Virtual Screening: How Are We Doing?

Size: px
Start display at page:

Download "Virtual Screening: How Are We Doing?"

Transcription

1 Virtual Screening: How Are We Doing? Mark E. Snow, James Dunbar, Lakshmi Narasimhan, Jack A. Bikker, Dan Ortwine, Christopher Whitehead, Yiannis Kaznessis, Dave Moreland, Christine Humblet Pfizer Global Research & Development Ann Arbor, MI Spring 2001 ACS National Meeting, San Diego

2 Compound DBs Virtual libraries Collected synthetic ideas Virtual Screening Prioritized list of compounds for - screening - array synthesis - individual synthesis

3 Compound DBs Virtual libraries Collected synthetic ideas Virtual Screening Prioritized list of compounds for - screening - array synthesis - individual synthesis Docking and Scoring vs. Protein Structure 3D DB searching with pharmacophore query 2D DB searching with statistical models Physical Properties filters, ADME/Tox models

4 Virtual Screening Statistical Compound-Based Methods Docking and Scoring Knowledge of protein structure not required Requires 3D structure of protein target (x-ray, nmr, or very good homology model)

5 Virtual Screening Statistical Compound-Based Methods Docking and Scoring Screening data required to build and train model No screening data required

6 Virtual Screening Statistical Compound-Based Methods Docking and Scoring Excellent at finding compounds with structural similarities to known actives May have poorer overall enrichment rates, but be better at finding novel structural types

7 AGDOCK Autodock DOCK FlexX GOLD Virtual Screening: Docking Tools Gehlhaar, D. K., et al Chem. Bio. 1995, 2, 317. Goodsell, D.S., et al, Proteins: Struct., Funct. Genet., 1990, 8, 195. Ewing, T.J.A. and Kuntz, I.D., J. Comput. Chem. 1997, 18,1175. Rarey, M., et al, J. Mol. Biol. 1996, 261, 470. Jones G., et al, J. Mol. Biol., 1997, 267, 727. Computer-Assisted Drug Discovery

8 FlexX scoring function* FlexX score = HB_term + electrostatic_term + lipophilic term + NROT term + constant. * Bohm, H.-J. J. Comput.-Aided Mol. Design (1994) 8, Computer-Assisted Drug Discovery

9 Docking vs. Scoring Docking: Selecting the correct binding mode, from among the alternatives, for a given compound. Scoring: Comparing the relative affinities of different compounds against a common protein target. A good function for Docking may not necessarily be a good function for scoring.

10 * 300 MHz R Computer-Assisted Drug Discovery Docking and Scoring: Computational throughput is still an issue, but not like it used to be: FlexX 1-2 cpu min/compound* cfx (combinatorial arrays) - considerably faster

11 Protein 1 (a short-chain dehydrogenase) log (IC 50 ) FlexX Score Computer-Assisted Drug Discovery

12 Enrichment Study Test database: actives from mass screen + ~3000 control compounds (diverse subset of corporate database, cluster plates ). Rank compounds in test database by docking score. If you select compounds based on their scores, how rapidly so you select the actives relative to the other compounds? How does this compare to random?

13 Protein 1 (a short-chain dehydrogenase) percent of actives found percent of DB searched Computer-Assisted Drug Discovery

14 Protein 2 (a kinase) log (IC 50 ) FlexX Score

15 Protein 2 (a kinase) percent of actives found percent of DB searched

16 Protein 3 (a serine protease) log (IC 50 ) FlexX Score Computer-Assisted Drug Discovery

17 Protein 3 (a serine protease) percent of actives found percent of DB searched Computer-Assisted Drug Discovery

18 Protein 8 (an aspartyl protease) log (IC 50 ) FlexX score

19 Protein 8 (an aspartyl protease) percent of actives found percent of DB searched Computer-Assisted Drug Discovery

20 Scoring Functions GOLD score = H_bond_energy (complex) + steric_energy (complex) + internal_energy (ligand) * Jones, G., et al J. Mol. Biol. (1997) 267, DSCORE = DOCK energy score (grid-based, AMBER forcefield, VDW + electrostatic terms). * Meng, E.C., et al J. Comput. Chem. (1992)

21 Scoring Functions FlexX score = HB_term + electrostatic_term + lipophilic term + NROT term + constant. * Bohm, H.-J. J. Comput.-Aided Mol. Design (1994) 8, PSCORE = Potential of Mean Force, sum of pairs of atoms. * Muegge, I. & Martin, Y.C. J. Med. Chem. (1999) 42,

22 Correlation Between Scoring Functions and IC 50 s Protein 1, 68 active compounds. Binding is in correct mode for the seven compounds for which we have crystal structures log (IC 50 ) FlexX PSCORE GSCORE log (IC 50 ) FlexX PSCORE GSCORE 1.00

23 Scoring Functions The GOLD and DOCK functions consists primarily of Molecular Mechanics enthalpies. The FlexX and PMF functions attempt to include entropic terms (both configurational and desolvation) either explicitly (FlexX) or implicitly (PMF).

