List of publications

Size: px
Start display at page:

Download "List of publications"

Transcription

1 List of publications 42. Kazemi, S., Krueger, D. M., Sirockin, F., Gohlke, H. (2009) Elastic potential grids: Accurate and efficient representation of intermolecular interactions for fullyflexible docking. ChemMedChem, in press. 41. Fulle, S., Gohlke, H. (2009) Constraint counting on RNA structures: Linking flexibility and function. Methods, in press. 40. Fulle, S., Gohlke, H. (2009) Statics of the ribosomal exit tunnel: Implications for co-translational peptide folding, elongation regulation, and antibiotics binding. J. Mol. Biol., 387, Radestock, S., Gohlke, H. (2008) Constraint Network Analysis: Exploiting the link between protein rigidity and thermostability. In: "From Computational Biophysics to Systems Biology (CBSB08)", U.H.E. Hansmann, J. H. Meinke, S. Mohanty, W. Nadler, O. Zimmermann (eds.), NIC Series, Jülich, 40, Fulle, S., Gohlke, H. (2008). Determining RNA flexibility by graph theory: Ribosomal exit tunnel as a case study. In: "From Computational Biophysics to Systems Biology (CBSB08)", U.H.E. Hansmann, J. H. Meinke, S. Mohanty, W. Nadler, O. Zimmermann (eds.), NIC Series, Jülich, 40, Radestock, S., Gohlke, H. (2008). Exploiting the link between protein rigidity and thermostability for data-driven protein engineering. Eng. Life Science, 8, Kopitz, H., Zivkovic, A., Engels, J. W., Gohlke, H. (2008). Determinants of the unexpected stability of RNA fluorobenzene self pairs. ChemBioChem, 9, Cozzini, P., Kellog, G.E., Spyrakis, F., Abraham, D. J., Constantino, G., Emerson, A., Fanelli, F., Gohlke, H., Kuhn, L.A., Morris, G.M., Orozco, M., Pertinhez, T.A., Rizzi, M:, Sotriffer, C. (2008). Target flexibility: An emerging consideration in drug discovery and design. J. Med. Chem., 51, Koller, A. N., Schwalbe, H., Gohlke, H. (2008). Starting structure dependence of NMR order parameters derived from MD simulations: Implications for judging force field quality. Biophys. J., 95, L4-L6. Fulle, S., Gohlke, H., (2008). Analyzing the flexibility of RNA structures by

2 constraint counting. Biophys. J., 94, Wendel, C., Gohlke, H. (2008). Predicting transmembrane helix pair configurations with knowledge-based distance-dependent pair potentials. Proteins, 70, Breu, B., Silber, K., Gohlke, H. (2007). Consensus AFMoC models incorporate ligand and receptor conformational variability into tailor-made scoring functions. J. Chem. Inf. Model., 47, Pfeffer, P., Gohlke, H. (2007). DrugScore RNA Knowledge-based scoring function to predict RNA-ligand interactions. J. Chem. Inf. Model., 47, Radestock, S., Gohlke, H. (2007). Molekulare Bioinformatik in der Pharmaforschung. GIT Bioforum, 3, Ahmed, A., Kazemi, S., Gohlke, H. (2007). Protein flexibility and mobility in structure-based drug design. Frontiers Drug Des. Discov., 3, Rashid, U. J., Peternov, D., Koglin, A., Chandra, T., Gohlke, H., Piehler, J., Chen, J. C.-H. (2007). Structure of Aquifex aeolicus Argonaute highlights conformational flexibility of the PAZ domain as a potential regulator of RISC function. J. Biol. Chem., 282, Gohlke, H., Thorpe, M. F. (2006). A natural coarse graining for simulating large biomolecular motion. Biophys. J., 91, Gonzalez Ruiz, D., Gohlke, H. (2006). Targeting protein-protein interactions with small molecules: Challenges and perspectives for computational binding epitope detection and ligand finding. Curr. Med. Chem., 13, Ahmed, A., Gohlke, H. (2006). Multiscale modelling of macromolecular conformational changes combining concepts from rigidity and elastic network theory. Proteins, 63, Velec, H., Gohlke, H., Klebe, G. (2005). DrugScore CSD Knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near native ligand poses and better affinity prediction. J. Med. Chem. 48, Radestock, S., Böhm, M., Gohlke, H. (2005). Improving binding mode predictions by docking into protein-specifically adapted potential fields. J. Med. Chem., 48, 2

3 Case, D. A., Cheatham, T., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling C., Wang, B., Woods, R. (2005). The Amber Biomolecular Simulation Programs, J. Comp. Chem., 26, a Ferrara, P., Gohlke, H., Price, D. J., Klebe, G., Brooks III, C. L. (2004). Assessing scoring functions for protein-ligand interactions. J. Med. Chem., 47, Gohlke, H., Kuhn, L. A., Case, D. A. (2004). Change in protein flexibility upon complex formation: Analysis of Ras-Raf using molecular dynamics and a molecular framework approach. Proteins, 56, Gohlke, H., Case, D. A. (2004). Converging free energy estimates: MM- PB(GB)SA studies on the protein-protein complex Ras-Raf. J. Comput. Chem., 25, Evers, A., Gohlke, H., Klebe, G. (2003). Ligand-supported homology modelling of protein binding sites using knowledge-based potentials. J. Mol. Biol., 334, Gohlke, H., Kiel, C., Case, D. A. (2003). Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J. Mol. Biol., 330, Gohlke, H., Schwarz, S., Gündisch, D., Tilotta, M. C., Weber A., Wegge, T., Seitz, G. (2003). 3D-QSAR Analyses-guided Rational Design of Novel Ligands for the (α4) 2 (β2) 3 Nicotinic Acetylcholine Receptor. J. Med. Chem., 46, Gohlke, H., Klebe, G. (2002). DrugScore meets CoMFA: Adaptation of Fields for Molecular Comparison (AFMoC) or How to Tailor Knowledge-Based Pair- Potentials to a Particular Protein. J. Med. Chem., 45, Gohlke H., Klebe, G. (2002). Ansätze zur Beschreibung und Vorhersage der Bindungsaffinität niedermolekularer Liganden an makromolekulare Rezeptoren. Angew. Chem., 114, Gohlke H., Klebe, G. (2002). Approaches to the Description and Prediction of the Binding Affinity of Small-Molecule Ligands to Macromolecular Receptors. Angew. Chem. Int. Ed., 41, Sotriffer, C. A., Gohlke, H., Klebe, G. (2002). Docking into knowledge-based potential fields: A comparative evaluation of DrugScore. J. Med. Chem., 45,

