István Dunkl Sedimentology, University of Göttingen

Size: px
Start display at page:

Download "István Dunkl Sedimentology, University of Göttingen"

Transcription

1 Beckenanalyse 2: Analytic tools for basin analysis: thermometers and geochronometers [M.Geo.136b] Part 5: FT Reconstruction of thermal evolution of basins University of Göttingen István Dunkl Sedimentology, University of Göttingen 1) Heat flow in basins 2) Geothermometry in basins by: vitrinite-, bitumen-, graptolite reflectance, Raman spectroscopy, conodont alteration index, spore colour, fluorescence, Rock-Eval, molecular ratios, clay mineralogy... 3) Fission track thermochronology (nuclear physics, statistics) 4) Dating volcanic events (= formation ages) and basement exhumation (= cooling ages) 5) Complex thermal histories of basins & thermal modelling 6) Detrital geochronology (provenance by single-grain ages) 7) (U-Th)/He thermochronology 8) K/Ar, Ar/Ar, Luminescence, ESR and cosmogenic dating of sediments 9) U-Pb and U-series dating of sediments The principal types of thermal histories time today track stability zone partial anneling zone (PAZ) track instability temperature ~60 C ~120 C FORMATION AGE COOLING AGE MIXED AGE fission track age [Wagner, 1979]

2 Track shortening Track shortening on an Arrhenius diagram Arrhenius, Svante August

3 Confined horizontal tracks are developing below the surface along tracks and clevages [Crowley, 1989] [GÖochronology] Measurement of track length (on horizontal confined fission tracks) transmitted light reflected light [GÖochronology]

4 Relation of thermal history and track length distribution [after Sanders, 1998] Thermal history in basin evolution and track length distribution [Gallagher et al., 1998]

5 Fission track dating: track length distribution Æ cooling history [Anna K. Ksienzyk] Modelling major decisions Forward inverse modelling Supervised - unsupervised Input data Initial conditions Selection of model (algorithm, parameters) Modelling (black box) Test of results

6 Principle of the computation of track length distribution

7 Result of an unsupervised thermal modeling Malé Karpaty Temperature [ C] Known rifting event (elevated heat flow) Age [Ma] [Danisik et al., in press]

8 Thermal modeling must be preluded by a review of geological events and their thermal consequences. Temperature These dates can be the turning points of the thermal history and thus the timetemperature constraints of the modeling. [Glasmacher et al. 2002] Temperature Now Surface Surface tt2 Surface tt2 tt2 tt3 tt3 Tmax tt1 tt1 tt1 Time [Ma] Time [Ma] Time [Ma] tt1 = age and temperature of metamorphism tt1 = age and temperature of metamorphism Tmax = maximum temperature during burial tt2 = 0 Ma; recent annual mean temperature tt2 = age of sedimentation; annual mean temperature tt3 = 0 Ma; recent annual mean temperature tt1 invariable points best tt path tt envelope effective post-depositional heating [Dunkl and Frisch, 2002]

9 Thermal history of accreting sediments

10 { Geological constraints for thermal modelling of the evolution of the Carpathian flysch belt 0 age of sedimentation burial below known(!?) sedimentary succession present temperature 40 Temperature [ C] unsupervised search Age [Ma] [Botor et al. in prep.] Results of modelling the thermal histories of the major Carpathian nappes (AFTSolve, Ketcham, 2000). Dominant and common is an extremely rapid warming up period. Magura Dukla Silesian Time [Ma]

11 Simplified model of thermal history of the Silesian Unit Major periods sedimentary burial tectonic burial exhumation by folding and erosion 0 { { { Temperature [ C] sedimentation of volcanic tuff termination of sedimentation by thrusting detachment and accretion Age [Ma] 10 Thermal history of Silesian nappe 0 Accretional evolution of the Outhern Western Carpathians

12 Normal faults are also common in the Carpathian thrust pile [Oszczypko-Clowes and Oszczypko 2004] Seismic profile Katowice - Budapest V subduction [Tomek and PANCARDI Team] V=(T Geothermal gradient: 20 (18-25) C/km Closure temperature: 145 ( ) C Angle of subduction: 23 (22-25) Time lag between overthrust and reset: 2 ( ) Ma closure /gg)*ctg(alpha)/time O-R Horizontal speed of subduction: ~8.8 ( ) km/ma [Botor]

13 Thermal histories of two, neighbouring metamorphite bodies Deposition of Mesozoic sediments on Wechsel unit Thrusting Eocene sedimentation Miocene extension and sedimentation Temperarture [ C] apatite PAZ zircon PAZ wh. mica K/Ar T i m e [m i l l i o n y e a r s] Wechsel unit Grobgneis unit at the northern margin of the Wechsel Window Thermochronology -> exhumation ->?relief? Cretaceous Paleoc. Eocene Olig. Miocene Pli Ma Major events Cooling after Eoalpine metamorphism Gosau sed. Post-Gosau compression Reef, red clay, peneplain Major subsicdence in intramontane basins Periadriatic magmatism Main trends in exhumation & subsidence exh. subs. Gosau basins? Relief Mountainous Hills-lowlands Sedimentation + ++?? ridges basins * ** Austroalpine crystalline Austroalpine crystalline (in the north, where Cretaceous apatite FT ages preserved Austroalpine crystalline (in the south, where Oligocene apatite FT ages are common Austroalpine Paleozoic metasediments and post-variscan cover [Dunkl et al., unpublished]

14 16090 Reset of apatite FT ages during burial Apatite fission track age [Ma] Stratigraphic age [Ma] 1:1 Confrontation of burial history and apatite FT reset Temperature [ C] Oligocene sandstone 796 m 42 C predicted modeled Ma the Puszta in winter-time

