKS Solids from Melts 2011 by W. H. Freeman and Company Chapter 4: Igneous Rocks: Solids from Melts 1 About Igneous Rocks Igneous
The tectonic evolution history of Borneo is complicated and had been hotly debated
Chapter 2: General Geology & Structure 2.1 REGIONAL GEOLOGY The tectonic evolution history of Borneo is complicated and had been hotly debated by different geologists such as C.S. Hutchison (2005), and
The structure of the Mt Carlton Cu-Au deposit
Dirks, P.H.G.M., The structure of the Mt Carlton Cu-Au deposit. SYMPOSIUM: New technologies and approaches in mineral exploration. FUTORES II, 4-7 June 2017, Townsville, Qld, Australia. 2017 The structure
Constitution of Magmas. Magmas. Gas Law. Composition. Atomic Structure of Magma. Structural Model. PV = nrt H 2 O + O -2 = 2(OH) -
Constitution of Magmas Magmas Best, Ch. 8 Hot molten rock T = 700-1200 degrees C Composed of ions or complexes Phase Homogeneous Separable part of the system With an interface Composition Most components
A Source-to-Sink Approach to Drainage and Sediment Flux in Thrust and Foreland Systems Utah-Wyoming- Colorado, US Rockies*
A Source-to-Sink Approach to Drainage and Sediment Flux in Thrust and Foreland Systems Utah-Wyoming- Colorado, US Rockies* Ole J. Martinsen 1 Search and Discovery Article #51315 (2016)** Posted October
Deformation of the Crust
Deformation of the Crust Review Choose the best response. Write the letter of that choice in the space provided. 1. The state of balance between the thickness of the crust and the depth at which it rides
GY 112: Earth History
UNIVERSITY OF SOUTH ALABAMA GY 112: Earth History Lectures 31: Mesozoic Tectonics Instructor: Dr. Douglas W. Haywick Last Time Mesozoic Overview A) The end of the Paleozoic B) Mesozoic time frame and evolutionary