Towards fast and accurate binding affinity. prediction with pmemdgti: an efficient. implementation of GPU-accelerated. Thermodynamic Integration

Size: px
Start display at page:

Download "Towards fast and accurate binding affinity. prediction with pmemdgti: an efficient. implementation of GPU-accelerated. Thermodynamic Integration"

Transcription

1 Towards fast and accurate binding affinity prediction with pmemdgti: an efficient implementation of GPU-accelerated Thermodynamic Integration Tai-Sung Lee,, Yuan Hu, Brad Sherborne, Zhuyan Guo, and Darrin M. York, Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA Department of Chemistry, Modeling and Informatics, Merck Research Laboratories, 2000 Galloping Hill Road, Kenilworth, NJ

2 Supporting Information 1 Ligand structures and experimental binding affinities Figure S1: Structures, experimental K i and converted binding affinities, G, of the Factor Xa inhibitors. a L51bt is the tautomer structure of L51b. b Experimentally measured K i (unit: nm) are taken from Ref. 1. c Binding affinities (unit: kcal/mol) are calculated by G = RT ln K i with T=300 K. 2

3 2 Simulation Setup Initial structures and simulation parameters The initial structures of the FXa protein receptor (PDB code: 2RA0) and ten FXa inhibitors were directly taken from previously prepared protonated structures, as described in details elsewhere. 2 Disulfide bonds were automatically built by including additional disulfide bond list, and ligands and complexes were neutralized by adding ions (Cl or Na + if necessary; one Na + and two Cl ions in the simulations reported here) and then solvated in a water box extending at least 11 Å in each direction from the solute. All the topology files and structures were visually inspected. Atom types of the inhibitors were assigned from General AMBER Force Field (GAFF), 3 Atomic partial charges were prepared using the AM1-BCC approach. The AMBER ff12sb force field 4 was used for the rest of the system. There are different methodological approaches to the implementation of free energy methods with respect to how topologies are handled. Traditionally, both single and dual topology approaches have been utilized. 5 In the present work, a hybrid topology scheme 6 was utilized: both ends of the perturbed regions have separate topology descriptions within one single topology file. In the other words, the non-perturbed region is treated by the single-topology approach and the perturbed region is treated by the dual-topology approach. This commonly used hybrid scheme 6 is employed in AMBER, 4 GROMACS, 7 and CHARMM 8 packages. The input format of the TI regions are kept exactly the same as the CPU version of AMBER pmemd module. Simulation protocols As suggested, 4 a time step of 1 fs was used for the integration of the equations of motion, since SHAKE is not employed in those mutation simulations involving deleting/adding hydrogens. The translational center-of-mass motion was removed every 1000 steps. Long-range electrostatic interactions were treated by the particle-mesh Ewald method (PME) 9 with a direct-space sum cutoff of 9 Å, consistent with the minimal requirement of 8 Å 4 and our previously published work. 2 The Ewald error tolerance is set to The Ewald coefficient is set to The FFT grid sizes 3

4 are determined automatically by the program and are 80, 84, and 72 for complex simulations, and 36, 40, and 40 for ligand simulations. Setup/pre-equilibration for TI calculations FESetup (release 1.2) 10 was used to automatically prepare the topology files for TI calculations by setting free energy type as pmemd/softcore. The system for each mutation was first minimized and relaxed at 300 K in the NVT ensemble, then the initial conformations for each λ window were sequentially generated with 1.4 ns pre-equilibration for each λ-value from 0.0 to 1.0 with λ = 0.1, where the pre-equilibrated conformation of the current λ window was used as the starting conformation of the next λ window for production. All TI calculations, both with and without softcore potentials, were done as one-step perturbation without decoupling electrostatic and van der Wall interactions. Production simulations 5-ns TI simulations were performed for each λ window for every mutation. Only the last 4-ns data were collected for data analysis at a sampling frequency of 10 fs. Simulations were performed for both solvated ligands and complexes to calculate the relative binding affinities. Each simulation was repeated 10 times to calculate the ensemble-averaged values. 4

5 3 Binding free energy results for all runs Figure S2: The calculated free energies of all runs along, with the average values and the associated standard deviations, from both pmemdgti (GPU, in light gray background) and pmemd (CPU, in yellow background). a bt* is done without softcore potential. The entries of exp= are the corresponding experimental G values, 1 also listed in Figure S1. The unpaired t-test p-values at 95 % of confidence level, with the null hypothesis GPU and CPU results are from the same distribution, are also listed. As the p-values are in the range of 0.11 to 0.92, we conclude that there is no statistically significant difference between the GPU and CPU results. 5

6 4 Extra binding free energy results Figure S3: The free energy results of additional simulations: a bt and a bt* are the same as shown in Figure S2, both with 5-ns simulations and 1-fs steps; the a bt* (20ns) is a set of ten 20-ns long simulations (1-ns equilibration followed by 20 ns data collection); a bt (2fs-step) and a bt* (2fs-step) are the same simulations as a bt and a bt*, except 2-fs time steps are utilized. p-values has the same meaning as in Figure S2. As described in the main text, the a bt* (20ns) results, both the averaged G and the standard deviations, are essentially identical to a bt*, where 5-ns simulations were performed. When softcore potentials are not used, 1-fs (a bt*) and 2-fs (a bt* 2fs-step) steps lead to the same results; while when softcore potential are employed, the results of 2-fs step (a bt 2fs-step) might be problematic, showing much larger standard deviations in the ligand calculations. 6

