Estimating Convergence Probability for the Hartree-Fock Algorithm for Calculating Electronic Wavefunctions for Molecules

Size: px
Start display at page:

Download "Estimating Convergence Probability for the Hartree-Fock Algorithm for Calculating Electronic Wavefunctions for Molecules"

Transcription

1 Estimating Convergence Probability for the Hartree-Fock Algorithm for Calculating Electronic Wavefunctions for Molecules Sofia Izmailov, Fang Liu December 14, Introduction In quantum mechanics, molecules can be described by their wavefunctions The wavefunction is given by the Schrodinger equation: HΦ = EΦ where H is the Hamiltonian operator and E is the energy of the system described by Φ The Schrodinger equation cannot be solved exactly for molecules larger than a hydrogen atom Therefore, certain assumptions are often made to simplify the problem The Born- Oppenheimer approximation is frequently used and it treats nuclei as stationary because their velocity is much lower than that of the electrons This allows the wavefunction to be broken into the nuclear and electronic components For many applications in chemistry we are concerned with solving the electronic wavefunction Since the Schrodinger equation cannot be solved exactly, basis sets (eg Gaussian-type functions) are used to approximate electronic wavefunctions The Hartree-Fock algorithm calculates the electronic wavefunction for a system given some basis set The algorithm tries to solve a system of non-linear equations using an iterative procedure Specifically, the problem requires a solution to a eigenvector equation in the form FC = Cɛ where the Fock matrix F is dependent on C Convergence is reached when certain properties of the system stabilize (eg Energy reaches a stable minimum or the basis set coefficients stabilize) However, sometimes the algorithm converges very slowly, oscillates around some value, or even diverges Many modifications to the original algorithm exist to increase convergence rate and decrease the likelihood of failure One such algorithm is the directed inversion in the iterative subspace (DIIS) method [1] In this algorithm, we determine an error vector for each iteration associated with the Fock matrix used in that iteration The error for the next step is approximated as a linear combination of some n previous error vectors e n+1 = n i c i(e i ) with the constraint that n i c i = 1 The goal is to minimize this approximation of the error so this problem can be solved by standard the standard Lagrange multiplier method The c coefficients are than used to update the Fock matrix for the next step Then the actual e n+1 error may be calculated from the F n+1 The process is repeated until e n is sufficiently small 1

2 While the DIIS method does increase convergence rate and decrease failure rate in electronic structure calculations, some systems continue to fail to converge or converge slowly Since the calculations of each step of the Hartree-Fock algorithm can be really expensive, especially when large molecules or large basis sets are used, it would be very useful to have a method of determining whether a current calculation is going to converge soon This way, one may choose whether to continue on with an existing calculation or to start over and try a different set of initial conditions which may lead to a more successful calculation 2 Generating Data Hatree-Fock calculation with DIIS algorithm was carried out with TeraChem[2] quantum chemistry package We chose benzene as the model molecule to generate examples of Hatree-Fock calculation data, and the detailed process is described as follows 80 different conformations of benzene were generated with AMBER[3] molecular dynamics package Then the Hartree-Fock calculation for these conformations were conducted with Terachem The 6-31G basis set was employed throughout the calculation to make sure that the size of error matrices remained the same for all calculations Maximum number of DIIS iterations was set to 100, so the calculation was terminated if not converged within 100 steps Finally, 80 different examples were obtained, with 20 easily converged ones (within 13 iterations), 20 slowly converged ones ( iterations ), and 40 non-converged ones For each example, the calculation result was composed of history of total energy difference between two consecutive iterations E i, DIIS error matrix for each iteration e i, and the DIIS linear equation matrix B, which was generated for minimizing the approximated error e n+1 = n i c i(e i ) with lagrange multiplier method: λ 1 1 B 11 B 12 c 1 0 = 1 B ij where B ij the scalar product of any two error matrices for the last 10 iterations: B ij = T r(e i, e + j ) E i and B were chosen as input features A feature vector was generated for every step in each iteration For the response variables, steps which were more than n steps from convergence were labeled 1 and steps that were n or fewer steps from convergence were labeled as +1 We used the values n = 3, 5, 10 to create three sets of response variables 3 Modeling the Data We used the LIBSVM package[4] to generate severals SVM models for our data The quality of the models was assessed by random 5-fold cross-validation of the training set data We had a training set of 5,153 trials The features were: the number of molecular orbitals used in the model, the E in calculated energy for the previous m steps, the c 2 c i 0