15 Trend in reset Ma: typical Eoalpine cooling ages and unreset ages in the sediments 60 Region A Apatite FT age [Ma] 50 Region B Temperature [ C] Neogene sites of delayed FT reset Pannonian basin isotherms tilted seismic reflectors Carpathians uplifted sediment remnants Mesozoic Exhumation: 2-4 Ma (young infiltration of karst water) Elevated isotherms Reset of the FT thermochronometer Exhumation Change in heat-flow time depth PAZ mica Ar reset depth zero zircon FT age - Late Cretaceous (~80 Ma), - Miocene (18-10 Ma) - Permian (~250 Ma), - Late Triassic (~220 Ma), - Jurassic ( Ma), - Oligocene (~30 Ma), - Pliocene-Quat. (4-2 Ma)

16 Thermochronologic assessment of a hydrocarbon play Joint modelling of thermochronology and organic maturation Recent Schöckl WSW 50 km E a s t e r n A l p s Rechnitz Window X Pannonian basin Danube basin ENE km Tauern W. Eastern Alps Carpathians Pannonian basin 200 km Middle Miocene Dinarids Rechnitz Window Penninic windows? Vertical movement since Middle Miocene: Uplift Subsidence X Post-rift sediments Syn-rift sediments Early-Middle Miocene normal faults Austroalpine Paleozoic Austroalpine basement Penninic Hanging wall and sediment remnants on top of the Penninic window (sample sites) A hanging wall footwall B WSW ENE Sample site Modeled heat flow of this section is in Figure 10

17 Modelling of vitrinite reflectance Ottnangian Karpatian Badenian Sarmatian Pannonian 2 90 mw/m (initial value) mw/m (during fast faulting) mw/m (post-rift to recent) Ma Heat flux history Variables: - heat flux - burial Beginning of sedimentation Subsidence history Output: - coal rank Known erosional periods "Styrian" "Sarmatian-Pannonian" "Pliocene" Reconstruction of paleo-burial Heat flow [mw/m 2 ] Range of the heat flow in the hangingwall Range of the necessary burial for the observed vitrinite reflectance Burial thickness [m] Vitrinite reflectance (%) Coal rank of the Sinnersdorf beds [Dunkl et al., 1998]

18 Basin inversion: estimation of the removed section [Japsen et al., 2007] Reconstructed burial-exhumation history (note the Late-Paleogene surface temperature drop) [Japsen et al., 2007]

19 Reconstruction of the inverted part of the North Sea [Japsen et al., 2007] Estimation of the eroded thickness by modelling Response of simulated vitrinite reflectance and fission track age and length data to Late Cretaceous exhumation of (a) 250 and (b) 1000 m. GOF denotes value of the fit statistic; a value of 1 is a perfect fit of the simulated and the observed data. [Luijendijk et al., 2011]

20 Estimation of the eroded thickness by modelling Model fit statistics of all Late Cretaceous exhumation and basal heat flow model scenarios. [Luijendijk et al., 2011] Questions Why do we measure track lengths? Which are the input and output parameters of the thermal modelling? What geological facts should we consider at thermal modelling? What is the measure of the reality of the modelling results?

Low-Temperature Geothermometry and Geochronology in Basis Analysis Part 4: Reconstruction of thermal histories of basins

Low-Temperature Geothermometry and Geochronology in Basis Analysis Part 4: Reconstruction of thermal histories of basins Low-Temperature Geothermometry and Geochronology in Basis Analysis Part 4: Reconstruction of thermal histories of basins István Dunkl Sedimentology, University of Göttingen http://www.sediment.uni-goettingen.de/staff/dunkl/

More information

Geothermometry - inorganic bench-marks

Geothermometry - inorganic bench-marks Beckenanalyse 2: Analytic tools for basin analysis: thermometers and geochronometers [M.Geo.136b] Part 2b: How to measure the paleo-tempearture? (by inorganic methods) University of Göttingen István Dunkl

More information

István Dunkl Sedimentology, University of Göttingen

István Dunkl Sedimentology, University of Göttingen Beckenanalyse 2: Analytic tools for basin analysis: thermometers and geochronometers [M.Geo.136b] Part 2a: How to measure the paleo-tempearture? (by organic methods) University of Göttingen István Dunkl

More information

István Dunkl Sedimentology, University of Göttingen

István Dunkl Sedimentology, University of Göttingen Beckenanalyse 2: Analytic tools for basin analysis: thermometers and geochronometers [M.Geo.136b] Part 3: How to date low-temperature events? Fission track thermochronology University of Göttingen István

More information

Source- to- Sink in the Stra/graphic Record

Source- to- Sink in the Stra/graphic Record Source- to- Sink in the Stra/graphic Record Capturing the Long-Term, Deep-Time Evolution of Sedimentary Systems Stephan A. Graham Stanford University Brian W. Romans Chevron Energy Technology Co. Jacob

More information

Low-Temperature Geothermometry and Geochronology in Basis Analysis Part 2: Fission track dating Nuclear physics, technique, statistics

Low-Temperature Geothermometry and Geochronology in Basis Analysis Part 2: Fission track dating Nuclear physics, technique, statistics Low-Temperature Geothermometry and Geochronology in Basis Analysis Part 2: Fission track dating Nuclear physics, technique, statistics István Dunkl Sedimentology, University of Göttingen http://www.sediment.uni-goettingen.de/staff/dunkl/

More information

Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education

Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education Tibetan Plateau and Himalaya -southern Asia 11.00.a VE 10X

More information

Thermal effects of exhumation of a metamorphic core complex on hanging wall syn-rift sediments: an example from the Rechnitz Window, Eastern Alps

Thermal effects of exhumation of a metamorphic core complex on hanging wall syn-rift sediments: an example from the Rechnitz Window, Eastern Alps ELSEVIER Tectonophysics 297 (1998) 31 50 Thermal effects of exhumation of a metamorphic core complex on hanging wall syn-rift sediments: an example from the Rechnitz Window, Eastern Alps István Dunkl a,b,ł,

More information

We SRS1 11 3D Visualization of Miocene Tectonic Subsidence in the Northern and Central Vienna Basin Using BasinVis 1.0

We SRS1 11 3D Visualization of Miocene Tectonic Subsidence in the Northern and Central Vienna Basin Using BasinVis 1.0 We SRS1 11 3D Visualization of Miocene Tectonic Subsidence in the Northern and Central Vienna Basin Using BasinVis 1.0 E.Y. Lee* (University of Vienna), J. Novotny (Brown University) & M. Wagreich (University