4 Gohlke, H., Gündisch, D., Schwarz, S., Seitz, G., Tilotta, M. C., Wegge, T. (2002). Synthesis and Nicotinic Binding Studies on Enantiopure Diazine Analogs of the Novel (2-Chloro-5-pyridyl)-9-azabicyclo[4.2.1]-non-2-ene UB165. J. Med. Chem., 45, Kamm, W., Stürzebecher, J., Behrens, I., Hauptmann, J., Dullweber, F., Gohlke, H., Klebe, G., Kissel, T. (2001). Transport of peptidomimetic thrombin inhibitors with a 3-amidino-phenylalanine structure: Permeability and efflux mechanism in monolayers of human intestinal cell line (Caco-2). Pharm. Res., 18, Gohlke, H., Klebe, G. (2001). Scoring protein-ligand interactions: developments and applications in virtual screening. Eur. J. Biochem., 268, Suppl. 1, 30. Gohlke H., Klebe, G. (2001). Statistical potentials and scoring functions applied to protein-ligand binding. Curr. Opin. Struct. Biol., 11, (Invited review) Gohlke, H., Dullweber, F., Kamm, W., März, J., Kissel, T., Klebe, G. (2001). Prediction of Human Intestinal Absorption Using a Combined Simulated Annealing/Backpropagation Neural Network Approach. In Rational Approaches to Drug Design 13 th European Symposium on QSAR (Höltje, H.-D., Sippl, W., Ed.), S , Prous Science, Barcelona. Gohlke, H., Hendlich M., Klebe G. (2000). Predicting binding modes, binding affinities and hot spots for protein-ligand complexes using a knowledge-based scoring function. Persp. Drug Design Discov., 20, Klebe, G., Grädler, U., Grüneberg, S., Krämer, O., Gohlke, H. (2000). Understanding Receptor-Ligand Interactions as a Prerequisite for Virtual Screening. In Virtual Screening for Bioactive Molecules (Böhm, H. J., Schneider, G., Ed.), S , Wiley-VCH, Weinheim. Gohlke H., Hendlich M., Klebe G. (2000). Knowledge-based Scoring Function to Predict Protein-Ligand Interactions. J. Mol. Biol., 295, Klebe, G., Böhm, M., Dullweber, F., Grädler, U., Gohlke, H., Hendlich, M. (1999). Structural and Energetic Aspects of Protein-Ligand Binding in Drug Design. In Molecular Modelling and Prediction of Bioactivity (Gundertofte, K., Jorgensen, F., Ed.), S , KLUWER Academic / Plenum Publ., New York. Gohlke, H., Immel, S., Lichtenthaler, F.W. (1999). Conformations and lipophilicity profiles of some cyclic β-(1 3)- and β-(1 6)-linked 4

5 oligogalactofuranosides. Carbohydr. Res., 321, Gohlke, H., Immel, S., Lichtenthaler, F. W., Schmitt, G. E. (1998). β(1 3)- and β(1 6)-Linked Cyclogalactofuranosides: Conformations and Molecular Shapes, In Proceedings of the 9 th International Symposium on Cyclodextrins (J.J. Torres- Labandeira, J. L. Vila Jato, Ed.), S , Kluwer Acad. Publ., Dordrecht. 5

High Throughput In-Silico Screening Against Flexible Protein Receptors

High Throughput In-Silico Screening Against Flexible Protein Receptors John von Neumann Institute for Computing High Throughput In-Silico Screening Against Flexible Protein Receptors H. Sánchez, B. Fischer, H. Merlitz, W. Wenzel published in From Computational Biophysics

More information

Protein-Ligand Docking Evaluations

Protein-Ligand Docking Evaluations Introduction Protein-Ligand Docking Evaluations Protein-ligand docking: Given a protein and a ligand, determine the pose(s) and conformation(s) minimizing the total energy of the protein-ligand complex

More information

Protein-Ligand Docking Methods

Protein-Ligand Docking Methods Review Goal: Given a protein structure, predict its ligand bindings Protein-Ligand Docking Methods Applications: Function prediction Drug discovery etc. Thomas Funkhouser Princeton University S597A, Fall

More information

Fragment Hotspot Maps: A CSD-derived Method for Hotspot identification

Fragment Hotspot Maps: A CSD-derived Method for Hotspot identification Fragment Hotspot Maps: A CSD-derived Method for Hotspot identification Chris Radoux www.ccdc.cam.ac.uk radoux@ccdc.cam.ac.uk 1 Introduction Hotspots Strongly attractive to organic molecules Organic molecules

More information

Hamiltonian Replica Exchange Molecular Dynamics Using Soft-Core Interactions to Enhance Conformational Sampling

Hamiltonian Replica Exchange Molecular Dynamics Using Soft-Core Interactions to Enhance Conformational Sampling John von Neumann Institute for Computing Hamiltonian Replica Exchange Molecular Dynamics Using Soft-Core Interactions to Enhance Conformational Sampling J. Hritz, Ch. Oostenbrink published in From Computational