3 vectors and λ values for the previous m steps, and the B ij values for the previous 2m steps where m ranged from 1 to 10 Since many of the trials represented steps that were too early in the calculation to have m or 2m previous steps, we treated the calculation as if, prior to the actual first step, the calculation had simply failed to make any progress That is, we set E = 0 and we set the c, λ, and e (which is used to calculate B ij ) to the values they have at the first step in the energy calculation Number of previous steps Number of used to form features (m) features f m Results We used the C-SVC with a radial kernel exp( 1 f m u v 2 ) where f m is the number of features generated from taking the previous m steps into account In order to evaluate the quality of our models, we looked at the overall accuracy of prediction, the f-score, and the area under receiver operating characteristic curve We looked at how feature size affected these metric for the three sets of response variables we created for different convergence distances For any given feature set and metric we optimized the cost C to give the highest value of the metric possible Figures 1, 2, and 3 show the optimal accuracy, f-score, and area under ROC curve for feature sets m = 1, 10 The overall accuracy increases with feature set size Accuracy is also higher when fewer data points are labeled as near convergence It is to be expected that steps farther away from convergence would be more difficult to identify as near convergence Accuracy for predicting convergence within 3 steps is very high but this could be due to overfitting The same amount of data was used for all the SVM models but limiting the allowed distance from convergence also shrinks the data in the near convergence category The area under the ROC curve for different convergence distances and feature set sizes shows two opposite trends Predicting convergence in 10 steps has a larger area under curve for larger feature sets but predicting convergence in 3 or 5 steps has a smaller area under curve for larger feature sets This decrease may also be due to the relative sizes of the two categories: near convergence and not near convergence The relative rate of false positive and true positives is changing there are few true positives to begin with Increasing training set size would likely help make an upward trend like in the case of estimating convergence in 10 steps F-score increases slightly for predicting convergence in 10 steps and stays approximately constant or increases very slightly for the other trials This may mean precision and recall are not changing much 3

4 5 Future Work The application of SVMs to determine whether a DIIS calculation is likely to converge soon has been promising However, there is further work necessary to improve the quality and ensure the applicability to more generalized problems A larger number of training samples would improve prediction quality Additionally, it would be necessary to consider multiple molecules in order to be able to build an SVM which would be more generally applicable to systems other than benzene With a large number of different molecules represented, SVMs can be generated for other basis sets as well References [1] Pulay, P (1982), Improved SCF convergence acceleration J Comput Chem, 3: [2] IS Ufimtsev and TJ Martinez, Quantum Chemistry on Graphical Processing Units 3 Analytical Energy Gradients and First Principles Molecular Dynamics, J Chem Theory Comput, 2009, 5, p2619 [3] DA Case, TA Darden, TE Cheatham, III, CL Simmerling, J Wang, RE Duke, R Luo, RC Walker, W Zhang, KM Merz, B Roberts, S Hayik, A Roitberg, G Seabra, J Swails, AW Goetz, I Kolossvry, KF Wong, F Paesani, J Vanicek, RM Wolf, J Liu, X Wu, SR Brozell, T Steinbrecher, H Gohlke, Q Cai, X Ye, J Wang, M-J Hsieh, G Cui, DR Roe, DH Mathews, MG Seetin, R Salomon-Ferrer, C Sagui, V Babin, T Luchko, S Gusarov, A Kovalenko, and PA Kollman (2012), AMBER 12, University of California, San Francisco [4] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27, 2011 Software available at cjlin/libsvm 4