More information

NATURAL ENVIRONMENT. Geophysics

NATURAL ENVIRONMENT. Geophysics NATURAL ENVIRONMENT Geophysics Geodynamics Alpine, Carpathian and Dinaric mountain belts surround the Pannonian (Carpathian) Basin, of Neogene through Quaternary in age. The Cenozoic evolution of the Alpine-Pannonian

More information

Continental Landscapes

Continental Landscapes Continental Landscapes Landscape influenced by tectonics, climate & differential weathering Most landforms developed within the last 2 million years System moves toward an equilibrium Continental Landscapes

More information

THERMAL AND BURIAL HISTORY OF THE SUB-TATRIC NAPPES AND THE PODHALE BASIN - CONSTRAINTS FROM PRELIMINARY MATURITY ANALYSIS AND MODELLING

THERMAL AND BURIAL HISTORY OF THE SUB-TATRIC NAPPES AND THE PODHALE BASIN - CONSTRAINTS FROM PRELIMINARY MATURITY ANALYSIS AND MODELLING THERMAL AND BURIAL HISTORY OF THE SUB-TATRIC NAPPES AND THE PODHALE BASIN - CONSTRAINTS FROM PRELIMINARY MATURITY ANALYSIS AND MODELLING P. POPRAWA, J. GRABOWSKI and I. GROTEK Polish Geological Institute,

More information

entered a rapid development phase. Annual increased proven reserves are above 500 billion cubic meters (bcm) from 2003, and annual natural gas product

entered a rapid development phase. Annual increased proven reserves are above 500 billion cubic meters (bcm) from 2003, and annual natural gas product (), entered a rapid development phase. Annual increased proven reserves are above 500 billion cubic meters (bcm) from 2003, and annual natural gas production has increased from 50bcm in 2000 to nearly

More information

GLY 155 Introduction to Physical Geology, W. Altermann. Press & Siever, compressive forces. Compressive forces cause folding and faulting.

GLY 155 Introduction to Physical Geology, W. Altermann. Press & Siever, compressive forces. Compressive forces cause folding and faulting. Press & Siever, 1995 compressive forces Compressive forces cause folding and faulting. faults 1 Uplift is followed by erosion, which creates new horizontal surface. lava flows Volcanic eruptions cover

More information

THERMAL MATURITY ASSESSMENT OF MIDDLE ROCKS AND HEAT FLOW MODELING IN AGATOVO-SUHINDOL AREA (CENTRAL NORTH BULGARIA)

THERMAL MATURITY ASSESSMENT OF MIDDLE ROCKS AND HEAT FLOW MODELING IN AGATOVO-SUHINDOL AREA (CENTRAL NORTH BULGARIA) DOI: http://dx.doi.org/10.18509/agb.2015.01 UDC: 551.761:550.832.6.05(497.2) COBISS: THERMAL MATURITY ASSESSMENT OF MIDDLE TRIASSIC ROCKS AND HEAT FLOW MODELING IN AGATOVO-SUHINDOL AREA (CENTRAL NORTH

More information

Neogene Uplift of The Barents Sea

Neogene Uplift of The Barents Sea Neogene Uplift of The Barents Sea W. Fjeldskaar A. Amantov Tectonor/UiS, Stavanger, Norway FORCE seminar April 4, 2013 The project (2010-2012) Funding companies Flat Objective The objective of the work

More information

Blocks 31, 32, 33, 34, 35 & 36/03 Southeast Offshore Vietnam

Blocks 31, 32, 33, 34, 35 & 36/03 Southeast Offshore Vietnam Blocks 31, 32, 33, 34, 35 & 36/03 Southeast Offshore Vietnam Block 31 32 33 34 35 36/03 Area (km 2) 5,036 4,440 4,630 4,700 4,630 2,950 Sea level (m) 20 20-30 30-40 50 50 50 Seismic 2D (km) 1,294 685 431

More information

TECTONOTHERMAL EVOLUTION OF THE CENTRAL-WESTERN CARPATHIANS AND THEIR FORELAND

TECTONOTHERMAL EVOLUTION OF THE CENTRAL-WESTERN CARPATHIANS AND THEIR FORELAND TECTONOTHERMAL EVOLUTION OF THE CENTRAL-WESTERN CARPATHIANS AND THEIR FORELAND Ph.D. candidate: ADA CASTELLUCCIO, III course Tutor: Prof. MASSIMILIANO ZATTIN Co-tutor: Prof. STEFANO MAZZOLI Cycle: XXVII

More information

Tectonic position of the sandstone Cenozoic Uranium Deposit of Bulgaria

Tectonic position of the sandstone Cenozoic Uranium Deposit of Bulgaria Tectonic position of the sandstone Cenozoic Uranium Deposit of Bulgaria Radoslav Nakov Geological Institute, Bulgarian Academy of Sciences Pirin Mountain view from Eleshnitsa Mine 2915 m Technical meeting

More information

University of Leeds 3GP Geophysics Field Trip Lake Balaton, Hungary

University of Leeds 3GP Geophysics Field Trip Lake Balaton, Hungary University of Leeds 3GP Geophysics Field Trip Lake Balaton, Hungary September 1-15, 2007 geological background and logistics Staff: Greg Houseman, Graham Stuart The Alpine-Carpathian-Pannonian System Elevation

More information

Pleistocene alteration of drainage network and diverse surface morphology forced by basement structure in the foreland of the Eastern Alps

Pleistocene alteration of drainage network and diverse surface morphology forced by basement structure in the foreland of the Eastern Alps This study was carried out in the framework of a project sponsored by the Hungarian National Science Foundation (OTKA NK83400) and TÁMOP-4.2.2/B-10/1-2010-0030 Pleistocene alteration of drainage network

More information

Earth Science, (Tarbuck/Lutgens) Chapter 10: Mountain Building

Earth Science, (Tarbuck/Lutgens) Chapter 10: Mountain Building Earth Science, (Tarbuck/Lutgens) Chapter 10: Mountain Building 1) A(n) fault has little or no vertical movements of the two blocks. A) stick slip B) oblique slip C) strike slip D) dip slip 2) In a(n) fault,

More information

Chapter 16. Mountain Building. Mountain Building. Mountains and Plate Tectonics. what s the connection?