More information

Conformational Studies of UDP-GlcNAc in Environments of Increasing Complexity

Conformational Studies of UDP-GlcNAc in Environments of Increasing Complexity John von Neumann Institute for Computing Conformational Studies of UDP-GlcNAc in Environments of Increasing Complexity M. Held, E. Meerbach, St. Hinderlich, W. Reutter, Ch. Schütte published in From Computational

More information

The PhilOEsophy. There are only two fundamental molecular descriptors

The PhilOEsophy. There are only two fundamental molecular descriptors The PhilOEsophy There are only two fundamental molecular descriptors Where can we use shape? Virtual screening More effective than 2D Lead-hopping Shape analogues are not graph analogues Molecular alignment

More information

How Tertiary Interactions Between the L2 and L3 Loops Affect the Dynamics of the Distant Ligand Binding Site in the Guanine Sensing Riboswitch

How Tertiary Interactions Between the L2 and L3 Loops Affect the Dynamics of the Distant Ligand Binding Site in the Guanine Sensing Riboswitch How Tertiary Interactions Between the L2 and L3 Loops Affect the Dynamics of the Distant Ligand Binding Site in the Guanine Sensing Riboswitch Christian A. Hanke and Holger Gohlke Institute for Pharmaceutical

More information

A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery

A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery AtomNet A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery Izhar Wallach, Michael Dzamba, Abraham Heifets Victor Storchan, Institute for Computational and

More information

Overview & Applications. T. Lezon Hands-on Workshop in Computational Biophysics Pittsburgh Supercomputing Center 04 June, 2015

Overview & Applications. T. Lezon Hands-on Workshop in Computational Biophysics Pittsburgh Supercomputing Center 04 June, 2015 Overview & Applications T. Lezon Hands-on Workshop in Computational Biophysics Pittsburgh Supercomputing Center 4 June, 215 Simulations still take time Bakan et al. Bioinformatics 211. Coarse-grained Elastic

More information

Structural biology and drug design: An overview

Structural biology and drug design: An overview Structural biology and drug design: An overview livier Taboureau Assitant professor Chemoinformatics group-cbs-dtu otab@cbs.dtu.dk Drug discovery Drug and drug design A drug is a key molecule involved

More information

Peptide-derived Inhibitors of Protein-Protein Interactions

Peptide-derived Inhibitors of Protein-Protein Interactions Peptide-derived Inhibitors of Protein-Protein Interactions Sven Hennig Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit Amsterdam 1 Biomolecular recognitions Classification via interaction

More information

Targeting protein-protein interactions: A hot topic in drug discovery

Targeting protein-protein interactions: A hot topic in drug discovery Michal Kamenicky; Maria Bräuer; Katrin Volk; Kamil Ödner; Christian Klein; Norbert Müller Targeting protein-protein interactions: A hot topic in drug discovery 104 Biomedizin Innovativ patientinnenfokussierte,

More information

Protein-Ligand Docking Methods

Protein-Ligand Docking Methods Review Goal: Given a protein structure, predict its ligand bindings Protein-Ligand Docking Methods Applications: Function prediction Drug discovery etc. Thomas Funkhouser Princeton University S597A, Fall

More information

Docking. GBCB 5874: Problem Solving in GBCB

Docking. GBCB 5874: Problem Solving in GBCB Docking Benzamidine Docking to Trypsin Relationship to Drug Design Ligand-based design QSAR Pharmacophore modeling Can be done without 3-D structure of protein Receptor/Structure-based design Molecular

More information

S. IMMEL, G. E. SCHMITT, AND F. W. LICHTENTHALER Institute of Organic Chemistry, Darmstadt University of Technology, D Darmstadt, Germany

S. IMMEL, G. E. SCHMITT, AND F. W. LICHTENTHALER Institute of Organic Chemistry, Darmstadt University of Technology, D Darmstadt, Germany 9 th Internat. Symp. on Cyclodextrins, Santiago de Compostela, 1998 (Eds.: J.J. Torres Labandeira, J.L. Vila Jato), Kluwer Acad. Publ., Dordrecht, NL, 1999, pp. 41-48. a-cyclaltrin: CNFRMATIN AND PRPERTIES

More information

COMBINATORIAL CHEMISTRY: CURRENT APPROACH

COMBINATORIAL CHEMISTRY: CURRENT APPROACH COMBINATORIAL CHEMISTRY: CURRENT APPROACH Dwivedi A. 1, Sitoke A. 2, Joshi V. 3, Akhtar A.K. 4* and Chaturvedi M. 1, NRI Institute of Pharmaceutical Sciences, Bhopal, M.P.-India 2, SRM College of Pharmacy,

More information

Using Bayesian Statistics to Predict Water Affinity and Behavior in Protein Binding Sites. J. Andrew Surface

Using Bayesian Statistics to Predict Water Affinity and Behavior in Protein Binding Sites. J. Andrew Surface Using Bayesian Statistics to Predict Water Affinity and Behavior in Protein Binding Sites Introduction J. Andrew Surface Hampden-Sydney College / Virginia Commonwealth University In the past several decades

More information

Computational chemical biology to address non-traditional drug targets. John Karanicolas

Computational chemical biology to address non-traditional drug targets. John Karanicolas Computational chemical biology to address non-traditional drug targets John Karanicolas Our computational toolbox Structure-based approaches Ligand-based approaches Detailed MD simulations 2D fingerprints

More information

Using AutoDock for Virtual Screening

Using AutoDock for Virtual Screening Using AutoDock for Virtual Screening CUHK Croucher ASI Workshop 2011 Stefano Forli, PhD Prof. Arthur J. Olson, Ph.D Molecular Graphics Lab Screening and Virtual Screening The ultimate tool for identifying