24 Protein 4 (a short-chain dehydrogenase - no cofactor) percent of actives found percent of DB searched Computer-Assisted Drug Discovery

25 Protein 4 (a short-chain dehydrogenase) no cofactor with cofactor percent of actives found percent of DB searched Computer-Assisted Drug Discovery

26 Protein 4 (a short-chain dehydrogenase) -5 FlexX (with cofactor) FlexX (no cofactor) rule of five compliant not compliant

27 FlexX scores - correlation between proteins FlexX (protein 2) FlexX (protein 3) FlexX (protein 5) rule of five compliant not compliant FlexX (protein 6) FlexX (protein 4)

28 FlexX scores - correlation between proteins (45 mass screen hits vs. protein 4) protein 4 protein 4(apo) protein 5 protein 6 protein 3 protein 2 protein 7 protein protein 4 (apo) protein protein protein protein 2.82

29 Take-home points A scoring function optimized for docking (comparing binding modes of a given compound) is not necessarily optimized for scoring (comparing strength of binding between compounds). Scoring functions which include entropic terms appear to be better scorers than those that look like molecular mechanics enthalpies. Computer-Assisted Drug Discovery

30 Take-home points A modest correlation between docking score and log(ic 50 ) does not preclude the efficient identification of actives embedded in a larger DB. Computer-Assisted Drug Discovery

31 Take-home points Virtual screening using docking methods works reasonably well for some proteins and very poorly for others. It helps to have crystal structures with bound ligand(s).

32 Take-home points FlexX scores are correlated across different (unrelated) protein targets! Some compounds score well regardless of the protein to which they are docked.

33 Take-home points There is still room to improve scoring functions.

34 Thank you Jim Dunbar Lakshmi Narasimhan Jack Bikker Dan Ortwine Chris Whitehead Yiannis Kaznessis Dave Moreland Christine Humblet Dave Lowis (Tripos) Steve Burkett (Tripos)

Dr. Sander B. Nabuurs. Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre

Dr. Sander B. Nabuurs. Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre Dr. Sander B. Nabuurs Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre The road to new drugs. How to find new hits? High Throughput

More information

Protein-Ligand Docking Evaluations

Protein-Ligand Docking Evaluations Introduction Protein-Ligand Docking Evaluations Protein-ligand docking: Given a protein and a ligand, determine the pose(s) and conformation(s) minimizing the total energy of the protein-ligand complex

More information

Kd = koff/kon = [R][L]/[RL]

Kd = koff/kon = [R][L]/[RL] Taller de docking y cribado virtual: Uso de herramientas computacionales en el diseño de fármacos Docking program GLIDE El programa de docking GLIDE Sonsoles Martín-Santamaría Shrödinger is a scientific

More information

Protein-Ligand Docking

Protein-Ligand Docking Protein-Ligand Docking Matthias Rarey GMD - German National Research Center for Information Technology Institute for Algorithms and Scientific Computing (SCAI) 53754Sankt Augustin, Germany rarey@gmd.de

More information

Protein-Ligand Docking Methods

Protein-Ligand Docking Methods Review Goal: Given a protein structure, predict its ligand bindings Protein-Ligand Docking Methods Applications: Function prediction Drug discovery etc. Thomas Funkhouser Princeton University S597A, Fall

More information

Softwares for Molecular Docking. Lokesh P. Tripathi NCBS 17 December 2007

Softwares for Molecular Docking. Lokesh P. Tripathi NCBS 17 December 2007 Softwares for Molecular Docking Lokesh P. Tripathi NCBS 17 December 2007 Molecular Docking Attempt to predict structures of an intermolecular complex between two or more molecules Receptor-ligand (or drug)

More information

Computational chemical biology to address non-traditional drug targets. John Karanicolas

Computational chemical biology to address non-traditional drug targets. John Karanicolas Computational chemical biology to address non-traditional drug targets John Karanicolas Our computational toolbox Structure-based approaches Ligand-based approaches Detailed MD simulations 2D fingerprints

More information

The PhilOEsophy. There are only two fundamental molecular descriptors

The PhilOEsophy. There are only two fundamental molecular descriptors The PhilOEsophy There are only two fundamental molecular descriptors Where can we use shape? Virtual screening More effective than 2D Lead-hopping Shape analogues are not graph analogues Molecular alignment

More information

Using Bayesian Statistics to Predict Water Affinity and Behavior in Protein Binding Sites. J. Andrew Surface

Using Bayesian Statistics to Predict Water Affinity and Behavior in Protein Binding Sites. J. Andrew Surface Using Bayesian Statistics to Predict Water Affinity and Behavior in Protein Binding Sites Introduction J. Andrew Surface Hampden-Sydney College / Virginia Commonwealth University In the past several decades

More information

Hit Finding and Optimization Using BLAZE & FORGE

Hit Finding and Optimization Using BLAZE & FORGE Hit Finding and Optimization Using BLAZE & FORGE Kevin Cusack,* Maria Argiriadi, Eric Breinlinger, Jeremy Edmunds, Michael Hoemann, Michael Friedman, Sami Osman, Raymond Huntley, Thomas Vargo AbbVie, Immunology