Chapter 16. Mountain Building. Mountain Building. Mountains and Plate Tectonics. what s the connection? Chapter 16 Mountains and Plate Tectonics what s the connection? Mountain Building Most crustal deformation occurs along plate margins. S.2 Active Margin Passive Margin Mountain Building Factors Affecting

More information

Sedimentary Basins. Gerhard Einsele. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest

Sedimentary Basins. Gerhard Einsele. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Gerhard Einsele Sedimentary Basins Evolution, Facies, and Sediment Budget With 269 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents Part I Types

More information

Structural Modelling of Inversion Structures: A case study on South Cambay Basin

Structural Modelling of Inversion Structures: A case study on South Cambay Basin 10 th Biennial International Conference & Exposition P 065 Structural Modelling of Inversion Structures: A case study on South Cambay Basin Dr. Mayadhar Sahoo & S.K Chakrabarti Summary The inversion in

More information

Cenozoic Extensional Basin Development and Sedimentation in SW Montana

Cenozoic Extensional Basin Development and Sedimentation in SW Montana Cenozoic Extensional Basin Development and Sedimentation in SW Montana Robert C. Thomas Department of Environmental Sciences, The University of Montana Western, Dillon, MT 59725, (406) 683-7615, r_thomas@umwestern.edu

More information

Plaattektoniek en Mickey Mouse: de bewegingen van de Aarde en de geologie van Marokko. G. Bertotti - TUDelft

Plaattektoniek en Mickey Mouse: de bewegingen van de Aarde en de geologie van Marokko. G. Bertotti - TUDelft Plaattektoniek en Mickey Mouse: de bewegingen van de Aarde en de geologie van Marokko G. Bertotti - TUDelft Moving continents Continent with matching boundaries Same fauna in different continents Similar

More information

Search and Discovery Article #41222 (2013)** Posted October 22, 2013

Search and Discovery Article #41222 (2013)** Posted October 22, 2013 3D Thermokinematic Modelling of the Colombian Eastern Cordillera: Refining the Timing of Oil Generation and Expulsion Using Multiple Thermochronometers* Andrés Mora 1, Isaid Quintero 1, Richard Styron

More information

THERMAL HISTORY AND TECTONIC EVOLUTION OF THE WESTERN CARPATHIANS

THERMAL HISTORY AND TECTONIC EVOLUTION OF THE WESTERN CARPATHIANS THERMAL HISTORY AND TECTONIC EVOLUTION OF THE WESTERN CARPATHIANS Ph.D. candidate: BENEDETTA ANDREUCCI, I course Tutor: Prof. MASSIMILIANO ZATTIN Cycle: XXV Abstract The Cenozoic tectonic evolution of

More information

6 Exhumation of the Grampian

6 Exhumation of the Grampian 73 6 Exhumation of the Grampian mountains 6.1 Introduction Section 5 discussed the collision of an island arc with the margin of Laurentia, which led to the formation of a major mountain belt, the Grampian

More information

Answers: Internal Processes and Structures (Isostasy)

Answers: Internal Processes and Structures (Isostasy) Answers: Internal Processes and Structures (Isostasy) 1. Analyse the adjustment of the crust to changes in loads associated with volcanism, mountain building, erosion, and glaciation by using the concept

More information

Depositional Environments and Hydrocarbon Potential of Northern Ionian Sea

Depositional Environments and Hydrocarbon Potential of Northern Ionian Sea Depositional Environments and Hydrocarbon Potential of Northern Ionian Sea Vasiliki Kosmidou George Makrodimitras Nick Papatheodorou Contents Area of Interest Studied Dataset Workflow SWIT and Paleolatitude

More information

Strike-Slip Faults. ! Fault motion is parallel to the strike of the fault.

Strike-Slip Faults. ! Fault motion is parallel to the strike of the fault. Strike-Slip Faults! Fault motion is parallel to the strike of the fault.! Usually vertical, no hanging-wall/footwall blocks.! Classified by the relative sense of motion. " Right lateral opposite block

More information

Chapter 3 Time and Geology

Chapter 3 Time and Geology Chapter 3 Time and Geology Methods of Dating Rocks 1. Relative dating - Using fundamental principles of geology (Steno's Laws, Fossil Succession, etc.) to determine the relative ages of rocks (which rocks

More information

The Building of the NYC Region

The Building of the NYC Region The Building of the NYC Region Definitions Fall Line marks the area where an upland region (continental bedrock) and a coastal plain meet Piedmont the plateau region of the eastern United States which

More information

Chapter 15 Structures

Chapter 15 Structures Chapter 15 Structures Plummer/McGeary/Carlson (c) The McGraw-Hill Companies, Inc. TECTONIC FORCES AT WORK Stress & Strain Stress Strain Compressive stress Shortening strain Tensional stress stretching

More information

of a two-dimensional numerical model of thermal source rock evolution; this model takes into account the kinetic evolution of nappes in the basin.

of a two-dimensional numerical model of thermal source rock evolution; this model takes into account the kinetic evolution of nappes in the basin. ABSTRACT In the study The impications of belts overthrust from subasment of Comănești sedimentary basin in hydrocarbons generation we plan to address the issues related to generation of hydrocarbons in

More information

KEY CHAPTER 12 TAKE-HOME QUIZ INTERNAL STRUCTURES AND PROCESSES Score Part B = / 55 PART B

KEY CHAPTER 12 TAKE-HOME QUIZ INTERNAL STRUCTURES AND PROCESSES Score Part B = / 55 PART B GEOLOGY 12 KEY CHAPTER 12 TAKE-HOME QUIZ INTERNAL STRUCTURES AND PROCESSES Score Part B = / 55 PART B CHAPTER 12 Isostacy and Structural Geology 1. Using the terms below, label the following diagrams and