5 Figure 1: Best Accuracy for convergence for different m values Figure 2: Best F-score for convergence for different m values 5

6 Figure 3: Best area under ROC curve for convergence for different m values 6

Applications of the Spring. Force: molecules

Applications of the Spring. Force: molecules Applications of the Spring Atoms interact via the coulomb force Force: molecules When atoms are far apart, they are attractive When atoms are too close, they are repulsive Atoms in a molecule display relative

More information

Time-dependence of key H-bond/electrostatic interaction distances in the sirna5-hago2 complexes... Page S14

Time-dependence of key H-bond/electrostatic interaction distances in the sirna5-hago2 complexes... Page S14 Supporting Information Probing the Binding Interactions between Chemically Modified sirnas and Human Argonaute 2 Using Microsecond Molecular Dynamics Simulations S. Harikrishna* and P. I. Pradeepkumar*

More information

High Performance Computing

High Performance Computing High Performance Computing ADVANCED SCIENTIFIC COMPUTING Dr. Ing. Morris Riedel Adjunct Associated Professor School of Engineering and Natural Sciences, University of Iceland Research Group Leader, Juelich

More information

Towards fast and accurate binding affinity. prediction with pmemdgti: an efficient. implementation of GPU-accelerated. Thermodynamic Integration

Towards fast and accurate binding affinity. prediction with pmemdgti: an efficient. implementation of GPU-accelerated. Thermodynamic Integration Towards fast and accurate binding affinity prediction with pmemdgti: an efficient implementation of GPU-accelerated Thermodynamic Integration Tai-Sung Lee,, Yuan Hu, Brad Sherborne, Zhuyan Guo, and Darrin

More information

Protein-protein interactions of Human Glyoxalase II: findings of a reliable docking protocol

Protein-protein interactions of Human Glyoxalase II: findings of a reliable docking protocol Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTARY INFORMATION Protein-protein interactions of Human Glyoxalase

More information

A DFT and ONIOM study of C H hydroxylation catalyzed. by nitrobenzene 1,2-dioxygenase

A DFT and ONIOM study of C H hydroxylation catalyzed. by nitrobenzene 1,2-dioxygenase Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 A DFT and ONIOM study of C H hydroxylation catalyzed by nitrobenzene 1,2-dioxygenase

More information

Supporting Information Comparative Molecular Dynamics Studies of Human DNA Polymerase η

Supporting Information Comparative Molecular Dynamics Studies of Human DNA Polymerase η Supporting Information Comparative Molecular Dynamics Studies of Human DNA Polymerase η Melek N. Ucisik and Sharon Hammes-Schiffer* Department of Chemistry, University of Illinois at Urbana-Champaign,

More information

Protein structure sampling based on molecular dynamics and improvement of docking prediction

Protein structure sampling based on molecular dynamics and improvement of docking prediction 1 1 1, 2 1 NMR X Protein structure sampling based on molecular dynamics and improvement of docking prediction Yusuke Matsuzaki, 1 Yuri Matsuzaki, 1 Masakazu Sekijima 1, 2 and Yutaka Akiyama 1 When a protein

More information

Supporting Information

Supporting Information Supporting Information A Streptavidin Binding Site Mutation Yields an Unexpected Result: An Ionized Asp128 Residue is Not Essential for Strong Biotin Binding. Loren Baugh, Isolde Le Trong, Patrick S. Stayton,

More information

Interplay between R513 methylation and S516 phosphorylation of the cardiac voltagegated sodium channel

Interplay between R513 methylation and S516 phosphorylation of the cardiac voltagegated sodium channel Supplemental Information Interplay between R513 methylation and S516 phosphorylation of the cardiac voltagegated sodium channel Amino Acids Pedro Beltran-Alvarez, 1, * Ferran Feixas, 2, Sílvia Osuna, 2,