More information

Retrieving hits through in silico screening and expert assessment M. N. Drwal a,b and R. Griffith a

Retrieving hits through in silico screening and expert assessment M. N. Drwal a,b and R. Griffith a Retrieving hits through in silico screening and expert assessment M.. Drwal a,b and R. Griffith a a: School of Medical Sciences/Pharmacology, USW, Sydney, Australia b: Charité Berlin, Germany Abstract:

More information

Docking. GBCB 5874: Problem Solving in GBCB

Docking. GBCB 5874: Problem Solving in GBCB Docking Benzamidine Docking to Trypsin Relationship to Drug Design Ligand-based design QSAR Pharmacophore modeling Can be done without 3-D structure of protein Receptor/Structure-based design Molecular

More information

Using AutoDock for Virtual Screening

Using AutoDock for Virtual Screening Using AutoDock for Virtual Screening CUHK Croucher ASI Workshop 2011 Stefano Forli, PhD Prof. Arthur J. Olson, Ph.D Molecular Graphics Lab Screening and Virtual Screening The ultimate tool for identifying

More information

Using Phase for Pharmacophore Modelling. 5th European Life Science Bootcamp March, 2017

Using Phase for Pharmacophore Modelling. 5th European Life Science Bootcamp March, 2017 Using Phase for Pharmacophore Modelling 5th European Life Science Bootcamp March, 2017 Phase: Our Pharmacohore generation tool Significant improvements to Phase methods in 2016 New highly interactive interface

More information

György M. Keserű H2020 FRAGNET Network Hungarian Academy of Sciences

György M. Keserű H2020 FRAGNET Network Hungarian Academy of Sciences Fragment based lead discovery - introduction György M. Keserű H2020 FRAGET etwork Hungarian Academy of Sciences www.fragnet.eu Hit discovery from screening Druglike library Fragment library Large molecules

More information

High Throughput In-Silico Screening Against Flexible Protein Receptors

High Throughput In-Silico Screening Against Flexible Protein Receptors John von Neumann Institute for Computing High Throughput In-Silico Screening Against Flexible Protein Receptors H. Sánchez, B. Fischer, H. Merlitz, W. Wenzel published in From Computational Biophysics

More information

Introduction. OntoChem

Introduction. OntoChem Introduction ntochem Providing drug discovery knowledge & small molecules... Supporting the task of medicinal chemistry Allows selecting best possible small molecule starting point From target to leads

More information

Protein-Ligand Docking Methods

Protein-Ligand Docking Methods Review Goal: Given a protein structure, predict its ligand bindings Protein-Ligand Docking Methods Applications: Function prediction Drug discovery etc. Thomas Funkhouser Princeton University S597A, Fall

More information

A Tiered Screen Protocol for the Discovery of Structurally Diverse HIV Integrase Inhibitors

A Tiered Screen Protocol for the Discovery of Structurally Diverse HIV Integrase Inhibitors A Tiered Screen Protocol for the Discovery of Structurally Diverse HIV Integrase Inhibitors Rajarshi Guha, Debojyoti Dutta, Ting Chen and David J. Wild School of Informatics Indiana University and Dept.

More information

Fragment based drug discovery in teams of medicinal and computational chemists. Carsten Detering

Fragment based drug discovery in teams of medicinal and computational chemists. Carsten Detering Fragment based drug discovery in teams of medicinal and computational chemists Carsten Detering BioSolveIT Quick Facts Founded in 2001 by the developers of FlexX ~20 people Core expertise: docking, screening,

More information

Structure-based maximal affinity model predicts small-molecule druggability

Structure-based maximal affinity model predicts small-molecule druggability Structure-based maximal affinity model predicts small-molecule druggability Alan Cheng alan.cheng@amgen.com IMA Workshop (Jan 17, 2008) Druggability prediction Introduction Affinity model Some results

More information

Computational Chemistry in Drug Design. Xavier Fradera Barcelona, 17/4/2007

Computational Chemistry in Drug Design. Xavier Fradera Barcelona, 17/4/2007 Computational Chemistry in Drug Design Xavier Fradera Barcelona, 17/4/2007 verview Introduction and background Drug Design Cycle Computational methods Chemoinformatics Ligand Based Methods Structure Based

More information

FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC )

FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC ) FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC ) SARomics Biostructures AB & Red Glead Discovery AB Medicon Village, Lund, Sweden Fragment-based lead discovery The basic idea:

More information

Fragment Hotspot Maps: A CSD-derived Method for Hotspot identification

Fragment Hotspot Maps: A CSD-derived Method for Hotspot identification Fragment Hotspot Maps: A CSD-derived Method for Hotspot identification Chris Radoux www.ccdc.cam.ac.uk radoux@ccdc.cam.ac.uk 1 Introduction Hotspots Strongly attractive to organic molecules Organic molecules

More information

MM-GBSA for Calculating Binding Affinity A rank-ordering study for the lead optimization of Fxa and COX-2 inhibitors