7 5 TI add-on modules As described in the main text, TI modules are implemented as derived classes. The MD modules were re-packaged as base classes and no additional modification was made to the original MD GPU modules, i.e., when running TI calculations, the MD GPU modules runs as if it is a plain MD simulation. All original MD CUDA kernels are kept unmodified. There are two types of TI interactions: the long-range electrostatic interaction PME part, and other local interaction parts: PME execution flow: In order to perform TI calculations, the contribution from two end-point states needs to be evaluated. In our implementation, the original modules are kept untouched when possible. Figure S4 demonstrates the work-flow of the PME modules: the original PME engine is kept and it in fact does not know if it is in the TI mode or MD mode. The TI modification is the creation of the input charge grids of both end points of perpetuated regions Figure S4: The work-flow of the the particle mesh Ewald (PME 11 ) modules: pmemd (left) vs. pmemdgti (right). The original PME engine is kept untouched and it does not know if it is in the TI mode or MD mode. The TI modification mainly is the creation of the input charge grids and the calculations of resulting PME contributions. and feeding the info into the original PME modules, as well as collecting the resulting PME contributions. 7

8 Other local interactions: CUDA multiple stream execution The TI add-ons to handle other local interactions besides long-range PME interactions are implemented in the way totally independent to the non-ti parts (Figure S5). Similar to the long-range PME part, the original MD parts are kept untouched and do not have any knowledge of the TI add-ons, except are now packaged into base classes (colored green in Figure S5). Other the local bonded and non-bonding TI add-on modules in pmemdgti are packaged into derived classes and the newly added TI CUDA kernels are responsible of handling TI-only calculations and run independently (colored orange in Figure S5). The mulit-stream concept of CUDA is utilized and the TI modules and the original non-ti modules run on separate CUDA streams. A snapshot from a performance monitoring program (Nsight) is shown in Figure S6. Figure S5: The addition of TI non-bound modules (in orange) to the original pmemd non-bound modules (in light green). The non-bonding TI modules in pmemdgti are totally independent to the non-ti parts. The mulit-stream concept of CUDA is utilized and the TI modules and the original non-ti modules run on separate CUDA streams. 8

9 Figure S6: An example screen snapshot from Nsight output showing the multiple stream execution of pmemdgti program. Steam 1 in the figure is the default stream mentioned in the text and in Figure S5, Steam 2 is the MD stream, and Stream 3 is the TI stream. 9

10 6 Examples of dh dλ λ results from CPU and GPU dh Figure S7: The 5-ns time series plots (left panels) and the distribution plots (right panels) of dλ λ for the a bt mutation (Figure S1) in complex at λ = 0 (upper) λ = 1 (lower), from pmemdgti (GPU, in black) and pmemd.mpi (CPU, in red), with data sampled at the frequency of 10 fs. The results shown are from one simulation and demonstrate that pmemdgti and pmemd.mpi essentially give the identical dynamical behaviors of TI simulations. 10

11 References (1) Lee, Y.-K.; Parks, D. J.; Lu, T.; Thieu, T. V.; Markotan, T.; Pan, W.; McComsey, D. F.; Milkiewicz, K. L.; Crysler, C. S.; Ninan, N.; Abad, M. C.; Giardino, E. C.; Maryanoff, B. E.; Damiano, B. P.; Player, M. R. 7-fluoroindazoles as potent and selective inhibitors of factor Xa. J. Med. Chem. 2008, 51, (2) Hu, Y.; Sherborne, B.; Lee, T.-S.; Case, D. A.; York, D. M.; Guo, Z. The importance of protonation and tautomerization in relative binding affinity prediction: a comparison of AMBER TI and Schrödinger FEP. J. Comput.-Aided Mol. Des. 2016, 30, (3) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, (4) Case, D.; Babin, V.; Berryman, J.; Betz, R.; Cai, Q.; Cerutti, D.; Cheatham III, T.; Darden, T.; Duke, R.; Gohlke, H.; Goetz, A.; Gusarov, S.; Homeyer, N.; Janowski, P.; Kaus, J.; Kolossváry, I.; Kovalenko, A.; Lee, T.; LeGrand, S.; Luchko, T.; Luo, R.; Madej, B.; Merz, K.; Paesani, F.; Roe, D.; Roitberg, A.; Sagui, C.; Salomon-Ferrer, R.; Seabra, G.; Simmerling, C.; Smith, W.; Swails, J.; Walker, R.; Wang, J.; Wolf, R.; Wu, X.; Kollman, P. AMBER 14 ; University of California, San Francisco: San Francisco, CA, (5) Kollman, P. A. Free Energy Calculations: Applications to Chemical and Biochemical Phenomena. Chem. Rev. 1993, 93, (6) Gapsys, V.; Michielssens, S.; Seeliger, D.; de Groot, B. L. pmx: Automated protein structure and topology generation for alchemical perturbations. J. Comput. Chem. 2015, 36, (7) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. GRO- MACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, (8) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. Charmm: a program for macromolecular energy minimization and dynamics calculations. J. Comput. Chem. 1983, 4,

12 (9) York, D. M.; Wlodawer, A.; Pedersen, L. G.; Darden, T. Atomic level accuracy in simulations of protein crystals. Proc. Natl. Acad. Sci. USA 1994, 91, (10) Loeffler, H. H.; Michel, J.; Woods, C. FESetup: Automating Setup for Alchemical Free Energy Simulations. J. Chem. Inf. Model. 2015, 55, (11) Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N log(n) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98,

Applications of the Spring. Force: molecules

Applications of the Spring. Force: molecules Applications of the Spring Atoms interact via the coulomb force Force: molecules When atoms are far apart, they are attractive When atoms are too close, they are repulsive Atoms in a molecule display relative

More information

The importance of protonation and tautomerization in relative binding affinity prediction: a comparison of AMBER TI and Schrödinger FEP

The importance of protonation and tautomerization in relative binding affinity prediction: a comparison of AMBER TI and Schrödinger FEP J Comput Aided Mol Des (2016) 30:533 539 DOI 10.1007/s10822-016-9920-5 The importance of protonation and tautomerization in relative binding affinity prediction: a comparison of AMBER TI and Schrödinger

More information

High Performance Computing

High Performance Computing High Performance Computing ADVANCED SCIENTIFIC COMPUTING Dr. Ing. Morris Riedel Adjunct Associated Professor School of Engineering and Natural Sciences, University of Iceland Research Group Leader, Juelich

More information

Estimating Convergence Probability for the Hartree-Fock Algorithm for Calculating Electronic Wavefunctions for Molecules