More information

Synthesis and Fluorescence Properties of 3,6-Diaminocarbazole- Modified Pyrrolidinyl Peptide Nucleic Acid

Synthesis and Fluorescence Properties of 3,6-Diaminocarbazole- Modified Pyrrolidinyl Peptide Nucleic Acid Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 1 Synthesis and Fluorescence Properties of 3,6-Diaminocarbazole- Modified Pyrrolidinyl Peptide

More information

Supporting information for: An extensible interface. for QM/MM molecular dynamics simulations with AMBER

Supporting information for: An extensible interface. for QM/MM molecular dynamics simulations with AMBER Supporting information for: An extensible interface for QM/MM molecular dynamics simulations with AMBER Andreas W. Götz,, Matthew A. Clark, and Ross C. Walker,, San Diego Supercomputer Center, University

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 5 The Hartree-Fock method C.-K. Skylaris Learning outcomes Be able to use the variational principle in quantum calculations Be able to construct Fock operators

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

Chemistry 881 Lecture Topics Fall 2001

Chemistry 881 Lecture Topics Fall 2001 Chemistry 881 Lecture Topics Fall 2001 Texts PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon MATHEMATICS for PHYSICAL CHEMISTRY, Mortimer i. Mathematics Review (M, Chapters 1,2,3 & 4; M&S,

More information

Supporting Information. Pterosin Sesquiterpenoids from Pteris cretica as Hypolipidemic Agents. via Activating Liver X Receptors

Supporting Information. Pterosin Sesquiterpenoids from Pteris cretica as Hypolipidemic Agents. via Activating Liver X Receptors Supporting Information Pterosin Sesquiterpenoids from Pteris cretica as Hypolipidemic Agents via Activating Liver X Receptors Xiangkun Luo, Chanjuan Li, Pan Luo, Xin Lin, Hang Ma, Navindra P. Seeram, Ching

More information

Density Functional Theory

Density Functional Theory Density Functional Theory March 26, 2009 ? DENSITY FUNCTIONAL THEORY is a method to successfully describe the behavior of atomic and molecular systems and is used for instance for: structural prediction

More information

Available online at ScienceDirect. Physics Procedia 57 (2014 ) 7 15

Available online at  ScienceDirect. Physics Procedia 57 (2014 ) 7 15 Available online at www.sciencedirect.com ScienceDirect Physics Procedia 57 (2014 ) 7 15 27th Annual CSP Workshops on Recent Developments in Computer Simulation Studies in Condensed Matter Physics, CSP

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

Original β,γ-diamino acid as inducer of a γ-turn mimic in short peptides.

Original β,γ-diamino acid as inducer of a γ-turn mimic in short peptides. Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry riginal β,γ-diamino acid as inducer of a γ-turn mimic in short peptides. Sophie Thétiot-Laurent, a Francelin Bouillère, a Jean-Pierre

More information

On the adaptive finite element analysis of the Kohn-Sham equations

On the adaptive finite element analysis of the Kohn-Sham equations On the adaptive finite element analysis of the Kohn-Sham equations Denis Davydov, Toby Young, Paul Steinmann Denis Davydov, LTM, Erlangen, Germany August 2015 Denis Davydov, LTM, Erlangen, Germany College

More information

Born-Oppenheimer Approximation

Born-Oppenheimer Approximation Born-Oppenheimer Approximation Adiabatic Assumption: Nuclei move so much more slowly than electron that the electrons that the electrons are assumed to be obtained if the nuclear kinetic energy is ignored,

More information

Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation

Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation Adam J. Rothman School of Statistics University of Minnesota October 8, 2014, joint work with Liliana