MM-GBSA for Calculating Binding Affinity A rank-ordering study for the lead optimization of Fxa and COX-2 inhibitors MM-GBSA for Calculating Binding Affinity A rank-ordering study for the lead optimization of Fxa and COX-2 inhibitors Thomas Steinbrecher Senior Application Scientist Typical Docking Workflow Databases

More information

In silico pharmacology for drug discovery

In silico pharmacology for drug discovery In silico pharmacology for drug discovery In silico drug design In silico methods can contribute to drug targets identification through application of bionformatics tools. Currently, the application of

More information

Introduction to FBDD Fragment screening methods and library design

Introduction to FBDD Fragment screening methods and library design Introduction to FBDD Fragment screening methods and library design Samantha Hughes, PhD Fragments 2013 RSC BMCS Workshop 3 rd March 2013 Copyright 2013 Galapagos NV Why fragment screening methods? Guess

More information

Receptor Based Drug Design (1)

Receptor Based Drug Design (1) Induced Fit Model For more than 100 years, the behaviour of enzymes had been explained by the "lock-and-key" mechanism developed by pioneering German chemist Emil Fischer. Fischer thought that the chemicals

More information

DivCalc: A Utility for Diversity Analysis and Compound Sampling

DivCalc: A Utility for Diversity Analysis and Compound Sampling Molecules 2002, 7, 657-661 molecules ISSN 1420-3049 http://www.mdpi.org DivCalc: A Utility for Diversity Analysis and Compound Sampling Rajeev Gangal* SciNova Informatics, 161 Madhumanjiri Apartments,

More information

Bioengineering & Bioinformatics Summer Institute, Dept. Computational Biology, University of Pittsburgh, PGH, PA

Bioengineering & Bioinformatics Summer Institute, Dept. Computational Biology, University of Pittsburgh, PGH, PA Pharmacophore Model Development for the Identification of Novel Acetylcholinesterase Inhibitors Edwin Kamau Dept Chem & Biochem Kennesa State Uni ersit Kennesa GA 30144 Dept. Chem. & Biochem. Kennesaw

More information

Virtual Libraries and Virtual Screening in Drug Discovery Processes using KNIME

Virtual Libraries and Virtual Screening in Drug Discovery Processes using KNIME Virtual Libraries and Virtual Screening in Drug Discovery Processes using KNIME Iván Solt Solutions for Cheminformatics Drug Discovery Strategies for known targets High-Throughput Screening (HTS) Cells

More information

User Guide for LeDock

User Guide for LeDock User Guide for LeDock Hongtao Zhao, PhD Email: htzhao@lephar.com Website: www.lephar.com Copyright 2017 Hongtao Zhao. All rights reserved. Introduction LeDock is flexible small-molecule docking software,

More information

FRAUNHOFER IME SCREENINGPORT

FRAUNHOFER IME SCREENINGPORT FRAUNHOFER IME SCREENINGPORT Design of screening projects General remarks Introduction Screening is done to identify new chemical substances against molecular mechanisms of a disease It is a question of

More information

Virtual affinity fingerprints in drug discovery: The Drug Profile Matching method

Virtual affinity fingerprints in drug discovery: The Drug Profile Matching method Ágnes Peragovics Virtual affinity fingerprints in drug discovery: The Drug Profile Matching method PhD Theses Supervisor: András Málnási-Csizmadia DSc. Associate Professor Structural Biochemistry Doctoral

More information

Ignasi Belda, PhD CEO. HPC Advisory Council Spain Conference 2015

Ignasi Belda, PhD CEO. HPC Advisory Council Spain Conference 2015 Ignasi Belda, PhD CEO HPC Advisory Council Spain Conference 2015 Business lines Molecular Modeling Services We carry out computational chemistry projects using our selfdeveloped and third party technologies

More information

Structure based drug design and LIE models for GPCRs

Structure based drug design and LIE models for GPCRs Structure based drug design and LIE models for GPCRs Peter Kolb kolb@docking.org Shoichet Lab ACS 237 th National Meeting, March 24, 2009 p.1/26 [Acknowledgements] Brian Shoichet John Irwin Mike Keiser

More information

The Schrödinger KNIME extensions

The Schrödinger KNIME extensions The Schrödinger KNIME extensions Computational Chemistry and Cheminformatics in a workflow environment Jean-Christophe Mozziconacci Volker Eyrich Topics What are the Schrödinger extensions? Workflow application

More information

Cheminformatics platform for drug discovery application

Cheminformatics platform for drug discovery application EGI-InSPIRE Cheminformatics platform for drug discovery application Hsi-Kai, Wang Academic Sinica Grid Computing EGI User Forum, 13, April, 2011 1 Introduction to drug discovery Computing requirement of

More information

What is Protein-Ligand Docking?