Estimating Convergence Probability for the Hartree-Fock Algorithm for Calculating Electronic Wavefunctions for Molecules Estimating Convergence Probability for the Hartree-Fock Algorithm for Calculating Electronic Wavefunctions for Molecules Sofia Izmailov, Fang Liu December 14, 2012 1 Introduction In quantum mechanics,

More information

Supporting Information Comparative Molecular Dynamics Studies of Human DNA Polymerase η

Supporting Information Comparative Molecular Dynamics Studies of Human DNA Polymerase η Supporting Information Comparative Molecular Dynamics Studies of Human DNA Polymerase η Melek N. Ucisik and Sharon Hammes-Schiffer* Department of Chemistry, University of Illinois at Urbana-Champaign,

More information

Time-dependence of key H-bond/electrostatic interaction distances in the sirna5-hago2 complexes... Page S14

Time-dependence of key H-bond/electrostatic interaction distances in the sirna5-hago2 complexes... Page S14 Supporting Information Probing the Binding Interactions between Chemically Modified sirnas and Human Argonaute 2 Using Microsecond Molecular Dynamics Simulations S. Harikrishna* and P. I. Pradeepkumar*

More information

Protein structure sampling based on molecular dynamics and improvement of docking prediction

Protein structure sampling based on molecular dynamics and improvement of docking prediction 1 1 1, 2 1 NMR X Protein structure sampling based on molecular dynamics and improvement of docking prediction Yusuke Matsuzaki, 1 Yuri Matsuzaki, 1 Masakazu Sekijima 1, 2 and Yutaka Akiyama 1 When a protein

More information

Routine access to millisecond timescale events with accelerated molecular dynamics

Routine access to millisecond timescale events with accelerated molecular dynamics Routine access to millisecond timescale events with accelerated molecular dynamics Levi C.T. Pierce, Romelia Salomon-Ferrer, Cesar Augusto F. de Oliveira #, J. Andrew McCammon #, Ross C. Walker * SUPPORTING

More information

Supporting Information

Supporting Information Supporting Information A Streptavidin Binding Site Mutation Yields an Unexpected Result: An Ionized Asp128 Residue is Not Essential for Strong Biotin Binding. Loren Baugh, Isolde Le Trong, Patrick S. Stayton,

More information

MD Simulation in Pose Refinement and Scoring Using AMBER Workflows

MD Simulation in Pose Refinement and Scoring Using AMBER Workflows MD Simulation in Pose Refinement and Scoring Using AMBER Workflows Yuan Hu (On behalf of Merck D3R Team) D3R Grand Challenge 2 Webinar Department of Chemistry, Modeling & Informatics Merck Research Laboratories,

More information

A DFT and ONIOM study of C H hydroxylation catalyzed. by nitrobenzene 1,2-dioxygenase

A DFT and ONIOM study of C H hydroxylation catalyzed. by nitrobenzene 1,2-dioxygenase Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 A DFT and ONIOM study of C H hydroxylation catalyzed by nitrobenzene 1,2-dioxygenase

More information

Enhancing Amber for Use on the Blue Waters High- Performance Computing Resource

Enhancing Amber for Use on the Blue Waters High- Performance Computing Resource Enhancing Amber for Use on the Blue Waters High- Performance Computing Resource Daniel R. Roe a, Jason M. Swails b, Romelia Salomon-Ferrer c, Adrian E. Roitberg b, and Thomas E. Cheatham III a * a. Department

More information

Computational Modeling of Protein Kinase A and Comparison with Nuclear Magnetic Resonance Data

Computational Modeling of Protein Kinase A and Comparison with Nuclear Magnetic Resonance Data Computational Modeling of Protein Kinase A and Comparison with Nuclear Magnetic Resonance Data ABSTRACT Keyword Lei Shi 1 Advisor: Gianluigi Veglia 1,2 Department of Chemistry 1, & Biochemistry, Molecular

More information

MARTINI simulation details

MARTINI simulation details S1 Appendix MARTINI simulation details MARTINI simulation initialization and equilibration In this section, we describe the initialization of simulations from Main Text section Residue-based coarsegrained

More information

Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar.

Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar. Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar. 25, 2002 Molecular Dynamics: Introduction At physiological conditions, the

More information

Supporting Information

Supporting Information Supporting Information Constant ph molecular dynamics reveals ph-modulated binding of two small-molecule BACE1 inhibitors Christopher R. Ellis 1,, Cheng-Chieh Tsai 1,, Xinjun Hou 2, and Jana Shen 1, 1

More information

D3RGC2: free energy scoring by alchemical free energy implementation in SOMD

D3RGC2: free energy scoring by alchemical free energy implementation in SOMD D3RGC2: free energy scoring by alchemical free energy implementation in SOMD Julien Michel EaStCHEM School of Chemistry, University of Edinburgh, United Kingdom D3R webinar 27/03/17 Acknowledgements: group

More information

SUPPLEMENTARY INFORMATION An Empirical IR Frequency Map for Ester C=O Stretching Vibrations

SUPPLEMENTARY INFORMATION An Empirical IR Frequency Map for Ester C=O Stretching Vibrations SUPPLEMENTARY INFORMATION An Empirical IR Frequency Map for Ester C=O Stretching Vibrations Sean C. Edington, Jennifer C. Flanagan, Carlos R. Baiz* Department of Chemistry, University of Texas at Austin

More information

Development of Molecular Dynamics Simulation System for Large-Scale Supra-Biomolecules, PABIOS (PArallel BIOmolecular Simulator)

Development of Molecular Dynamics Simulation System for Large-Scale Supra-Biomolecules, PABIOS (PArallel BIOmolecular Simulator) Development of Molecular Dynamics Simulation System for Large-Scale Supra-Biomolecules, PABIOS (PArallel BIOmolecular Simulator) Group Representative Hisashi Ishida Japan Atomic Energy Research Institute