More information

Working Set Selection Using Second Order Information for Training SVM

Working Set Selection Using Second Order Information for Training SVM Working Set Selection Using Second Order Information for Training SVM Chih-Jen Lin Department of Computer Science National Taiwan University Joint work with Rong-En Fan and Pai-Hsuen Chen Talk at NIPS

More information

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij ) MO Calculation for a Diatomic Molecule Introduction The properties of any molecular system can in principle be found by looking at the solutions to the corresponding time independent Schrodinger equation

More information

23 The Born-Oppenheimer approximation, the Many Electron Hamiltonian and the molecular Schrödinger Equation M I

23 The Born-Oppenheimer approximation, the Many Electron Hamiltonian and the molecular Schrödinger Equation M I 23 The Born-Oppenheimer approximation, the Many Electron Hamiltonian and the molecular Schrödinger Equation 1. Now we will write down the Hamiltonian for a molecular system comprising N nuclei and n electrons.

More information

Chemistry 3502/4502. Exam III. March 28, ) Circle the correct answer on multiple-choice problems.

Chemistry 3502/4502. Exam III. March 28, ) Circle the correct answer on multiple-choice problems. A Chemistry 352/452 Exam III March 28, 25 1) Circle the correct answer on multiple-choice problems. 2) There is one correct answer to every multiple-choice problem. There is no partial credit. On the short-answer

More information

Introduction to Hartree-Fock Molecular Orbital Theory

Introduction to Hartree-Fock Molecular Orbital Theory Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Origins of Mathematical Modeling in Chemistry Plato (ca. 428-347

More information

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine An Introduction to Quantum Chemistry and Potential Energy Surfaces Benjamin G. Levine This Week s Lecture Potential energy surfaces What are they? What are they good for? How do we use them to solve chemical

More information

A Tutorial on Support Vector Machine

A Tutorial on Support Vector Machine A Tutorial on School of Computing National University of Singapore Contents Theory on Using with Other s Contents Transforming Theory on Using with Other s What is a classifier? A function that maps instances

More information

Atomic Accessibility Radii for Molecular Dynamics Analysis

Atomic Accessibility Radii for Molecular Dynamics Analysis Zuse Institute Berlin Takustr. 7 14195 Berlin Germany NORBERT LINDOW 1, DANIEL BAUM 2, HANS-CHRISTIAN HEGE 3 Atomic Accessibility Radii for Molecular Dynamics Analysis 1 0000-0001-5143-2573 2 0000-0003-1550-7245

More information

Multidimensional Replica Exchange Molecular Dynamics Yields a Converged Ensemble of an RNA Tetranucleotide

Multidimensional Replica Exchange Molecular Dynamics Yields a Converged Ensemble of an RNA Tetranucleotide pubs.acs.org/jctc Terms of Use Multidimensional Replica Exchange Molecular Dynamics Yields a Converged Ensemble of an RNA Tetranucleotide Christina Bergonzo, Niel M. Henriksen, Daniel R. Roe, Jason M.

More information

SVM May 2007 DOE-PI Dianne P. O Leary c 2007

SVM May 2007 DOE-PI Dianne P. O Leary c 2007 SVM May 2007 DOE-PI Dianne P. O Leary c 2007 1 Speeding the Training of Support Vector Machines and Solution of Quadratic Programs Dianne P. O Leary Computer Science Dept. and Institute for Advanced Computer

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Quantum mechanics can be used to calculate any property of a molecule. The energy E of a wavefunction Ψ evaluated for the Hamiltonian H is,

Quantum mechanics can be used to calculate any property of a molecule. The energy E of a wavefunction Ψ evaluated for the Hamiltonian H is, Chapter : Molecules Quantum mechanics can be used to calculate any property of a molecule The energy E of a wavefunction Ψ evaluated for the Hamiltonian H is, E = Ψ H Ψ Ψ Ψ 1) At first this seems like

More information

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education Session 1 Introduction to Computational Chemistry 1 Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools

More information

Pattern Recognition 2018 Support Vector Machines

Pattern Recognition 2018 Support Vector Machines Pattern Recognition 2018 Support Vector Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recognition 1 / 48 Support Vector Machines Ad Feelders ( Universiteit Utrecht

More information

A One-Slide Summary of Quantum Mechanics

A One-Slide Summary of Quantum Mechanics A One-Slide Summary of Quantum Mechanics Fundamental Postulate: O! = a! What is!?! is an oracle! operator wave function (scalar) observable Where does! come from?! is refined Variational Process H! = E!