What is Protein-Ligand Docking? MOLECULAR DOCKING Definition: What is Protein-Ligand Docking? Computationally predict the structures of protein-ligand complexes from their conformations and orientations. The orientation that maximizes

More information

Virtual screening in drug discovery

Virtual screening in drug discovery Virtual screening in drug discovery Pavel Polishchuk Institute of Molecular and Translational Medicine Palacky University pavlo.polishchuk@upol.cz Drug development workflow Vistoli G., et al., Drug Discovery

More information

Biologically Relevant Molecular Comparisons. Mark Mackey

Biologically Relevant Molecular Comparisons. Mark Mackey Biologically Relevant Molecular Comparisons Mark Mackey Agenda > Cresset Technology > Cresset Products > FieldStere > FieldScreen > FieldAlign > FieldTemplater > Cresset and Knime About Cresset > Specialist

More information

Structural biology and drug design: An overview

Structural biology and drug design: An overview Structural biology and drug design: An overview livier Taboureau Assitant professor Chemoinformatics group-cbs-dtu otab@cbs.dtu.dk Drug discovery Drug and drug design A drug is a key molecule involved

More information

Development of Pharmacophore Model for Indeno[1,2-b]indoles as Human Protein Kinase CK2 Inhibitors and Database Mining

Development of Pharmacophore Model for Indeno[1,2-b]indoles as Human Protein Kinase CK2 Inhibitors and Database Mining Development of Pharmacophore Model for Indeno[1,2-b]indoles as Human Protein Kinase CK2 Inhibitors and Database Mining Samer Haidar 1, Zouhair Bouaziz 2, Christelle Marminon 2, Tiomo Laitinen 3, Anti Poso

More information

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions Molecular Interactions F14NMI Lecture 4: worked answers to practice questions http://comp.chem.nottingham.ac.uk/teaching/f14nmi jonathan.hirst@nottingham.ac.uk (1) (a) Describe the Monte Carlo algorithm

More information

A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery

A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery AtomNet A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery Izhar Wallach, Michael Dzamba, Abraham Heifets Victor Storchan, Institute for Computational and

More information

Supporting Information

Supporting Information Discovery of kinase inhibitors by high-throughput docking and scoring based on a transferable linear interaction energy model Supporting Information Peter Kolb, Danzhi Huang, Fabian Dey and Amedeo Caflisch

More information

Structural Interaction Fingerprint (SIFt): A Novel Method for Analyzing Three-Dimensional Protein-Ligand Binding Interactions

Structural Interaction Fingerprint (SIFt): A Novel Method for Analyzing Three-Dimensional Protein-Ligand Binding Interactions J. Med. Chem. 2004, 47, 337-344 337 Structural Interaction Fingerprint (SIFt): A Novel Method for Analyzing Three-Dimensional Protein-Ligand Binding Interactions Zhan Deng, Claudio Chuaqui, and Juswinder

More information

Targeting protein-protein interactions: A hot topic in drug discovery

Targeting protein-protein interactions: A hot topic in drug discovery Michal Kamenicky; Maria Bräuer; Katrin Volk; Kamil Ödner; Christian Klein; Norbert Müller Targeting protein-protein interactions: A hot topic in drug discovery 104 Biomedizin Innovativ patientinnenfokussierte,

More information

est Drive K20 GPUs! Experience The Acceleration Run Computational Chemistry Codes on Tesla K20 GPU today

est Drive K20 GPUs! Experience The Acceleration Run Computational Chemistry Codes on Tesla K20 GPU today est Drive K20 GPUs! Experience The Acceleration Run Computational Chemistry Codes on Tesla K20 GPU today Sign up for FREE GPU Test Drive on remotely hosted clusters www.nvidia.com/gputestd rive Shape Searching

More information

OpenDiscovery: Automated Docking of Ligands to Proteins and Molecular Simulation

OpenDiscovery: Automated Docking of Ligands to Proteins and Molecular Simulation OpenDiscovery: Automated Docking of Ligands to Proteins and Molecular Simulation Gareth Price Computational MiniProject OpenDiscovery Aims + Achievements Produce a high-throughput protocol to screen a

More information

Structural Bioinformatics (C3210) Molecular Docking

Structural Bioinformatics (C3210) Molecular Docking Structural Bioinformatics (C3210) Molecular Docking Molecular Recognition, Molecular Docking Molecular recognition is the ability of biomolecules to recognize other biomolecules and selectively interact

More information

BUDE. A General Purpose Molecular Docking Program Using OpenCL. Richard B Sessions

BUDE. A General Purpose Molecular Docking Program Using OpenCL. Richard B Sessions BUDE A General Purpose Molecular Docking Program Using OpenCL Richard B Sessions 1 The molecular docking problem receptor ligand Proteins typically O(1000) atoms Ligands typically O(100) atoms predicted

More information

Implementation of novel tools to facilitate fragment-based drug discovery by NMR:

Implementation of novel tools to facilitate fragment-based drug discovery by NMR: Implementation of novel tools to facilitate fragment-based drug discovery by NMR: Automated analysis of large sets of ligand-observed NMR binding data and 19 F methods Andreas Lingel Global Discovery Chemistry

More information

Ultra High Throughput Screening using THINK on the Internet

Ultra High Throughput Screening using THINK on the Internet Ultra High Throughput Screening using THINK on the Internet Keith Davies Central Chemistry Laboratory, Oxford University Cathy Davies Treweren Consultants, UK Blue Sky Objectives Reduce Development Failures

More information

Ligand Scout Tutorials

Ligand Scout Tutorials Ligand Scout Tutorials Step : Creating a pharmacophore from a protein-ligand complex. Type ke6 in the upper right area of the screen and press the button Download *+. The protein will be downloaded and

More information

Introduction to Chemoinformatics and Drug Discovery

Introduction to Chemoinformatics and Drug Discovery Introduction to Chemoinformatics and Drug Discovery Irene Kouskoumvekaki Associate Professor February 15 th, 2013 The Chemical Space There are atoms and space. Everything else is opinion. Democritus (ca.