More information

Available online at ScienceDirect. Physics Procedia 57 (2014 ) 7 15

Available online at  ScienceDirect. Physics Procedia 57 (2014 ) 7 15 Available online at www.sciencedirect.com ScienceDirect Physics Procedia 57 (2014 ) 7 15 27th Annual CSP Workshops on Recent Developments in Computer Simulation Studies in Condensed Matter Physics, CSP

More information

Journal of Pharmacology and Experimental Therapy-JPET#172536

Journal of Pharmacology and Experimental Therapy-JPET#172536 A NEW NON-PEPTIDIC INHIBITOR OF THE 14-3-3 DOCKING SITE INDUCES APOPTOTIC CELL DEATH IN CHRONIC MYELOID LEUKEMIA SENSITIVE OR RESISTANT TO IMATINIB Manuela Mancini, Valentina Corradi, Sara Petta, Enza

More information

Statistical Mechanics for Proteins

Statistical Mechanics for Proteins The Partition Function From Q all relevant thermodynamic properties can be obtained by differentiation of the free energy F: = kt q p E q pd d h T V Q ), ( exp 1! 1 ),, ( 3 3 3 ),, ( ln ),, ( T V Q kt

More information

Alchemical free energy calculations in OpenMM

Alchemical free energy calculations in OpenMM Alchemical free energy calculations in OpenMM Lee-Ping Wang Stanford Department of Chemistry OpenMM Workshop, Stanford University September 7, 2012 Special thanks to: John Chodera, Morgan Lawrenz Outline

More information

Molecular dynamics simulations of a single stranded (ss) DNA

Molecular dynamics simulations of a single stranded (ss) DNA Molecular dynamics simulations of a single stranded (ss) DNA Subhasish Chatterjee 1, Bonnie Gersten 1, Siddarth Thakur 2, Alexander Burin 2 1 Department of Chemistry, Queens College and the Graduate Center

More information

Enhancing drug residence time by shielding of intra-protein hydrogen bonds: a case study on CCR2 antagonists. Supplementary Information

Enhancing drug residence time by shielding of intra-protein hydrogen bonds: a case study on CCR2 antagonists. Supplementary Information Enhancing drug residence time by shielding of intra-protein hydrogen bonds: a case study on CCR2 antagonists Aniket Magarkar, Gisela Schnapp, Anna-Katharina Apel, Daniel Seeliger & Christofer S. Tautermann

More information

Supporting Information. Pterosin Sesquiterpenoids from Pteris cretica as Hypolipidemic Agents. via Activating Liver X Receptors

Supporting Information. Pterosin Sesquiterpenoids from Pteris cretica as Hypolipidemic Agents. via Activating Liver X Receptors Supporting Information Pterosin Sesquiterpenoids from Pteris cretica as Hypolipidemic Agents via Activating Liver X Receptors Xiangkun Luo, Chanjuan Li, Pan Luo, Xin Lin, Hang Ma, Navindra P. Seeram, Ching

More information

Developing Monovalent Ion Parameters for the Optimal Point Charge (OPC) Water Model. John Dood Hope College

Developing Monovalent Ion Parameters for the Optimal Point Charge (OPC) Water Model. John Dood Hope College Developing Monovalent Ion Parameters for the Optimal Point Charge (OPC) Water Model John Dood Hope College What are MD simulations? Model and predict the structure and dynamics of large macromolecules.

More information

Supplementary Information. Surface Microstructure Engenders Unusual Hydrophobicity in. Phyllosilicates

Supplementary Information. Surface Microstructure Engenders Unusual Hydrophobicity in. Phyllosilicates Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supplementary Information Surface Microstructure Engenders Unusual Hydrophobicity in Phyllosilicates

More information

Free energy simulations

Free energy simulations Free energy simulations Marcus Elstner and Tomáš Kubař January 14, 2013 Motivation a physical quantity that is of most interest in chemistry? free energies Helmholtz F or Gibbs G holy grail of computational

More information

Supporting Material for. Microscopic origin of gating current fluctuations in a potassium channel voltage sensor

Supporting Material for. Microscopic origin of gating current fluctuations in a potassium channel voltage sensor Supporting Material for Microscopic origin of gating current fluctuations in a potassium channel voltage sensor J. Alfredo Freites, * Eric V. Schow, * Stephen H. White, and Douglas J. Tobias * * Department

More information

Protein-protein interactions of Human Glyoxalase II: findings of a reliable docking protocol

Protein-protein interactions of Human Glyoxalase II: findings of a reliable docking protocol Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTARY INFORMATION Protein-protein interactions of Human Glyoxalase

More information

Supporting Information

Supporting Information alladium monophosphine d(h 3 ): does it really exist in solution? ietro Vidossich*, Gregori Ujaque,* and Agustí Lledós* Supporting Information Contents: 1. Schemes S1 and S2 2. Computational details 3.

More information

Lecture 19: Free Energies in Modern Computational Statistical Thermodynamics: FEP and Related Methods

Lecture 19: Free Energies in Modern Computational Statistical Thermodynamics: FEP and Related Methods Statistical Thermodynamics Lecture 19: Free Energies in Modern Computational Statistical Thermodynamics: FEP and Related Methods Dr. Ronald M. Levy ronlevy@temple.edu Free energy calculations Free energy

More information

Structure Investigation of Fam20C, a Golgi Casein Kinase

Structure Investigation of Fam20C, a Golgi Casein Kinase Structure Investigation of Fam20C, a Golgi Casein Kinase Sharon Grubner National Taiwan University, Dr. Jung-Hsin Lin University of California San Diego, Dr. Rommie Amaro Abstract This research project

More information

A Large-Scale Test of Free-Energy Simulation Estimates of Protein-Ligand Binding Affinities.