More information

Hydrogen Bonding & Molecular Design Peter

Hydrogen Bonding & Molecular Design Peter Hydrogen Bonding & Molecular Design Peter Kenny(pwk.pub.2008@gmail.com) Hydrogen Bonding in Drug Discovery & Development Interactions between drug and water molecules (Solubility, distribution, permeability,

More information

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes Introduction The production of new drugs requires time for development and testing, and can result in large prohibitive costs

More information

Supplementary Figure 1 Preparation of PDA nanoparticles derived from self-assembly of PCDA. (a)

Supplementary Figure 1 Preparation of PDA nanoparticles derived from self-assembly of PCDA. (a) Supplementary Figure 1 Preparation of PDA nanoparticles derived from self-assembly of PCDA. (a) Computer simulation on the self-assembly of PCDAs. Two kinds of totally different initial conformations were

More information

Quantification of free ligand conformational preferences by NMR and their relationship to the bioactive conformation

Quantification of free ligand conformational preferences by NMR and their relationship to the bioactive conformation Quantification of free ligand conformational preferences by NMR and their relationship to the bioactive conformation Charles Blundell charles.blundell@c4xdiscovery.com www.c4xdiscovery.com Rigid: single

More information

Author Index Volume

Author Index Volume Perspectives in Drug Discovery and Design, 20: 289, 2000. KLUWER/ESCOM Author Index Volume 20 2000 Bradshaw,J., 1 Knegtel,R.M.A., 191 Rose,P.W., 209 Briem, H., 231 Kostka, T., 245 Kuhn, L.A., 171 Sadowski,

More information

Virtual Screening: How Are We Doing?

Virtual Screening: How Are We Doing? Virtual Screening: How Are We Doing? Mark E. Snow, James Dunbar, Lakshmi Narasimhan, Jack A. Bikker, Dan Ortwine, Christopher Whitehead, Yiannis Kaznessis, Dave Moreland, Christine Humblet Pfizer Global

More information

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions Molecular Interactions F14NMI Lecture 4: worked answers to practice questions http://comp.chem.nottingham.ac.uk/teaching/f14nmi jonathan.hirst@nottingham.ac.uk (1) (a) Describe the Monte Carlo algorithm

More information

Curriculum Vitae. Lin Li

Curriculum Vitae. Lin Li Curriculum Vitae Lin Li Department of Physics and Astronomy, Clemson University SC, United States, 29631 Email: lli5@g.clemson.edu Phone: 1-636-364-8518 Education and work experience: Research Associate

More information

Dr. Sander B. Nabuurs. Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre

Dr. Sander B. Nabuurs. Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre Dr. Sander B. Nabuurs Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre The road to new drugs. How to find new hits? High Throughput

More information

Softwares for Molecular Docking. Lokesh P. Tripathi NCBS 17 December 2007

Softwares for Molecular Docking. Lokesh P. Tripathi NCBS 17 December 2007 Softwares for Molecular Docking Lokesh P. Tripathi NCBS 17 December 2007 Molecular Docking Attempt to predict structures of an intermolecular complex between two or more molecules Receptor-ligand (or drug)

More information

DISCRETE TUTORIAL. Agustí Emperador. Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING:

DISCRETE TUTORIAL. Agustí Emperador. Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING: DISCRETE TUTORIAL Agustí Emperador Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING: STRUCTURAL REFINEMENT OF DOCKING CONFORMATIONS Emperador

More information

STRUCTURAL BIOINFORMATICS II. Spring 2018

STRUCTURAL BIOINFORMATICS II. Spring 2018 STRUCTURAL BIOINFORMATICS II Spring 2018 Syllabus Course Number - Classification: Chemistry 5412 Class Schedule: Monday 5:30-7:50 PM, SERC Room 456 (4 th floor) Instructors: Ronald Levy, SERC 718 (ronlevy@temple.edu)

More information

Microcalorimetry for the Life Sciences

Microcalorimetry for the Life Sciences Microcalorimetry for the Life Sciences Why Microcalorimetry? Microcalorimetry is universal detector Heat is generated or absorbed in every chemical process In-solution No molecular weight limitations Label-free

More information

Bridging the Dimensions:

Bridging the Dimensions: Bridging the Dimensions: Seamless Integration of 3D Structure-based Design and 2D Structure-activity Relationships to Guide Medicinal Chemistry ACS Spring National Meeting. COMP, March 13 th 2016 Marcus

More information

Time-dependence of key H-bond/electrostatic interaction distances in the sirna5-hago2 complexes... Page S14

Time-dependence of key H-bond/electrostatic interaction distances in the sirna5-hago2 complexes... Page S14 Supporting Information Probing the Binding Interactions between Chemically Modified sirnas and Human Argonaute 2 Using Microsecond Molecular Dynamics Simulations S. Harikrishna* and P. I. Pradeepkumar*

More information

Computational Chemistry in Drug Design. Xavier Fradera Barcelona, 17/4/2007

Computational Chemistry in Drug Design. Xavier Fradera Barcelona, 17/4/2007 Computational Chemistry in Drug Design Xavier Fradera Barcelona, 17/4/2007 verview Introduction and background Drug Design Cycle Computational methods Chemoinformatics Ligand Based Methods Structure Based

More information

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes Introduction Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes The production of new drugs requires time for development and testing, and can result in large prohibitive costs

More information

Molecular Mechanics, Dynamics & Docking

Molecular Mechanics, Dynamics & Docking Molecular Mechanics, Dynamics & Docking Lawrence Hunter, Ph.D. Director, Computational Bioscience Program University of Colorado School of Medicine Larry.Hunter@uchsc.edu http://compbio.uchsc.edu/hunter

More information

Principles of Drug Design

Principles of Drug Design Advanced Medicinal Chemistry II Principles of Drug Design Tentative Course Outline Instructors: Longqin Hu and John Kerrigan Direct questions and enquiries to the Course Coordinator: Longqin Hu I. Introduction

More information

Supplementary Methods

Supplementary Methods Supplementary Methods MMPBSA Free energy calculation Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) has been widely used to calculate binding free energy for protein-ligand systems (1-7).