More information

Predictive Molecular Simulation for Drug Discovery

Predictive Molecular Simulation for Drug Discovery Predictive Molecular Simulation for Drug Discovery 생명과학 의약연구소의약설계팀이승주 sjlee@lgls.co.kr sjlee.lgls@gmail.com Outline Challenging problems in drug discovery Binding affinity calculation New paradigm for

More information

Consensus Scoring Criteria for Improving Enrichment in Virtual Screening

Consensus Scoring Criteria for Improving Enrichment in Virtual Screening 1134 J. Chem. Inf. Model. 2005, 45, 1134-1146 Consensus Scoring Criteria for Improving Enrichment in Virtual Screening Jinn-Moon Yang,*,, Yen-Fu Chen,, Tsai-Wei Shen,, Bruce S. Kristal,, and D. Frank Hsu*,,#

More information

Homology modeling. Dinesh Gupta ICGEB, New Delhi 1/27/2010 5:59 PM

Homology modeling. Dinesh Gupta ICGEB, New Delhi 1/27/2010 5:59 PM Homology modeling Dinesh Gupta ICGEB, New Delhi Protein structure prediction Methods: Homology (comparative) modelling Threading Ab-initio Protein Homology modeling Homology modeling is an extrapolation

More information

Pharmacophore-Based Molecular Docking to Account for Ligand Flexibility

Pharmacophore-Based Molecular Docking to Account for Ligand Flexibility PROTEINS: Structure, Function, and Genetics 51:172 188 (2003) Pharmacophore-Based Molecular Docking to Account for Ligand Flexibility Diane Joseph-McCarthy,* Bert E. Thomas IV, Michael Belmarsh, Demetri

More information

Bridging the Dimensions:

Bridging the Dimensions: Bridging the Dimensions: Seamless Integration of 3D Structure-based Design and 2D Structure-activity Relationships to Guide Medicinal Chemistry ACS Spring National Meeting. COMP, March 13 th 2016 Marcus

More information

Cross Discipline Analysis made possible with Data Pipelining. J.R. Tozer SciTegic

Cross Discipline Analysis made possible with Data Pipelining. J.R. Tozer SciTegic Cross Discipline Analysis made possible with Data Pipelining J.R. Tozer SciTegic System Genesis Pipelining tool created to automate data processing in cheminformatics Modular system built with generic

More information

BioSolveIT. A Combinatorial Approach for Handling of Protonation and Tautomer Ambiguities in Docking Experiments

BioSolveIT. A Combinatorial Approach for Handling of Protonation and Tautomer Ambiguities in Docking Experiments BioSolveIT Biology Problems Solved using Information Technology A Combinatorial Approach for andling of Protonation and Tautomer Ambiguities in Docking Experiments Ingo Dramburg BioSolve IT Gmb An der

More information

Author Index Volume

Author Index Volume Perspectives in Drug Discovery and Design, 20: 289, 2000. KLUWER/ESCOM Author Index Volume 20 2000 Bradshaw,J., 1 Knegtel,R.M.A., 191 Rose,P.W., 209 Briem, H., 231 Kostka, T., 245 Kuhn, L.A., 171 Sadowski,

More information

Different conformations of the drugs within the virtual library of FDA approved drugs will be generated.

Different conformations of the drugs within the virtual library of FDA approved drugs will be generated. Chapter 3 Molecular Modeling 3.1. Introduction In this study pharmacophore models will be created to screen a virtual library of FDA approved drugs for compounds that may inhibit MA-A and MA-B. The virtual

More information

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes Introduction The production of new drugs requires time for development and testing, and can result in large prohibitive costs

More information

Scoring functions for of protein-ligand docking: New routes towards old goals

Scoring functions for of protein-ligand docking: New routes towards old goals 3nd Strasbourg Summer School on Chemoinformatics Strasbourg, June 25-29, 2012 Scoring functions for of protein-ligand docking: New routes towards old goals Christoph Sotriffer Institute of Pharmacy and

More information

Principles of Drug Design

Principles of Drug Design Advanced Medicinal Chemistry II Principles of Drug Design Tentative Course Outline Instructors: Longqin Hu and John Kerrigan Direct questions and enquiries to the Course Coordinator: Longqin Hu I. Introduction

More information

Design and Synthesis of the Comprehensive Fragment Library

Design and Synthesis of the Comprehensive Fragment Library YOUR INNOVATIVE CHEMISTRY PARTNER IN DRUG DISCOVERY Design and Synthesis of the Comprehensive Fragment Library A 3D Enabled Library for Medicinal Chemistry Discovery Warren S Wade 1, Kuei-Lin Chang 1,