A Large-Scale Test of Free-Energy Simulation Estimates of Protein-Ligand Binding Affinities. A Large-Scale Test of Free-Energy Simulation Estimates of Protein-Ligand Binding Affinities. Mikulskis, Paulius; Genheden, Samuel; Ryde, Ulf Published in: DOI: 10.1021/ci5004027 2014 Link to publication

More information

Kd = koff/kon = [R][L]/[RL]

Kd = koff/kon = [R][L]/[RL] Taller de docking y cribado virtual: Uso de herramientas computacionales en el diseño de fármacos Docking program GLIDE El programa de docking GLIDE Sonsoles Martín-Santamaría Shrödinger is a scientific

More information

Supporting Information: Improved Parametrization. of Lithium, Sodium, Potassium, and Magnesium ions. for All-Atom Molecular Dynamics Simulations of

Supporting Information: Improved Parametrization. of Lithium, Sodium, Potassium, and Magnesium ions. for All-Atom Molecular Dynamics Simulations of Supporting Information: Improved Parametrization of Lithium, Sodium, Potassium, and Magnesium ions for All-Atom Molecular Dynamics Simulations of Nucleic Acid Systems. Jejoong Yoo and Aleksei Aksimentiev,,

More information

Interplay between R513 methylation and S516 phosphorylation of the cardiac voltagegated sodium channel

Interplay between R513 methylation and S516 phosphorylation of the cardiac voltagegated sodium channel Supplemental Information Interplay between R513 methylation and S516 phosphorylation of the cardiac voltagegated sodium channel Amino Acids Pedro Beltran-Alvarez, 1, * Ferran Feixas, 2, Sílvia Osuna, 2,

More information

MM-PBSA Validation Study. Trent E. Balius Department of Applied Mathematics and Statistics AMS

MM-PBSA Validation Study. Trent E. Balius Department of Applied Mathematics and Statistics AMS MM-PBSA Validation Study Trent. Balius Department of Applied Mathematics and Statistics AMS 535 11-26-2008 Overview MM-PBSA Introduction MD ensembles one snap-shots relaxed structures nrichment Computational

More information

Atomic Accessibility Radii for Molecular Dynamics Analysis

Atomic Accessibility Radii for Molecular Dynamics Analysis Zuse Institute Berlin Takustr. 7 14195 Berlin Germany NORBERT LINDOW 1, DANIEL BAUM 2, HANS-CHRISTIAN HEGE 3 Atomic Accessibility Radii for Molecular Dynamics Analysis 1 0000-0001-5143-2573 2 0000-0003-1550-7245

More information

Supporting Information

Supporting Information Supporting Information ph-responsive self-assembly of polysaccharide through a rugged energy landscape Brian H. Morrow, Gregory F. Payne, and Jana Shen Department of Pharmaceutical Sciences, School of

More information

Supplemental Information

Supplemental Information Chemistry & Biology, Volume22 Supplemental Information Overcoming Chemical, Biological, and Computational Challenges in the Development of Inhibitors Targeting Protein-Protein Interactions Luca Laraia,

More information

Density Functional Theory: from theory to Applications

Density Functional Theory: from theory to Applications Density Functional Theory: from theory to Applications Uni Mainz January 17, 2011 CP-PAW/COSMO Interface Mixed quantum/ classical molecular dynamics (QM/MM) Quantum mechanics is computationally expensive

More information

g_mmpbsa - A GROMACS tool for highthroughput

g_mmpbsa - A GROMACS tool for highthroughput g_mmpbsa - A GROMACS tool for highthroughput MM-PBSA Calculations Rashmi Kumari 1, Rajendra Kumar 1, OSDD Consortium 2 and Andrew Lynn 1 * 1 School of Computational and Integrative Sciences, Jawaharlal

More information

Large Scale FEP on Congeneric Ligand Series Have Practical Free Energy Calculations arrived at Last?

Large Scale FEP on Congeneric Ligand Series Have Practical Free Energy Calculations arrived at Last? Large Scale FEP on Congeneric Ligand Series Have Practical Free Energy Calculations arrived at Last? Thomas Steinbrecher, Teng Lin, Lingle Wang, Goran Krilov, Robert Abel, Woody Sherman, Richard Friesner

More information

Dock Ligands from a 2D Molecule Sketch

Dock Ligands from a 2D Molecule Sketch Dock Ligands from a 2D Molecule Sketch March 31, 2016 Sample to Insight CLC bio, a QIAGEN Company Silkeborgvej 2 Prismet 8000 Aarhus C Denmark Telephone: +45 70 22 32 44 www.clcbio.com support-clcbio@qiagen.com

More information

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions Molecular Interactions F14NMI Lecture 4: worked answers to practice questions http://comp.chem.nottingham.ac.uk/teaching/f14nmi jonathan.hirst@nottingham.ac.uk (1) (a) Describe the Monte Carlo algorithm

More information

Molecular Dynamics Simulation of a Biomolecule with High Speed, Low Power and Accuracy Using GPU-Accelerated TSUBAME2.

Molecular Dynamics Simulation of a Biomolecule with High Speed, Low Power and Accuracy Using GPU-Accelerated TSUBAME2. APSIPA ASC 2011 Xi an Molecular Dynamics Simulation of a Biomolecule with High Speed, Low Power and Accuracy Using GPU-Accelerated TSUBAME2.0 Supercomputer Shiqiao Du, Takuro Udagawa, Toshio Endo and Masakazu

More information

A Brief Guide to All Atom/Coarse Grain Simulations 1.1

A Brief Guide to All Atom/Coarse Grain Simulations 1.1 A Brief Guide to All Atom/Coarse Grain Simulations 1.1 Contents 1. Introduction 2. AACG simulations 2.1. Capabilities and limitations 2.2. AACG commands 2.3. Visualization and analysis 2.4. AACG simulation

More information

Supplementary Information

Supplementary Information Supplementary Information Resveratrol Serves as a Protein-Substrate Interaction Stabilizer in Human SIRT1 Activation Xuben Hou,, David Rooklin, Hao Fang *,,, Yingkai Zhang Department of Medicinal Chemistry

More information

On the calculation of solvation free energy from Kirkwood- Buff integrals: A large scale molecular dynamics study

On the calculation of solvation free energy from Kirkwood- Buff integrals: A large scale molecular dynamics study On the calculation of solvation free energy from Kirkwood- Buff integrals: A large scale molecular dynamics study Wynand Dednam and André E. Botha Department of Physics, University of South Africa, P.O.