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines Hsuan-Tien Lin Learning Systems Group, California Institute of Technology Talk in NTU EE/CS Speech Lab, November 16, 2005 H.-T. Lin (Learning Systems Group) Introduction

More information

Midterm. Introduction to Machine Learning. CS 189 Spring Please do not open the exam before you are instructed to do so.

Midterm. Introduction to Machine Learning. CS 189 Spring Please do not open the exam before you are instructed to do so. CS 89 Spring 07 Introduction to Machine Learning Midterm Please do not open the exam before you are instructed to do so. The exam is closed book, closed notes except your one-page cheat sheet. Electronic

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Here we approach the two-class classification problem in a direct way: We try and find a plane that separates the classes in feature space. If we cannot, we get creative in two

More information

Density Functional Theory

Density Functional Theory Density Functional Theory Iain Bethune EPCC ibethune@epcc.ed.ac.uk Overview Background Classical Atomistic Simulation Essential Quantum Mechanics DFT: Approximations and Theory DFT: Implementation using

More information

Computational Physics. J. M. Thijssen

Computational Physics. J. M. Thijssen Computational Physics J. M. Thijssen Delft University of Technology CAMBRIDGE UNIVERSITY PRESS Contents Preface xi 1 Introduction 1 1.1 Physics and computational physics 1 1.2 Classical mechanics and statistical

More information

Active Learning with Support Vector Machines for Tornado Prediction

Active Learning with Support Vector Machines for Tornado Prediction International Conference on Computational Science (ICCS) 2007 Beijing, China May 27-30, 2007 Active Learning with Support Vector Machines for Tornado Prediction Theodore B. Trafalis 1, Indra Adrianto 1,

More information

Computational Insights on Crystal Structures of the Oxygen- Evolving Complex of Photosystem II with either Ca 2+ or Ca 2+ Substituted by Sr 2+

Computational Insights on Crystal Structures of the Oxygen- Evolving Complex of Photosystem II with either Ca 2+ or Ca 2+ Substituted by Sr 2+ Supporting Information for: Computational Insights on Crystal Structures of the Oxygen- Evolving Complex of Photosystem II with either Ca 2+ or Ca 2+ Substituted by Sr 2+ Leslie Vogt, *, Mehmed Z. Ertem,,

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

The Intrinsic Recurrent Support Vector Machine

The Intrinsic Recurrent Support Vector Machine he Intrinsic Recurrent Support Vector Machine Daniel Schneegaß 1,2, Anton Maximilian Schaefer 1,3, and homas Martinetz 2 1- Siemens AG, Corporate echnology, Learning Systems, Otto-Hahn-Ring 6, D-81739

More information

AE = q < H(p < ) + (1 q < )H(p > ) H(p) = p lg(p) (1 p) lg(1 p)

AE = q < H(p < ) + (1 q < )H(p > ) H(p) = p lg(p) (1 p) lg(1 p) 1 Decision Trees (13 pts) Data points are: Negative: (-1, 0) (2, 1) (2, -2) Positive: (0, 0) (1, 0) Construct a decision tree using the algorithm described in the notes for the data above. 1. Show the

More information

Enhancing Amber for Use on the Blue Waters High- Performance Computing Resource

Enhancing Amber for Use on the Blue Waters High- Performance Computing Resource Enhancing Amber for Use on the Blue Waters High- Performance Computing Resource Daniel R. Roe a, Jason M. Swails b, Romelia Salomon-Ferrer c, Adrian E. Roitberg b, and Thomas E. Cheatham III a * a. Department