More information

Geologic Trips San Francisco and the Bay Area

Geologic Trips San Francisco and the Bay Area Excerpt from Geologic Trips San Francisco and the Bay Area by Ted Konigsmark ISBN 0-9661316-4-9 GeoPress All rights reserved. No part of this book may be reproduced without written permission in writing,

More information

Intro to Quantitative Geology

Intro to Quantitative Geology Introduction to Quantitative Geology Lesson 13.1 Basic concepts of thermochronology Lecturer: David Whipp david.whipp@helsinki.fi 4.12.17 3 Goals of this lecture Introduce the basic concepts of thermochronology

More information

Structural Geology of the Mountains

Structural Geology of the Mountains Structural Geology of the Mountains Clinton R. Tippett Shell Canada Limited, Calgary, Alberta clinton.tippett@shell.ca INTRODUCTION The Southern Rocky Mountains of Canada (Figure 1) are made up of several

More information

Sedimentary Basin Analysis http://eqsun.geo.arizona.edu/geo5xx/geos517/ Sedimentary basins can be classified based on the type of plate motions (divergent, convergent), type of the lithosphere, distance

More information

Rocks and the Rock Cycle. Banded Iron Formation

Rocks and the Rock Cycle. Banded Iron Formation Rocks and the Rock Cycle Banded Iron Formation Rocks Big rocks into pebbles, Pebbles into sand. I really hold a million, million Rocks here in my hand. Florence Parry Heide How do rocks change? How are

More information

Lecture 10 Constructing the geological timescale

Lecture 10 Constructing the geological timescale Lecture 10 Constructing the geological timescale Geologic Time Discovering the magnitude of the Earth s past was a momentous development in the history of humanity This discovery forever altered our perception

More information

11.1 Rock Deformation

11.1 Rock Deformation Tarbuck Lutgens Mountain Building 11.1 Rock Deformation Factors Affecting Deformation Factors that influence the strength of a rock and how it will deform include temperature, confining pressure, rock

More information

Chapter 10: Deformation and Mountain Building. Fig. 10.1

Chapter 10: Deformation and Mountain Building. Fig. 10.1 Chapter 10: Deformation and Mountain Building Fig. 10.1 OBJECTIVES Describe the processes of rock deformation and compare and contrast ductile and brittle behavior in rocks. Explain how strike and dip

More information

A comparison of structural styles and prospectivity along the Atlantic margin from Senegal to Benin. Peter Conn*, Ian Deighton* & Dario Chisari*

A comparison of structural styles and prospectivity along the Atlantic margin from Senegal to Benin. Peter Conn*, Ian Deighton* & Dario Chisari* A comparison of structural styles and prospectivity along the Atlantic margin from Senegal to Benin Overview Peter Conn*, Ian Deighton* & Dario Chisari* * TGS, Millbank House, Surbiton, UK, KT6 6AP The

More information

Chapter 3. Geology & Tectonics

Chapter 3. Geology & Tectonics Chapter 3 Geology & Tectonics 3.1 Geology The general geological features of Indonesia are shown in Figure 3.1. The basement formation is metamorphic and it is intruded with plutonic formations. They are

More information

MUHAMMAD S TAMANNAI, DOUGLAS WINSTONE, IAN DEIGHTON & PETER CONN, TGS Nopec Geological Products and Services, London, United Kingdom

MUHAMMAD S TAMANNAI, DOUGLAS WINSTONE, IAN DEIGHTON & PETER CONN, TGS Nopec Geological Products and Services, London, United Kingdom Geological and Geophysical Evaluation of Offshore Morondava Frontier Basin based on Satellite Gravity, Well and regional 2D Seismic Data Interpretation MUHAMMAD S TAMANNAI, DOUGLAS WINSTONE, IAN DEIGHTON

More information

Comment on: Cenozoic evolution of the eastern Danish North Sea by M. Huuse, H. Lykke-Andersen and O. Michelsen, [Marine Geology 177, 243^269]

Comment on: Cenozoic evolution of the eastern Danish North Sea by M. Huuse, H. Lykke-Andersen and O. Michelsen, [Marine Geology 177, 243^269] Marine Geology 186 (2002) 571^575 Discussion Comment on: Cenozoic evolution of the eastern Danish North Sea by M. Huuse, H. Lykke-Andersen and O. Michelsen, [Marine Geology 177, 243^269] P. Japsen, T.

More information

CENOZOIC TECTONIC EVOLUTION OF THE BASIN AND RANGE PROVINCE IN NORTHWESTERN NEVADA

CENOZOIC TECTONIC EVOLUTION OF THE BASIN AND RANGE PROVINCE IN NORTHWESTERN NEVADA [American Journal of Science, Vol. 306, October, 2006, P.616 654, DOI 10.2475/08.2006.02] CENOZOIC TECTONIC EVOLUTION OF THE BASIN AND RANGE PROVINCE IN NORTHWESTERN NEVADA JOSEPH P. COLGAN*, TREVOR A.

More information

Stratigraphic Plays in Active Margin Basin: Fluvio-Deltaic Reservoir Distribution in Ciputat Half Graben, Northwest Java Basin*

Stratigraphic Plays in Active Margin Basin: Fluvio-Deltaic Reservoir Distribution in Ciputat Half Graben, Northwest Java Basin* Stratigraphic Plays in Active Margin Basin: Fluvio-Deltaic Reservoir Distribution in Ciputat Half Graben, Northwest Java Basin* Ary Wahyu Wibowo 1, Astri Pujianto 1, Wisnu Hindadari 1, Arief Wahidin Soedjono

More information

Geodynamics Lecture 8 Thermal processes in the lithosphere

Geodynamics Lecture 8 Thermal processes in the lithosphere Geodynamics Lecture 8 Thermal processes in the lithosphere Lecturer: David Whipp david.whipp@helsinki.fi 25.9.2014 Geodynamics www.helsinki.fi/yliopisto 2 Goals of this lecture Introduce time dependence