More information

Ranking of HIV-protease inhibitors using AutoDock

Ranking of HIV-protease inhibitors using AutoDock Ranking of HIV-protease inhibitors using AutoDock 1. Task Calculate possible binding modes and estimate the binding free energies for 1 3 inhibitors of HIV-protease. You will learn: Some of the theory

More information

arxiv: v1 [physics.chem-ph] 8 Mar 2010

arxiv: v1 [physics.chem-ph] 8 Mar 2010 arxiv:1003.1678v1 [physics.chem-ph] 8 Mar 2010 A new battery-charging method suggested by molecular dynamics simulations Ibrahim Abou Hamad 1,, M. A. Novotny 1,2, D. Wipf 3, and P. A. Rikvold 4 1 HPC 2,

More information

arxiv: v1 [physics.chem-ph] 30 Jul 2012

arxiv: v1 [physics.chem-ph] 30 Jul 2012 Is ion channel selectivity mediated by confined water? Diego Prada-Gracia and Francesco Rao School of Soft Matter, Freiburg Institute for Advanced Studies, Freiburg, Germany arxiv:27.6953v [physics.chem-ph]

More information

Optimizing GROMACS for parallel performance

Optimizing GROMACS for parallel performance Optimizing GROMACS for parallel performance Outline 1. Why optimize? Performance status quo 2. GROMACS as a black box. (PME) 3. How does GROMACS spend its time? (MPE) 4. What you can do What I want to

More information

Computational Chemistry - MD Simulations

Computational Chemistry - MD Simulations Computational Chemistry - MD Simulations P. Ojeda-May pedro.ojeda-may@umu.se Department of Chemistry/HPC2N, Umeå University, 901 87, Sweden. May 2, 2017 Table of contents 1 Basics on MD simulations Accelerated

More information

ONETEP PB/SA: Application to G-Quadruplex DNA Stability. Danny Cole

ONETEP PB/SA: Application to G-Quadruplex DNA Stability. Danny Cole ONETEP PB/SA: Application to G-Quadruplex DNA Stability Danny Cole Introduction Historical overview of structure and free energy calculation of complex molecules using molecular mechanics and continuum

More information

Molecular dynamics simulation of Aquaporin-1. 4 nm

Molecular dynamics simulation of Aquaporin-1. 4 nm Molecular dynamics simulation of Aquaporin-1 4 nm Molecular Dynamics Simulations Schrödinger equation i~@ t (r, R) =H (r, R) Born-Oppenheimer approximation H e e(r; R) =E e (R) e(r; R) Nucleic motion described

More information

The Fast Multipole Method in molecular dynamics

The Fast Multipole Method in molecular dynamics The Fast Multipole Method in molecular dynamics Berk Hess KTH Royal Institute of Technology, Stockholm, Sweden ADAC6 workshop Zurich, 20-06-2018 Slide BioExcel Slide Molecular Dynamics of biomolecules

More information

A Molecular Dynamics Simulation of the Human Lysozyme Camelid VHH HL6 Antibody System

A Molecular Dynamics Simulation of the Human Lysozyme Camelid VHH HL6 Antibody System Int. J. Mol. Sci. 2009, 10, 1719-1727; doi:10.3390/ijms10041719 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article A Molecular Dynamics Simulation

More information

Molecular Dynamics Investigation of the ω-current in the Kv1.2 Voltage Sensor Domains

Molecular Dynamics Investigation of the ω-current in the Kv1.2 Voltage Sensor Domains Molecular Dynamics Investigation of the ω-current in the Kv1.2 Voltage Sensor Domains Fatemeh Khalili-Araghi, Emad Tajkhorshid, Benoît Roux, and Klaus Schulten Department of Physics, Department of Biochemistry,

More information

Tailoring the Properties of Quadruplex Nucleobases for Biological and Nanomaterial Applications

Tailoring the Properties of Quadruplex Nucleobases for Biological and Nanomaterial Applications Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supporting Information for: Tailoring the Properties of Quadruplex Nucleobases

More information

Supplementary Figures for Tong et al.: Structure and function of the intracellular region of the plexin-b1 transmembrane receptor

Supplementary Figures for Tong et al.: Structure and function of the intracellular region of the plexin-b1 transmembrane receptor Supplementary Figures for Tong et al.: Structure and function of the intracellular region of the plexin-b1 transmembrane receptor Figure S1. Plexin-B1 GAP segments are homologous to RasGAPs. Sequence alignment

More information

W tot (z) = W (z) k B T ln e i q iφ mp(z i )/k B T, [1]

W tot (z) = W (z) k B T ln e i q iφ mp(z i )/k B T, [1] Supporting Text Simulation Details. Simulations were carried out with the program charmm (1) using the PARAM27 force field with standard lipid (2), protein (3), and TIP3P water model (4) parameters. The

More information

Efficient Parallelization of Molecular Dynamics Simulations on Hybrid CPU/GPU Supercoputers

Efficient Parallelization of Molecular Dynamics Simulations on Hybrid CPU/GPU Supercoputers Efficient Parallelization of Molecular Dynamics Simulations on Hybrid CPU/GPU Supercoputers Jaewoon Jung (RIKEN, RIKEN AICS) Yuji Sugita (RIKEN, RIKEN AICS, RIKEN QBiC, RIKEN ithes) Molecular Dynamics

More information

Supplementary Methods

Supplementary Methods Supplementary Methods MMPBSA Free energy calculation Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) has been widely used to calculate binding free energy for protein-ligand systems (1-7).

More information

Multidimensional Replica Exchange Molecular Dynamics Yields a Converged Ensemble of an RNA Tetranucleotide

Multidimensional Replica Exchange Molecular Dynamics Yields a Converged Ensemble of an RNA Tetranucleotide pubs.acs.org/jctc Terms of Use Multidimensional Replica Exchange Molecular Dynamics Yields a Converged Ensemble of an RNA Tetranucleotide Christina Bergonzo, Niel M. Henriksen, Daniel R. Roe, Jason M.