More information

Generating Small Molecule Conformations from Structural Data

Generating Small Molecule Conformations from Structural Data Generating Small Molecule Conformations from Structural Data Jason Cole cole@ccdc.cam.ac.uk Cambridge Crystallographic Data Centre 1 The Cambridge Crystallographic Data Centre About us A not-for-profit,

More information

Contents 1 Open-Source Tools, Techniques, and Data in Chemoinformatics

Contents 1 Open-Source Tools, Techniques, and Data in Chemoinformatics Contents 1 Open-Source Tools, Techniques, and Data in Chemoinformatics... 1 1.1 Chemoinformatics... 2 1.1.1 Open-Source Tools... 2 1.1.2 Introduction to Programming Languages... 3 1.2 Chemical Structure

More information

Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs

Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs William (Bill) Welsh welshwj@umdnj.edu Prospective Funding by DTRA/JSTO-CBD CBIS Conference 1 A State-wide, Regional and National

More information

Principles of Drug Design

Principles of Drug Design (16:663:502) Instructors: Longqin Hu and John Kerrigan Direct questions and enquiries to the Course Coordinator: Longqin Hu For more current information, please check WebCT at https://webct.rutgers.edu

More information

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes Introduction Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes The production of new drugs requires time for development and testing, and can result in large prohibitive costs

More information

EMPIRICAL VS. RATIONAL METHODS OF DISCOVERING NEW DRUGS

EMPIRICAL VS. RATIONAL METHODS OF DISCOVERING NEW DRUGS EMPIRICAL VS. RATIONAL METHODS OF DISCOVERING NEW DRUGS PETER GUND Pharmacopeia Inc., CN 5350 Princeton, NJ 08543, USA pgund@pharmacop.com Empirical and theoretical approaches to drug discovery have often

More information

Progress of Compound Library Design Using In-silico Approach for Collaborative Drug Discovery

Progress of Compound Library Design Using In-silico Approach for Collaborative Drug Discovery 21 th /June/2018@CUGM Progress of Compound Library Design Using In-silico Approach for Collaborative Drug Discovery Kaz Ikeda, Ph.D. Keio University Self Introduction Keio University, Tokyo, Japan (Established

More information

Chemical library design

Chemical library design Chemical library design Pavel Polishchuk Institute of Molecular and Translational Medicine Palacky University pavlo.polishchuk@upol.cz Drug development workflow Vistoli G., et al., Drug Discovery Today,

More information

Protein Structure Prediction and Protein-Ligand Docking

Protein Structure Prediction and Protein-Ligand Docking Protein Structure Prediction and Protein-Ligand Docking Björn Wallner bjornw@ifm.liu.se Jan. 24, 2014 Todays topics Protein Folding Intro Protein structure prediction How can we predict the structure of

More information

Early Stages of Drug Discovery in the Pharmaceutical Industry

Early Stages of Drug Discovery in the Pharmaceutical Industry Early Stages of Drug Discovery in the Pharmaceutical Industry Daniel Seeliger / Jan Kriegl, Discovery Research, Boehringer Ingelheim September 29, 2016 Historical Drug Discovery From Accidential Discovery

More information

The reuse of structural data for fragment binding site prediction

The reuse of structural data for fragment binding site prediction The reuse of structural data for fragment binding site prediction Richard Hall 1 Motivation many examples of fragments binding in a phenyl shaped pocket or a kinase slot good shape complementarity between

More information

Isothermal Titration Calorimetry in Drug Discovery. Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 2017

Isothermal Titration Calorimetry in Drug Discovery. Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 2017 Isothermal Titration Calorimetry in Drug Discovery Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 217 Introduction Introduction to ITC Strengths / weaknesses & what is required

More information

Chemogenomic: Approaches to Rational Drug Design. Jonas Skjødt Møller

Chemogenomic: Approaches to Rational Drug Design. Jonas Skjødt Møller Chemogenomic: Approaches to Rational Drug Design Jonas Skjødt Møller Chemogenomic Chemistry Biology Chemical biology Medical chemistry Chemical genetics Chemoinformatics Bioinformatics Chemoproteomics

More information

The Schrödinger KNIME extensions

The Schrödinger KNIME extensions The Schrödinger KNIME extensions Computational Chemistry and Cheminformatics in a workflow environment Jean-Christophe Mozziconacci Volker Eyrich KNIME UGM, Berlin, February 2015 The Schrödinger Extensions

More information

Pose and affinity prediction by ICM in D3R GC3. Max Totrov Molsoft

Pose and affinity prediction by ICM in D3R GC3. Max Totrov Molsoft Pose and affinity prediction by ICM in D3R GC3 Max Totrov Molsoft Pose prediction method: ICM-dock ICM-dock: - pre-sampling of ligand conformers - multiple trajectory Monte-Carlo with gradient minimization

More information

Supporting Information

Supporting Information S-1 Supporting Information Flaviviral protease inhibitors identied by fragment-based library docking into a structure generated by molecular dynamics Dariusz Ekonomiuk a, Xun-Cheng Su b, Kiyoshi Ozawa