More information

1. What define planetary surfaces geologically? 2. What controls the evolution of planetary surfaces?

1. What define planetary surfaces geologically? 2. What controls the evolution of planetary surfaces? Planetary Surfaces: 1. What define planetary surfaces geologically? 2. What controls the evolution of planetary surfaces? 3. How do surface-shaping processes scale across planetary bodies of different

More information

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building Updated by: Rick Oches, Professor of Geology & Environmental Sciences Bentley University Waltham, Massachusetts Based on slides prepared

More information

The Mesozoic. Wednesday, November 30, 11

The Mesozoic. Wednesday, November 30, 11 The Mesozoic Periods of the Mesozoic Triassic- First period of the Mesozoic era Jurassic Cretaceous- Last period of the Mesozoic era Breakup of Pangaea Stage one (Triassic) Rifting and volcanism, normal

More information

Ministry of Oil and Minerals Petroleum Exploration & Production Authority BLOCK 80 (WADI SARR)

Ministry of Oil and Minerals Petroleum Exploration & Production Authority BLOCK 80 (WADI SARR) Ministry of Oil and Minerals Petroleum Exploration & Production Authority BLOCK 80 (WADI SARR) The Wadi Sarr Block (80) occupies an area of 1961 km 2 on the Sayun- Masilah Basin in the central Yemen. Block

More information

Episodic burial and exhumation in NE Brazil after opening of the South Atlantic

Episodic burial and exhumation in NE Brazil after opening of the South Atlantic Data accompanying Episodic burial and exhumation in NE Brazil after opening of the South Atlantic by Japsen et al. Item 1a: Extract of Geotrack report GC990 by Paul F. Green (Onshore Northeast Brazil.

More information

Deformation of Rocks. Orientation of Deformed Rocks

Deformation of Rocks. Orientation of Deformed Rocks Deformation of Rocks Folds and faults are geologic structures caused by deformation. Structural geology is the study of the deformation of rocks and its effects. Fig. 7.1 Orientation of Deformed Rocks

More information

7 Sedimentation and tectonics at a mid- Ordovician to Silurian active margin

7 Sedimentation and tectonics at a mid- Ordovician to Silurian active margin 80 Mountain Building in Scotland 7 Sedimentation and tectonics at a mid- Ordovician to Silurian active margin 7.1 Introduction In mid-ordovician to Silurian times, the Grampian mountains underwent exhumation,

More information

Heat Flow in the Caspian Black Sea Region and its Tectonic Implications*

Heat Flow in the Caspian Black Sea Region and its Tectonic Implications* Heat Flow in the Caspian Black Sea Region and its Tectonic Implications* R. I. Kutas 1 Search and Discovery Article #50400 (2011) Posted April 25, 2011 *Adapted from extended abstract prepared for presentation

More information

(1) Identify 5 major principles of relative dating? For each principle, describe how you tell what is younger and what is older.

(1) Identify 5 major principles of relative dating? For each principle, describe how you tell what is younger and what is older. Things to Know - Third GLG101Exam Page 1 Important Note: This is not everything you need to know or study. However, it provides you with a relatively comprehensive list of questions to help you study.

More information

IRAQ. Target Exploration. Geodynamic Evolutions of The Sedimentary Basins of. This study is a major reference for Petroleum

IRAQ. Target Exploration. Geodynamic Evolutions of The Sedimentary Basins of. This study is a major reference for Petroleum barr Target Exploration Target Exploration Geodynamic Evolutions of The Sedimentary Basins of IRAQ This study is a major reference for Petroleum Explorationists on the tectonics, stratigraphy, sedimentary

More information

Canol Formation Oil Shale, Exhumation Charge, and Regional Geology of the Central Mackenzie, NWT

Canol Formation Oil Shale, Exhumation Charge, and Regional Geology of the Central Mackenzie, NWT Photo: Canol Fm near Arctic Red River Canol Formation Oil Shale, Exhumation Charge, and Regional Geology of the Central Mackenzie, NWT Hadlari T. Geological Survey of GSC 2018 Introduction Research made

More information

Chapter 3 Time and Geology

Chapter 3 Time and Geology Chapter 3 Time and Geology Finding the age of rocks: Relative versus Actual Dating The science that deals with determining the ages of rocks is called geochronology. Methods of Dating Rocks 1. Relative

More information

Exhumation of basement-cored uplifts: Example of the Kyrgyz Range quantified with apatite fission track thermochronology

Exhumation of basement-cored uplifts: Example of the Kyrgyz Range quantified with apatite fission track thermochronology TECTONICS, VOL. 25,, doi:10.1029/2005tc001809, 2006 Exhumation of basement-cored uplifts: Example of the Kyrgyz Range quantified with apatite fission track thermochronology Edward R. Sobel, 1 Michael Oskin,

More information

Effects of transient topography and drainage basin evolution on detrital thermochronometer data

Effects of transient topography and drainage basin evolution on detrital thermochronometer data UNIVERSITY OF MICHIGAN Effects of transient topography and drainage basin evolution on detrital thermochronometer data Contents Acknowledgments...3 Abstract...4 1. Introduction...5 2. Model setup...6 2.1

More information

Chapter. Mountain Building

Chapter. Mountain Building Chapter Mountain Building 11.1 Rock Deformation Factors Affecting Deformation Factors that influence the strength of a rock and how it will deform include temperature, confining pressure, rock type, and

More information

Absolute Time. Part 8 Geochronology and the Time Scale

Absolute Time. Part 8 Geochronology and the Time Scale Absolute Time Part 8 Geochronology and the Time Scale Unless otherwise noted the artwork and photographs in this slide show are original and by Burt Carter. Permission is granted to use them for non-commercial,

More information

FOLDS AND THRUST SYSTEMS IN MASS TRANSPORT DEPOSITS

FOLDS AND THRUST SYSTEMS IN MASS TRANSPORT DEPOSITS FOLDS AND THRUST SYSTEMS IN MASS TRANSPORT DEPOSITS G.I Aslop, S. Marco, T. Levi, R. Weinberger Presentation by Aaron Leonard INTRODUCTION Examine fold and thrust geometries associated with downslope movement

More information

IDENTIFICATION OF THE SOURCE AREAS FOR THE PALEOGENE TURBIDITIC DEPOSITS OF THE PIENIDIAN UNITS IN MARAMURES

IDENTIFICATION OF THE SOURCE AREAS FOR THE PALEOGENE TURBIDITIC DEPOSITS OF THE PIENIDIAN UNITS IN MARAMURES STUDIA UNIVERSITATIS BABEŞ-BOLYAI, GEOLOGIA, XLVIII, 2, 2003, 51-58 IDENTIFICATION OF THE SOURCE AREAS FOR THE PALEOGENE TURBIDITIC DEPOSITS OF THE PIENIDIAN UNITS IN MARAMURES CARLO AROLDI 1 ABSTRACT.