More information

Cheminformatics platform for drug discovery application

Cheminformatics platform for drug discovery application EGI-InSPIRE Cheminformatics platform for drug discovery application Hsi-Kai, Wang Academic Sinica Grid Computing EGI User Forum, 13, April, 2011 1 Introduction to drug discovery Computing requirement of

More information

Homology modeling. Dinesh Gupta ICGEB, New Delhi 1/27/2010 5:59 PM

Homology modeling. Dinesh Gupta ICGEB, New Delhi 1/27/2010 5:59 PM Homology modeling Dinesh Gupta ICGEB, New Delhi Protein structure prediction Methods: Homology (comparative) modelling Threading Ab-initio Protein Homology modeling Homology modeling is an extrapolation

More information

Fondamenti di Chimica Farmaceutica. Computer Chemistry in Drug Research: Introduction

Fondamenti di Chimica Farmaceutica. Computer Chemistry in Drug Research: Introduction Fondamenti di Chimica Farmaceutica Computer Chemistry in Drug Research: Introduction Introduction Introduction Introduction Computer Chemistry in Drug Design Drug Discovery: Target identification Lead

More information

In silico pharmacology for drug discovery

In silico pharmacology for drug discovery In silico pharmacology for drug discovery In silico drug design In silico methods can contribute to drug targets identification through application of bionformatics tools. Currently, the application of

More information

Protein-Ligand Interactions* and Energy Evaluation Methods

Protein-Ligand Interactions* and Energy Evaluation Methods Protein-Ligand Interactions* and Energy Evaluation Methods *with a revealing look at roles of water Glen E. Kellogg Department of Medicinal Chemistry Institute for Structural Biology, Drug Discovery &

More information

Molecular Dynamics Simulations of the Metaloenzyme Thiocyanate Hydrolase with Non-Corrinoid Co(III) in Active Site

Molecular Dynamics Simulations of the Metaloenzyme Thiocyanate Hydrolase with Non-Corrinoid Co(III) in Active Site John von Neumann Institute for Computing Molecular Dynamics Simulations of the Metaloenzyme Thiocyanate Hydrolase with Non-Corrinoid Co(III) in Active Site L. Peplowski, W. Nowak published in From Computational

More information

Molecular dynamics simulations of a single stranded (ss) DNA

Molecular dynamics simulations of a single stranded (ss) DNA Molecular dynamics simulations of a single stranded (ss) DNA Subhasish Chatterjee 1, Bonnie Gersten 1, Siddarth Thakur 2, Alexander Burin 2 1 Department of Chemistry, Queens College and the Graduate Center

More information

Towards fast and accurate binding affinity. prediction with pmemdgti: an efficient. implementation of GPU-accelerated. Thermodynamic Integration

Towards fast and accurate binding affinity. prediction with pmemdgti: an efficient. implementation of GPU-accelerated. Thermodynamic Integration Towards fast and accurate binding affinity prediction with pmemdgti: an efficient implementation of GPU-accelerated Thermodynamic Integration Tai-Sung Lee,, Yuan Hu, Brad Sherborne, Zhuyan Guo, and Darrin

More information

Virtual affinity fingerprints in drug discovery: The Drug Profile Matching method

Virtual affinity fingerprints in drug discovery: The Drug Profile Matching method Ágnes Peragovics Virtual affinity fingerprints in drug discovery: The Drug Profile Matching method PhD Theses Supervisor: András Málnási-Csizmadia DSc. Associate Professor Structural Biochemistry Doctoral

More information

Structural Bioinformatics (C3210) Molecular Docking

Structural Bioinformatics (C3210) Molecular Docking Structural Bioinformatics (C3210) Molecular Docking Molecular Recognition, Molecular Docking Molecular recognition is the ability of biomolecules to recognize other biomolecules and selectively interact

More information

Exploring the Free Energy Surface of Short Peptides by Using Metadynamics

Exploring the Free Energy Surface of Short Peptides by Using Metadynamics John von Neumann Institute for Computing Exploring the Free Energy Surface of Short Peptides by Using Metadynamics C. Camilloni, A. De Simone published in From Computational Biophysics to Systems Biology

More information

ENERGY MINIMIZATION AND CONFORMATION SEARCH ANALYSIS OF TYPE-2 ANTI-DIABETES DRUGS

ENERGY MINIMIZATION AND CONFORMATION SEARCH ANALYSIS OF TYPE-2 ANTI-DIABETES DRUGS Int. J. Chem. Sci.: 6(2), 2008, 982-992 EERGY MIIMIZATI AD CFRMATI SEARC AALYSIS F TYPE-2 ATI-DIABETES DRUGS R. PRASAA LAKSMI a, C. ARASIMA KUMAR a, B. VASATA LAKSMI, K. AGA SUDA, K. MAJA, V. JAYA LAKSMI

More information

ESPRESSO (Extremely Speedy PRE-Screening method with Segmented compounds) 1

ESPRESSO (Extremely Speedy PRE-Screening method with Segmented compounds) 1 Vol.2016-MPS-108 o.18 Vol.2016-BI-46 o.18 ESPRESS 1,4,a) 2,4 2,4 1,3 1,3,4 1,3,4 - ESPRESS (Extremely Speedy PRE-Screening method with Segmented cmpounds) 1 Glide HTVS ESPRESS 2,900 200 ESPRESS: An ultrafast