More information

Binding Free Energy Calculations for Lead Optimization: Assessment of Their Accuracy in an Industrial Drug Design Context

Binding Free Energy Calculations for Lead Optimization: Assessment of Their Accuracy in an Industrial Drug Design Context pubs.acs.org/jctc Binding Free Energy Calculations for Lead Optimization: Assessment of Their Accuracy in an Industrial Drug Design Context Nadine Homeyer, Friederike Stoll, Alexander Hillisch, and Holger

More information

Force Field for Water Based on Neural Network

Force Field for Water Based on Neural Network Force Field for Water Based on Neural Network Hao Wang Department of Chemistry, Duke University, Durham, NC 27708, USA Weitao Yang* Department of Chemistry, Duke University, Durham, NC 27708, USA Department

More information

Thomas E. Cheatham III

Thomas E. Cheatham III NSF OCI-1036208: PRAC Hierarchical molecular dynamics sampling for assessing pathways and free energies of RNA catalysis, ligand binding, and conformational change. NEIS-P2 update, May 2013 Thomas E. Cheatham

More information

Molecular dynamics simulation. CS/CME/BioE/Biophys/BMI 279 Oct. 5 and 10, 2017 Ron Dror

Molecular dynamics simulation. CS/CME/BioE/Biophys/BMI 279 Oct. 5 and 10, 2017 Ron Dror Molecular dynamics simulation CS/CME/BioE/Biophys/BMI 279 Oct. 5 and 10, 2017 Ron Dror 1 Outline Molecular dynamics (MD): The basic idea Equations of motion Key properties of MD simulations Sample applications

More information

How is molecular dynamics being used in life sciences? Davide Branduardi

How is molecular dynamics being used in life sciences? Davide Branduardi How is molecular dynamics being used in life sciences? Davide Branduardi davide.branduardi@schrodinger.com Exploring molecular processes with MD Drug discovery and design Protein-protein interactions Protein-DNA

More information

Free energy calculations using molecular dynamics simulations. Anna Johansson

Free energy calculations using molecular dynamics simulations. Anna Johansson Free energy calculations using molecular dynamics simulations Anna Johansson 2007-03-13 Outline Introduction to concepts Why is free energy important? Calculating free energy using MD Thermodynamical Integration

More information

Amino Acids and Proteins at ZnO-water Interfaces in Molecular Dynamics Simulations: Electronic Supplementary Information

Amino Acids and Proteins at ZnO-water Interfaces in Molecular Dynamics Simulations: Electronic Supplementary Information Amino Acids and Proteins at ZnO-water Interfaces in Molecular Dynamics Simulations: Electronic Supplementary Information Grzegorz Nawrocki and Marek Cieplak Institute of Physics, Polish Academy of Sciences,

More information

A microsecond a day keeps the doctor away: Efficient GPU Molecular Dynamics with GROMACS

A microsecond a day keeps the doctor away: Efficient GPU Molecular Dynamics with GROMACS GTC 20130319 A microsecond a day keeps the doctor away: Efficient GPU Molecular Dynamics with GROMACS Erik Lindahl erik.lindahl@scilifelab.se Molecular Dynamics Understand biology We re comfortably on

More information

Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water?

Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water? Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water? Ruhong Zhou 1 and Bruce J. Berne 2 1 IBM Thomas J. Watson Research Center; and 2 Department of Chemistry,

More information

Applications of Molecular Dynamics

Applications of Molecular Dynamics June 4, 0 Molecular Modeling and Simulation Applications of Molecular Dynamics Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tohru

More information

The PhilOEsophy. There are only two fundamental molecular descriptors

The PhilOEsophy. There are only two fundamental molecular descriptors The PhilOEsophy There are only two fundamental molecular descriptors Where can we use shape? Virtual screening More effective than 2D Lead-hopping Shape analogues are not graph analogues Molecular alignment

More information

Molecular simulation and structure prediction using CHARMM and the MMTSB Tool Set Free Energy Methods

Molecular simulation and structure prediction using CHARMM and the MMTSB Tool Set Free Energy Methods Molecular simulation and structure prediction using CHARMM and the MMTSB Tool Set Free Energy Methods Charles L. Brooks III MMTSB/CTBP 2006 Summer Workshop CHARMM Simulations The flow of data and information

More information

How Tertiary Interactions Between the L2 and L3 Loops Affect the Dynamics of the Distant Ligand Binding Site in the Guanine Sensing Riboswitch

How Tertiary Interactions Between the L2 and L3 Loops Affect the Dynamics of the Distant Ligand Binding Site in the Guanine Sensing Riboswitch How Tertiary Interactions Between the L2 and L3 Loops Affect the Dynamics of the Distant Ligand Binding Site in the Guanine Sensing Riboswitch Christian A. Hanke and Holger Gohlke Institute for Pharmaceutical

More information

NWChem: Molecular Dynamics and QM/MM

NWChem: Molecular Dynamics and QM/MM NWChem: Molecular Dynamics and QM/MM Molecular Dynamics Functionality Target systems: General features: biomolecules (proteins, DNA/RNA, biomembranes) energy evaluation (SP) energy minimization (EM) molecular

More information

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010 All-atom Molecular Mechanics Trent E. Balius AMS 535 / CHE 535 09/27/2010 Outline Molecular models Molecular mechanics Force Fields Potential energy function functional form parameters and parameterization

More information

DISCRETE TUTORIAL. Agustí Emperador. Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING:

DISCRETE TUTORIAL. Agustí Emperador. Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING: DISCRETE TUTORIAL Agustí Emperador Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING: STRUCTURAL REFINEMENT OF DOCKING CONFORMATIONS Emperador

More information

Anion binding in aqueous media by a tetra-triazolium macrocycle

Anion binding in aqueous media by a tetra-triazolium macrocycle Supporting Information for Anion binding in aqueous media by a tetra-triazolium macrocycle Nicholas G. White, a Sílvia Carvalho, b Vítor Félix, b & Paul D. Beer a * a Chemistry Research Laboratory, Department