More information

Sedimentary Cycle Best Practice: Potential Eo-Oligocene Sediments in Western Indonesia*

Sedimentary Cycle Best Practice: Potential Eo-Oligocene Sediments in Western Indonesia* Sedimentary Cycle Best Practice: Potential Eo-Oligocene Sediments in Western Indonesia* Mellinda Arisandy 1 and I Wayan Darma 1 Search and Discovery Article #11008 (2017)** Posted November 6, 2017 *Adapted

More information

Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits

Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits Earth and Planetary Science Letters 256 (2007) 147 161 www.elsevier.com/locate/epsl Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits Jeffrey M. Rahl,

More information

Controls on facies distributions in the Charlie Lake Formation, Peace River Arch, Alberta

Controls on facies distributions in the Charlie Lake Formation, Peace River Arch, Alberta Controls on facies distributions in the Charlie Lake Formation, Peace River Arch, Alberta E.L. Percy 12, C. Frostad 2, A. Juska 2, C. Schmidt 2, C. Sitzler 2, and J.P. Zonneveld 3 University of Calgary,

More information

Crustal Deformation. Earth Systems 3209

Crustal Deformation. Earth Systems 3209 Crustal Deformation Earth Systems 3209 Crustal Deformation pg. 415 Refers to all changes in the original form and/or size of a rock body. May also produce changes in the location and orientation of rocks.

More information

Triassic of the Barents Sea shelf: depositional environments and hydrocarbon potential. Daria A. Norina 1,2

Triassic of the Barents Sea shelf: depositional environments and hydrocarbon potential. Daria A. Norina 1,2 Triassic of the Barents Sea shelf: depositional environments and hydrocarbon potential Daria A. Norina 1,2 1 TOTAL (Paris, France) 2 The work is a part of PhD thesis conducted in Petroleum Department,

More information

Accelerated extension of Tibet linked to the northward underthrusting of Indian crust

Accelerated extension of Tibet linked to the northward underthrusting of Indian crust Accelerated extension of Tibet linked to the northward underthrusting of Indian crust Richard Styron*, Michael Taylor, and Kurt Sundell richard.h.styron@gmail.com DOI: 1.138/NGEO2336 Methods summary The

More information

Setting the Stage 8/28/09 1. Review. Landscape history of WY. Climate, geology and vegetation patterns in Wyoming

Setting the Stage 8/28/09 1. Review. Landscape history of WY. Climate, geology and vegetation patterns in Wyoming Setting the Stage Climate, geology and vegetation patterns in Wyoming 8/28/09 1 Review Vegetation ecology has its roots in phytogeography: Observation and description of PATTERNS of plant species distributions

More information

Tectonic plates of the world

Tectonic plates of the world Mountain Building Tectonic plates of the world ISOSTACY Isostatic Rebound crust rises as a result of removal of mass This iceberg also demonstrates the process of isostatic rebound. Types of Mountains

More information

Lecture 9 faults, folds and mountain building

Lecture 9 faults, folds and mountain building Lecture 9 faults, folds and mountain building Rock deformation Deformation = all changes in size, shape, orientation, or position of a rock mass Structural geology is the study of rock deformation Deformation

More information

Sedimentation on passive margins. Master1 Géologie de l Exploration et des Réservoirs Dynamique des Bassins Michel Séranne

Sedimentation on passive margins. Master1 Géologie de l Exploration et des Réservoirs Dynamique des Bassins Michel Séranne Sedimentation on passive margins 1 Tectonic-sedimentation relationships at passive margin scale rift Break-up Young margin Sedimentation is controled by continental margin geodynamic evolution Mature margin

More information

RELINQUISHMENT REPORT. License P1546 Block April 2009

RELINQUISHMENT REPORT. License P1546 Block April 2009 RELINQUISHMENT REPORT License P1546 Block 110-01 14 April 2009 Sherritt International Oil and Gas Limited 2000, 425-1 st street S.W., Calgary, Alberta Canada T2P 3L8 Telephone (403) 260-2900 Fax (403)

More information

Thermal Subsidence Tool in Move

Thermal Subsidence Tool in Move Thermal Subsidence Tool in Move During the formation of rift basins, the continental crust is stretched and thinned. As it thins, the asthenosphere rises to fill the space created by the thinned continental

More information

Intro to Quantitative Geology

Intro to Quantitative Geology Introduction to Quantitative Geology Lesson 13.2 Low-temperature thermochronology Lecturer: David Whipp david.whipp@helsinki.fi 4.12.17 3 Goals of this lecture Define low-temperature thermochronology Introduce

More information

Tectonics is a study of the major structural features of the Earth s crust or a broad structure of a region. Tecto- means building

Tectonics is a study of the major structural features of the Earth s crust or a broad structure of a region. Tecto- means building TECTONICS AND TECTONIC STRUCTURES Tectonics is a study of the major structural features of the Earth s crust or a broad structure of a region. Tecto- means building The plate theory Different stages are

More information

Sequence stratigraphy and basin analysis of the Meso- to Cenozoic Tarfaya- Laayoune Basins, on- and offshore Morocco