More information

Cheminformatics analysis and learning in a data pipelining environment

Cheminformatics analysis and learning in a data pipelining environment Molecular Diversity (2006) 10: 283 299 DOI: 10.1007/s11030-006-9041-5 c Springer 2006 Review Cheminformatics analysis and learning in a data pipelining environment Moises Hassan 1,, Robert D. Brown 1,

More information

JCICS Major Research Areas

JCICS Major Research Areas JCICS Major Research Areas Chemical Information Text Searching Structure and Substructure Searching Databases Patents George W.A. Milne C571 Lecture Fall 2002 1 JCICS Major Research Areas Chemical Computation

More information

Applications of Fragment Based Approaches

Applications of Fragment Based Approaches Applications of Fragment Based Approaches Ben Davis Vernalis R&D, Cambridge UK b.davis@vernalis.com 1 Applications of Fragment Based Approaches creening fragment libraries Techniques Vernalis eeds approach

More information

Integrated Cheminformatics to Guide Drug Discovery

Integrated Cheminformatics to Guide Drug Discovery Integrated Cheminformatics to Guide Drug Discovery Matthew Segall, Ed Champness, Peter Hunt, Tamsin Mansley CINF Drug Discovery Cheminformatics Approaches August 23 rd 2017 Optibrium, StarDrop, Auto-Modeller,

More information

Molecular Mechanics, Dynamics & Docking

Molecular Mechanics, Dynamics & Docking Molecular Mechanics, Dynamics & Docking Lawrence Hunter, Ph.D. Director, Computational Bioscience Program University of Colorado School of Medicine Larry.Hunter@uchsc.edu http://compbio.uchsc.edu/hunter

More information

Quantification of free ligand conformational preferences by NMR and their relationship to the bioactive conformation

Quantification of free ligand conformational preferences by NMR and their relationship to the bioactive conformation Quantification of free ligand conformational preferences by NMR and their relationship to the bioactive conformation Charles Blundell charles.blundell@c4xdiscovery.com www.c4xdiscovery.com Rigid: single

More information

NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease

NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2009 NMR study of complexes between low molecular mass inhibitors and the West Nile

More information

On Evaluating Molecular-Docking Methods for Pose Prediction and Enrichment Factors

On Evaluating Molecular-Docking Methods for Pose Prediction and Enrichment Factors J. Chem. Inf. Model. 2006, 46, 401-415 401 On Evaluating Molecular-Docking Methods for Pose Prediction and Enrichment Factors Hongming Chen,*, Paul D. Lyne, Fabrizio Giordanetto, Timothy Lovell,*,, and

More information

QSAR Modeling of ErbB1 Inhibitors Using Genetic Algorithm-Based Regression

QSAR Modeling of ErbB1 Inhibitors Using Genetic Algorithm-Based Regression APPLICATION NOTE QSAR Modeling of ErbB1 Inhibitors Using Genetic Algorithm-Based Regression GAINING EFFICIENCY IN QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIPS ErbB1 kinase is the cell-surface receptor

More information

Advanced Medicinal Chemistry SLIDES B

Advanced Medicinal Chemistry SLIDES B Advanced Medicinal Chemistry Filippo Minutolo CFU 3 (21 hours) SLIDES B Drug likeness - ADME two contradictory physico-chemical parameters to balance: 1) aqueous solubility 2) lipid membrane permeability

More information

Functional Group Fingerprints CNS Chemistry Wilmington, USA

Functional Group Fingerprints CNS Chemistry Wilmington, USA Functional Group Fingerprints CS Chemistry Wilmington, USA James R. Arnold Charles L. Lerman William F. Michne James R. Damewood American Chemical Society ational Meeting August, 2004 Philadelphia, PA

More information

Protein structure based approaches to inhibit Plasmodium DHODH for malaria

Protein structure based approaches to inhibit Plasmodium DHODH for malaria Protein structure based approaches to inhibit Plasmodium DHDH for malaria Peter Johnson University of Leeds, School of Chemistry email p.johnson@leeds.ac.uk Tools for protein structure based approaches

More information

GC and CELPP: Workflows and Insights

GC and CELPP: Workflows and Insights GC and CELPP: Workflows and Insights Xianjin Xu, Zhiwei Ma, Rui Duan, Xiaoqin Zou Dalton Cardiovascular Research Center, Department of Physics and Astronomy, Department of Biochemistry, & Informatics Institute

More information

Advanced in silico Drug Design KFC/ADD

Advanced in silico Drug Design KFC/ADD Advanced in silico Drug Design S pozdravem KFC/ADD Molecular Karel Berka Docking Intro Karel Berka, Ph.D. Jindřich Fanfrlík, Ph.D. Martin Lepšík, Ph.D. Pavel Polishchuk, Ph.D. UP Olomouc, 30.1.-1.2. 2017

More information

Machine-learning scoring functions for docking

Machine-learning scoring functions for docking Machine-learning scoring functions for docking Dr Pedro J Ballester MRC Methodology Research Fellow EMBL-EBI, Cambridge, United Kingdom EBI is an Outstation of the European Molecular Biology Laboratory.

More information