More information

Advanced Medicinal Chemistry SLIDES B

Advanced Medicinal Chemistry SLIDES B Advanced Medicinal Chemistry Filippo Minutolo CFU 3 (21 hours) SLIDES B Drug likeness - ADME two contradictory physico-chemical parameters to balance: 1) aqueous solubility 2) lipid membrane permeability

More information

Molecular Modeling Study of Some Anthelmintic 2-phenyl Benzimidazole-1- Acetamides as β-tubulin Inhibitor

Molecular Modeling Study of Some Anthelmintic 2-phenyl Benzimidazole-1- Acetamides as β-tubulin Inhibitor Sawant et al : Molecular Modeling Study of Some Anthelmintic 2-phenyl Benzimidazole-1-Acetamides as -tubulin Inhibitor 1269 International Journal of Drug Design and Discovery Volume 5 Issue 1 January March

More information

Modelling of Possible Binding Modes of Caffeic Acid Derivatives to JAK3 Kinase

Modelling of Possible Binding Modes of Caffeic Acid Derivatives to JAK3 Kinase John von Neumann Institute for Computing Modelling of Possible Binding Modes of Caffeic Acid Derivatives to JAK3 Kinase J. Kuska, P. Setny, B. Lesyng published in From Computational Biophysics to Systems

More information

tconcoord-gui: Visually Supported Conformational Sampling of Bioactive Molecules

tconcoord-gui: Visually Supported Conformational Sampling of Bioactive Molecules Software News and Updates tconcoord-gui: Visually Supported Conformational Sampling of Bioactive Molecules DANIEL SEELIGER, BERT L. DE GROOT Computational Biomolecular Dynamics Group, Max-Planck-Institute

More information

Applications of the Spring. Force: molecules

Applications of the Spring. Force: molecules Applications of the Spring Atoms interact via the coulomb force Force: molecules When atoms are far apart, they are attractive When atoms are too close, they are repulsive Atoms in a molecule display relative

More information

Modeling the Free Energy of Polypeptides in Different Environments

Modeling the Free Energy of Polypeptides in Different Environments John von Neumann Institute for Computing Modeling the Free Energy of Polypeptides in Different Environments G. La Penna, S. Furlan, A. Perico published in From Computational Biophysics to Systems Biology

More information

Plan. Day 2: Exercise on MHC molecules.

Plan. Day 2: Exercise on MHC molecules. Plan Day 1: What is Chemoinformatics and Drug Design? Methods and Algorithms used in Chemoinformatics including SVM. Cross validation and sequence encoding Example and exercise with herg potassium channel:

More information

Protein-Ligand Docking

Protein-Ligand Docking Protein-Ligand Docking Matthias Rarey GMD - German National Research Center for Information Technology Institute for Algorithms and Scientific Computing (SCAI) 53754Sankt Augustin, Germany rarey@gmd.de

More information

5323 Harry Hines Blvd., Dallas, TX Department of Chemistry and Biochemistry, University of California at San Diego,

5323 Harry Hines Blvd., Dallas, TX Department of Chemistry and Biochemistry, University of California at San Diego, Assessing the Performance of the Molecular Mechanics/ Poisson Boltzmann Surface Area and Molecular Mechanics/ Generalized Born Surface Area Methods. II. The Accuracy of Ranking Poses Generated From Docking

More information

Aggregation of the Amyloid-β Protein: Monte Carlo Optimization Study

Aggregation of the Amyloid-β Protein: Monte Carlo Optimization Study John von Neumann Institute for Computing Aggregation of the Amyloid-β Protein: Monte Carlo Optimization Study S. M. Gopal, K. V. Klenin, W. Wenzel published in From Computational Biophysics to Systems

More information

György M. Keserű H2020 FRAGNET Network Hungarian Academy of Sciences

György M. Keserű H2020 FRAGNET Network Hungarian Academy of Sciences Fragment based lead discovery - introduction György M. Keserű H2020 FRAGET etwork Hungarian Academy of Sciences www.fragnet.eu Hit discovery from screening Druglike library Fragment library Large molecules

More information

Toward an Understanding of GPCR-ligand Interactions. Alexander Heifetz

Toward an Understanding of GPCR-ligand Interactions. Alexander Heifetz Toward an Understanding of GPCR-ligand Interactions Alexander Heifetz UK QSAR and ChemoInformatics Group Conference, Cambridge, UK October 6 th, 2015 Agenda Fragment Molecular Orbitals (FMO) for GPCR exploration

More information

Hit Finding and Optimization Using BLAZE & FORGE

Hit Finding and Optimization Using BLAZE & FORGE Hit Finding and Optimization Using BLAZE & FORGE Kevin Cusack,* Maria Argiriadi, Eric Breinlinger, Jeremy Edmunds, Michael Hoemann, Michael Friedman, Sami Osman, Raymond Huntley, Thomas Vargo AbbVie, Immunology

More information

ICM-Chemist-Pro How-To Guide. Version 3.6-1h Last Updated 12/29/2009

ICM-Chemist-Pro How-To Guide. Version 3.6-1h Last Updated 12/29/2009 ICM-Chemist-Pro How-To Guide Version 3.6-1h Last Updated 12/29/2009 ICM-Chemist-Pro ICM 3D LIGAND EDITOR: SETUP 1. Read in a ligand molecule or PDB file. How to setup the ligand in the ICM 3D Ligand Editor.