Sequence stratigraphy and basin analysis of the Meso- to Cenozoic Tarfaya- Laayoune Basins, on- and offshore Morocco Sequence stratigraphy and basin analysis of the Meso- to Cenozoic Tarfaya- Laayoune Basins, on- and offshore Morocco INAUGURAL-DISSERTATION zur Erlangung der Doktorwtirde der Naturwissenschaftlich-Mathematischen

More information

Faults, folds and mountain building

Faults, folds and mountain building Faults, folds and mountain building Mountain belts Deformation Orogens (Oro = Greek all changes for mountain, in size, shape, genesis orientation, = Greek for or formation) position of a rock mass Structural

More information

A TRIP THROUGH VIRGINIA GEOLOGY FROM AN ENGINEER S PERSPECTIVE

A TRIP THROUGH VIRGINIA GEOLOGY FROM AN ENGINEER S PERSPECTIVE A TRIP THROUGH VIRGINIA GEOLOGY FROM AN ENGINEER S PERSPECTIVE Bob Moss, PE Principal Engineer ECS Mid Atlantic, LLC The Engineer Parent WHY IS AN UNDERSTANDING OF LOCAL GEOLOGY IMPORTANT? It provides

More information

Sequence Stratigraphy. Historical Perspective

Sequence Stratigraphy. Historical Perspective Sequence Stratigraphy Historical Perspective Sequence Stratigraphy Sequence Stratigraphy is the subdivision of sedimentary basin fills into genetic packages bounded by unconformities and their correlative

More information

Seismic stratigraphy, some examples from Indian Ocean, interpretation of reflection data in interactive mode

Seismic stratigraphy, some examples from Indian Ocean, interpretation of reflection data in interactive mode Seismic stratigraphy, some examples from Indian Ocean, interpretation of reflection data in interactive mode K. S. Krishna National Institute of Oceanography, Dona Paula, Goa-403 004. krishna@nio.org Seismic

More information

Geology (Mellow) Hike, Santa Lucia Memorial Park February 16, I. Overview of Santa Lucia Range geology and tectonic history

Geology (Mellow) Hike, Santa Lucia Memorial Park February 16, I. Overview of Santa Lucia Range geology and tectonic history Geology (Mellow) Hike, Santa Lucia Memorial Park February 16, 2015 I. Overview of Santa Lucia Range geology and tectonic history A. Basement Rocks 1. Salinian Block Rocks Sierra Nevada Type, continental

More information

Vail et al., 1977b. AAPG 1977 reprinted with permission of the AAPG whose permission is required for further use.

Vail et al., 1977b. AAPG 1977 reprinted with permission of the AAPG whose permission is required for further use. Well 5 Well 4 Well 3 Well 2 Well 1 Vail et al., 1977b AAPG 1977 reprinted with permission of the AAPG whose permission is required for further use. Well 5 Well 4 Well 3 Well 2 Well 1 Vail et al., 1977b

More information

Sediment and sedimentary rocks Sediment

Sediment and sedimentary rocks Sediment Sediment and sedimentary rocks Sediment From sediments to sedimentary rocks (transportation, deposition, preservation and lithification) Types of sedimentary rocks (clastic, chemical and organic) Sedimentary

More information

Ny bassengmodellering for Barentshavet Ute Mann SINTEF Petroleumsforskning

Ny bassengmodellering for Barentshavet Ute Mann SINTEF Petroleumsforskning Ny bassengmodellering for Barentshavet Ute Mann SINTEF Petroleumsforskning www.og21.no Barents Sea - Challenges 7 different play types Carboniferous Tertiary Uplift and erosion Tilting, reactivation of

More information

Before Plate Tectonics: Theory of Continental Drift

Before Plate Tectonics: Theory of Continental Drift Before Plate Tectonics: Theory of Continental Drift Predecessor to modern plate tectonics Shape and fit of the continents was the initial evidence Snider-Pelligrini (1858) Taylor (1908) Wegner (1915) Fig.

More information

Quantifying tectonic versus erosive denudation by the sediment budget: the Miocene core complexes of the Alps

Quantifying tectonic versus erosive denudation by the sediment budget: the Miocene core complexes of the Alps Tectonophysics 330 (2001) 1 23 www.elsevier.com/locate/tecto Quantifying tectonic versus erosive denudation by the sediment budget: the Miocene core complexes of the Alps J. Kuhlemann*, W. Frisch, I. Dunkl,

More information

Topics Laramide Orogeny: Late Cretaceous to Early Eocene Reading: GSA DNAG volume 3, Ch. 6

Topics Laramide Orogeny: Late Cretaceous to Early Eocene Reading: GSA DNAG volume 3, Ch. 6 Topics Laramide Orogeny: Late Cretaceous to Early Eocene Reading: GSA DNAG volume 3, Ch. 6 Late Cretaceous to early Eocene New patterns developed 5 main regions Tectonic interpretations Post-Laramide events

More information

Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne

Master1 Réservoirs Géologiques Architecture des Bassins - Michel Séranne 1 Tectonic-sedimentation relationships at passive margin scale Outward drainage Bordering Alluvial fans rift Axial Lake (restricted => Preserved OM) Transgressive seq.(evaporites) Sedimentation is controled

More information

Trevor Hillebrand. The eastern side of the Sierra Nevada displays striking variations in morphology. In the

Trevor Hillebrand. The eastern side of the Sierra Nevada displays striking variations in morphology. In the Hillebrand 1 A comparison of tectonics of the eastern Sierra Nevada, CA in the vicinity of Mt. Whitney and Lee Vining, using (U-Th)/He and 4 He/ 3 He thermochronometry: Preliminary results and thermal

More information

EDIMENTARY BASINS. What is a Sedimentary Basin? by Prof. Dr. Abbas Mansour

EDIMENTARY BASINS. What is a Sedimentary Basin? by Prof. Dr. Abbas Mansour EDIMENTARY BASINS What is a Sedimentary Basin? by Prof. Dr. Abbas Mansour WHAT IS A SEDIMENTARY BASIN? A low area on the Earth s surface relative to surroundings e.g. deep ocean basin (5-10 km deep) e.g.

More information