More information

Parallelization of Molecular Dynamics (with focus on Gromacs) SeSE 2014 p.1/29

Parallelization of Molecular Dynamics (with focus on Gromacs) SeSE 2014 p.1/29 Parallelization of Molecular Dynamics (with focus on Gromacs) SeSE 2014 p.1/29 Outline A few words on MD applications and the GROMACS package The main work in an MD simulation Parallelization Stream computing

More information

Protecting High Energy Barriers: A New Equation to Regulate Boost Energy in Accelerated Molecular Dynamics Simulations

Protecting High Energy Barriers: A New Equation to Regulate Boost Energy in Accelerated Molecular Dynamics Simulations pubs.acs.org/jctc Protecting High Energy Barriers: A New Equation to Regulate Boost Energy in Accelerated Molecular Dynamics Simulations William Sinko,*,, Cesar Augusto F. de Oliveira,*,,, Levi C. T. Pierce,

More information

Improved Reweighting of Accelerated Molecular Dynamics Simulations for Free Energy Calculation

Improved Reweighting of Accelerated Molecular Dynamics Simulations for Free Energy Calculation This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. pubs.acs.org/jctc Improved

More information

Supporting Information Quantitative characterization of the binding and unbinding of millimolar drug fragments with molecular dynamics simulations

Supporting Information Quantitative characterization of the binding and unbinding of millimolar drug fragments with molecular dynamics simulations Supporting Information Quantitative characterization of the binding and unbinding of millimolar drug fragments with molecular dynamics simulations Simulation Details All binding simulations were run on

More information

Supporting Information

Supporting Information Supporting Information Energies and 2 -hydroxyl group orientations of RNA backbone conformations. Benchmark CCSD(T)/CBS database, electronic analysis and assessment of DFT methods and MD simulations Arnošt

More information

An Informal AMBER Small Molecule Force Field :

An Informal AMBER Small Molecule Force Field : An Informal AMBER Small Molecule Force Field : parm@frosst Credit Christopher Bayly (1992-2010) initiated, contributed and lead the efforts Daniel McKay (1997-2010) and Jean-François Truchon (2002-2010)

More information

FENZI: GPU-enabled Molecular Dynamics Simulations of Large Membrane Regions based on the CHARMM force field and PME

FENZI: GPU-enabled Molecular Dynamics Simulations of Large Membrane Regions based on the CHARMM force field and PME 211 IEEE International Parallel & Distributed Processing Symposium : GPU-enabled Molecular Dynamics Simulations of Large Membrane Regions based on the force field and PME Narayan Ganesan, Michela Taufer

More information

The Molecular Dynamics Method

The Molecular Dynamics Method H-bond energy (kcal/mol) - 4.0 The Molecular Dynamics Method Fibronectin III_1, a mechanical protein that glues cells together in wound healing and in preventing tumor metastasis 0 ATPase, a molecular

More information

Dynamical origins of heat capacity changes in enzyme catalysed reactions

Dynamical origins of heat capacity changes in enzyme catalysed reactions Supplementary information Dynamical origins of heat capacity changes in enzyme catalysed reactions Marc W. van der Kamp 1,2 *, Erica J. Prentice 3, Kirsty L. Kraakmann 3, Michael Connolly 2, Adrian J.

More information

This Answer/Solution Example is taken from a student s actual homework report. I thank him for permission to use it here. JG

This Answer/Solution Example is taken from a student s actual homework report. I thank him for permission to use it here. JG This Answer/Solution Example is taken from a student s actual homework report. I thank him for permission to use it here. JG Chem 8021 Spring 2005 Project II Calculation of Self-Diffusion Coeffecient of

More information

PROTEIN STRUCTURE PREDICTION USING GAS PHASE MOLECULAR DYNAMICS SIMULATION: EOTAXIN-3 CYTOKINE AS A CASE STUDY

PROTEIN STRUCTURE PREDICTION USING GAS PHASE MOLECULAR DYNAMICS SIMULATION: EOTAXIN-3 CYTOKINE AS A CASE STUDY International Conference Mathematical and Computational Biology 2011 International Journal of Modern Physics: Conference Series Vol. 9 (2012) 193 198 World Scientific Publishing Company DOI: 10.1142/S2010194512005259

More information

w REXAMD: A Hamiltonian Replica Exchange Approach to Improve Free Energy Calculations for Systems with Kinetically Trapped Conformations

w REXAMD: A Hamiltonian Replica Exchange Approach to Improve Free Energy Calculations for Systems with Kinetically Trapped Conformations pubs.acs.org/jctc Downloaded via 148.251.232.83 on March 8, 2019 at 14:33:02 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. w REXAMD: A Hamiltonian

More information

Free energy calculations with alchemlyb

Free energy calculations with alchemlyb Free energy calculations with alchemlyb Oliver Beckstein Arizona State University SPIDAL Teleconference 2019-02-01 Binding free energy measure of how strong a protein P and a ligand X stick together key

More information

Towards accurate calculations of Zn 2+ binding free energies in zinc finger proteins

Towards accurate calculations of Zn 2+ binding free energies in zinc finger proteins Towards accurate calculations of Zn 2+ binding free energies in zinc finger proteins UNDERGRADUATE HONORS RESEARCH THESIS Presented in Partial Fulfillment of the Requirements for the Bachelor of Science

More information

Supplemental Material for Global Langevin model of multidimensional biomolecular dynamics

Supplemental Material for Global Langevin model of multidimensional biomolecular dynamics Supplemental Material for Global Langevin model of multidimensional biomolecular dynamics Norbert Schaudinnus, Benjamin Lickert, Mithun Biswas and Gerhard Stock Biomolecular Dynamics, Institute of Physics,

More information

Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium.

Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium. Supporting Information Towards peptide vaccines against Zika virus: Immunoinformatics combined with molecular dynamics simulations to predict antigenic epitopes of Zika viral proteins Muhammad Usman Mirza

More information