More information

Simulation environment for Life Sciences

Simulation environment for Life Sciences www.bsc.es Simulation environment for Life Sciences BSC - 14-15 March 2013 1 Objective Overview of simulation technologies used in Life Sciences and their specific adaptation to HPC environment. OUTLINE

More information

THE MOLECULAR GEOMETRIES OF CYCLOFRUCTINS [1]

THE MOLECULAR GEOMETRIES OF CYCLOFRUCTINS [1] 9 th Internat. Symp. on Cyclodextrins, Santiago de Compostela, 1998 (Eds.: J.J. Torres Labandeira, J.L. Vila Jato), Kluwer Acad. Publ., Dordrecht, NL, 1999, pp. 57-62. THE MOLECULAR GEOMETRIES OF CYCLOFRUCTINS

More information

Solvent & geometric effects on non-covalent interactions

Solvent & geometric effects on non-covalent interactions Solvent & geometric effects on non-covalent interactions Scott L. Cockroft PhysChem Forum 10, Syngenta, Jealott s Hill, 23 rd March 11 QSAR & Physical Organic Chemistry Quantifiable Physicochemical Properties

More information

Receptor Based Drug Design (1)

Receptor Based Drug Design (1) Induced Fit Model For more than 100 years, the behaviour of enzymes had been explained by the "lock-and-key" mechanism developed by pioneering German chemist Emil Fischer. Fischer thought that the chemicals

More information

CHARACTERIZATION OF G PROTEIN COUPLED RECEPTORS THROUGH THE USE OF BIO- AND CHEMO- INFORMATICS TOOLS

CHARACTERIZATION OF G PROTEIN COUPLED RECEPTORS THROUGH THE USE OF BIO- AND CHEMO- INFORMATICS TOOLS Proc. Natl. Conf. Theor. Phys. 37 (2012), pp. 42-48 CHARACTERIZATION OF G PROTEIN COUPLED RECEPTORS THROUGH THE USE OF BIO- AND CHEMO- INFORMATICS TOOLS TRAN PHUOC DUY Faculty of Applied Science, Hochiminh

More information

Bioengineering & Bioinformatics Summer Institute, Dept. Computational Biology, University of Pittsburgh, PGH, PA

Bioengineering & Bioinformatics Summer Institute, Dept. Computational Biology, University of Pittsburgh, PGH, PA Pharmacophore Model Development for the Identification of Novel Acetylcholinesterase Inhibitors Edwin Kamau Dept Chem & Biochem Kennesa State Uni ersit Kennesa GA 30144 Dept. Chem. & Biochem. Kennesaw

More information

User Guide for LeDock

User Guide for LeDock User Guide for LeDock Hongtao Zhao, PhD Email: htzhao@lephar.com Website: www.lephar.com Copyright 2017 Hongtao Zhao. All rights reserved. Introduction LeDock is flexible small-molecule docking software,

More information

Protein Structure Prediction and Protein-Ligand Docking

Protein Structure Prediction and Protein-Ligand Docking Protein Structure Prediction and Protein-Ligand Docking Björn Wallner bjornw@ifm.liu.se Jan. 24, 2014 Todays topics Protein Folding Intro Protein structure prediction How can we predict the structure of

More information

molecules ISSN

molecules ISSN Molecules 2004, 9, 1004-1009 molecules ISSN 1420-3049 http://www.mdpi.org Performance of Kier-Hall E-state Descriptors in Quantitative Structure Activity Relationship (QSAR) Studies of Multifunctional

More information

Introduction to FBDD Fragment screening methods and library design

Introduction to FBDD Fragment screening methods and library design Introduction to FBDD Fragment screening methods and library design Samantha Hughes, PhD Fragments 2013 RSC BMCS Workshop 3 rd March 2013 Copyright 2013 Galapagos NV Why fragment screening methods? Guess

More information

JOURNAL RANKING 2014 FOR BIOPHYSICS

JOURNAL RANKING 2014 FOR BIOPHYSICS The data source used is Journal Citation Reports (JCR) published by Thomson Reuters. Data generated from JCR Science Edition 2014. Biophysics covers resources that focus on the transfer and effects of

More information

Chemoinformatics and information management. Peter Willett, University of Sheffield, UK

Chemoinformatics and information management. Peter Willett, University of Sheffield, UK Chemoinformatics and information management Peter Willett, University of Sheffield, UK verview What is chemoinformatics and why is it necessary Managing structural information Typical facilities in chemoinformatics

More information

Efficient overlay of molecular 3-D pharmacophores

Efficient overlay of molecular 3-D pharmacophores Efficient overlay of molecular 3D pharmacophores Gerhard Wolber*, Alois A. Dornhofer & Thierry Langer * EMail: wolber@inteligand.com Superposition of molecules 1 Alignment: Outline Scope, design goals

More information

Syllabus BINF Computational Biology Core Course

Syllabus BINF Computational Biology Core Course Course Description Syllabus BINF 701-702 Computational Biology Core Course BINF 701/702 is the Computational Biology core course developed at the KU Center for Computational Biology. The course is designed

More information

Chiral Amplification. Literature Talk Fabian Schneider Konstanz, Universität Konstanz

Chiral Amplification. Literature Talk Fabian Schneider Konstanz, Universität Konstanz Chiral Amplification Literature Talk Fabian Schneider Konstanz, 18.10.2017 Overview 1) Motivation 2) The nonlinear Effect in asymmetric catalysis - First encounters - Basic principles - Formalization and

More information

Molecular dynamics simulations of anti-aggregation effect of ibuprofen. Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov

Molecular dynamics simulations of anti-aggregation effect of ibuprofen. Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov Biophysical Journal, Volume 98 Supporting Material Molecular dynamics simulations of anti-aggregation effect of ibuprofen Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov Supplemental

More information

Quantitative structure activity relationship and drug design: A Review

Quantitative structure activity relationship and drug design: A Review International Journal of Research in Biosciences Vol. 5 Issue 4, pp. (1-5), October 2016 Available online at http://www.ijrbs.in ISSN 2319-2844 Research Paper Quantitative structure activity relationship

More information

BIOINF 4371 Drug Design 1 Oliver Kohlbacher & Jens Krüger

BIOINF 4371 Drug Design 1 Oliver Kohlbacher & Jens Krüger BIOINF 4371 Drug Design 1 Oliver Kohlbacher & Jens Krüger Winter 2013/2014 11. Docking Part IV: Receptor Flexibility Overview Receptor flexibility Types of flexibility Implica5ons for docking Examples

More information

High Performance Computing

High Performance Computing High Performance Computing ADVANCED SCIENTIFIC COMPUTING Dr. Ing. Morris Riedel Adjunct Associated Professor School of Engineering and Natural Sciences, University of Iceland Research Group Leader, Juelich

More information

A Natural Coarse Graining for Simulating Large Biomolecular Motion

A Natural Coarse Graining for Simulating Large Biomolecular Motion Biophysical Journal Volume 91 September 2006 2115 2120 2115 A Natural Coarse Graining for Simulating Large Biomolecular Motion Holger Gohlke* and M. F. Thorpe y *Department of Biological Sciences, J. W.

More information

F. Piazza Center for Molecular Biophysics and University of Orléans, France. Selected topic in Physical Biology. Lecture 1

F. Piazza Center for Molecular Biophysics and University of Orléans, France. Selected topic in Physical Biology. Lecture 1 Zhou Pei-Yuan Centre for Applied Mathematics, Tsinghua University November 2013 F. Piazza Center for Molecular Biophysics and University of Orléans, France Selected topic in Physical Biology Lecture 1

More information

Kd = koff/kon = [R][L]/[RL]

Kd = koff/kon = [R][L]/[RL] Taller de docking y cribado virtual: Uso de herramientas computacionales en el diseño de fármacos Docking program GLIDE El programa de docking GLIDE Sonsoles Martín-Santamaría Shrödinger is a scientific

More information

Docking with Water in the Binding Site using GOLD

Docking with Water in the Binding Site using GOLD Docking with Water in the Binding Site using GOLD Version 2.0 November 2017 GOLD v5.6 Table of Contents Docking with Water in the Binding Site... 2 Case Study... 3 Introduction... 3 Provided Input Files...

More information

Protein Simulations in Confined Environments

Protein Simulations in Confined Environments Critical Review Lecture Protein Simulations in Confined Environments Murat Cetinkaya 1, Jorge Sofo 2, Melik C. Demirel 1 1. 2. College of Engineering, Pennsylvania State University, University Park, 16802,

More information

Binary image representation of a ligand binding site: its application to efficient sampling of a conformational ensemble

Binary image representation of a ligand binding site: its application to efficient sampling of a conformational ensemble RESEARCH ARTICLE Open Access Research article Binary image representation of a ligand binding site: its application to efficient sampling of a conformational ensemble Edon Sung 1,2, Sangsoo Kim* 2 and

More information

PROTEIN-PROTEIN DOCKING REFINEMENT USING RESTRAINT MOLECULAR DYNAMICS SIMULATIONS

PROTEIN-PROTEIN DOCKING REFINEMENT USING RESTRAINT MOLECULAR DYNAMICS SIMULATIONS TASKQUARTERLYvol.20,No4,2016,pp.353 360 PROTEIN-PROTEIN DOCKING REFINEMENT USING RESTRAINT MOLECULAR DYNAMICS SIMULATIONS MARTIN ZACHARIAS Physics Department T38, Technical University of Munich James-Franck-Str.

More information

CH MEDICINAL CHEMISTRY

CH MEDICINAL CHEMISTRY CH 458 - MEDICINAL CHEMISTRY SPRING 2011 M: 5:15pm-8 pm Sci-1-089 Prerequisite: Organic Chemistry II (Chem 254 or Chem 252, or equivalent transfer course) Instructor: Dr. Bela Torok Room S-1-132, Science

More information

Drug Design 2. Oliver Kohlbacher. Winter 2009/ QSAR Part 4: Selected Chapters

Drug Design 2. Oliver Kohlbacher. Winter 2009/ QSAR Part 4: Selected Chapters Drug Design 2 Oliver Kohlbacher Winter 2009/2010 11. QSAR Part 4: Selected Chapters Abt. Simulation biologischer Systeme WSI/ZBIT, Eberhard-Karls-Universität Tübingen Overview GRIND GRid-INDependent Descriptors

More information

NMR-spectroscopic investigation. of proteins in solution

NMR-spectroscopic investigation. of proteins in solution Practical course Molekulare und zelluläre Signaltransduktion M-spectroscopic investigation of proteins in solution Monika Beerbaum, Peter Schmieder AG M-Spektroskopie Leibniz-Institut für molekulare Pharmakologie

More information

Principles of Drug Design

Principles of Drug Design (16:663:502) Instructors: Longqin Hu and John Kerrigan Direct questions and enquiries to the Course Coordinator: Longqin Hu For more current information, please check WebCT at https://webct.rutgers.edu

More information

Ligand-receptor interactions

Ligand-receptor interactions University of Silesia, Katowice, Poland 11 22 March 2013 Ligand-receptor interactions Dr. Pavel Polishchuk A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine Odessa, Ukraine

More information

Hot Spots and Transient Pockets: Predicting the Determinants of Small-Molecule Binding to a Protein Protein Interface

Hot Spots and Transient Pockets: Predicting the Determinants of Small-Molecule Binding to a Protein Protein Interface pubs.acs.org/jcim Hot Spots and Transient Pockets: Predicting the Determinants of Small-Molecule Binding to a Protein Protein Interface Alexander Metz,, Christopher Pfleger,, Hannes Kopitz, Stefania Pfeiffer-Marek,

More information

Building innovative drug discovery alliances

Building innovative drug discovery alliances Building innovative drug discovery alliances Hit optimisation o using fragments Mark kwhittaker Evotec AG, Fragments 2015, March 2015 Agenda Fragment optimisation in an ideal world Fragment optimisation

More information