More information

The successful wavefunction can be written as a determinant: # 1 (2) # 2 (2) Electrons. This can be generalized to our 2N-electron wavefunction:

The successful wavefunction can be written as a determinant: # 1 (2) # 2 (2) Electrons. This can be generalized to our 2N-electron wavefunction: T2. CNDO to AM1: The Semiempirical Molecular Orbital Models The discussion in sections T2.1 T2.3 applies also to ab initio molecular orbital calculations. T2.1 Slater Determinants Consider the general

More information

Algorithms and Computational Aspects of DFT Calculations

Algorithms and Computational Aspects of DFT Calculations Algorithms and Computational Aspects of DFT Calculations Part I Juan Meza and Chao Yang High Performance Computing Research Lawrence Berkeley National Laboratory IMA Tutorial Mathematical and Computational

More information

Support Vector Machine for Classification and Regression

Support Vector Machine for Classification and Regression Support Vector Machine for Classification and Regression Ahlame Douzal AMA-LIG, Université Joseph Fourier Master 2R - MOSIG (2013) November 25, 2013 Loss function, Separating Hyperplanes, Canonical Hyperplan

More information

Notes on excitation of an atom or molecule by an electromagnetic wave field. F. Lanni / 11feb'12 / rev9sept'14

Notes on excitation of an atom or molecule by an electromagnetic wave field. F. Lanni / 11feb'12 / rev9sept'14 Notes on excitation of an atom or molecule by an electromagnetic wave field. F. Lanni / 11feb'12 / rev9sept'14 Because the wavelength of light (400-700nm) is much greater than the diameter of an atom (0.07-0.35

More information

Conical Intersections. Spiridoula Matsika

Conical Intersections. Spiridoula Matsika Conical Intersections Spiridoula Matsika The Born-Oppenheimer approximation Energy TS Nuclear coordinate R ν The study of chemical systems is based on the separation of nuclear and electronic motion The

More information

Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview. Introduction to ML. Marek Petrik 4/25/2017 Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

More information

Lecture 10: Support Vector Machine and Large Margin Classifier

Lecture 10: Support Vector Machine and Large Margin Classifier Lecture 10: Support Vector Machine and Large Margin Classifier Applied Multivariate Analysis Math 570, Fall 2014 Xingye Qiao Department of Mathematical Sciences Binghamton University E-mail: qiao@math.binghamton.edu

More information

Lecture 5: More about one- Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory.

Lecture 5: More about one- Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory. Lecture 5: More about one- determinant wave functions Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory. Items from Lecture 4 Could the Koopmans theorem

More information

Jeff Howbert Introduction to Machine Learning Winter

Jeff Howbert Introduction to Machine Learning Winter Classification / Regression Support Vector Machines Jeff Howbert Introduction to Machine Learning Winter 2012 1 Topics SVM classifiers for linearly separable classes SVM classifiers for non-linearly separable

More information

Handbook of Computational Quantum Chemistry

Handbook of Computational Quantum Chemistry Handbook of Computational Quantum Chemistry David B. Cook Dept. of Chemistry University of Sheffield DOVER PUBLICATIONS, INC. Mineola, New York F Contents 1 Mechanics and molecules 1 1.1 1.2 1.3 1.4 1.5

More information

Chemistry 3502/4502. Exam III. All Hallows Eve/Samhain, ) This is a multiple choice exam. Circle the correct answer.

Chemistry 3502/4502. Exam III. All Hallows Eve/Samhain, ) This is a multiple choice exam. Circle the correct answer. B Chemistry 3502/4502 Exam III All Hallows Eve/Samhain, 2003 1) This is a multiple choice exam. Circle the correct answer. 2) There is one correct answer to every problem. There is no partial credit. 3)

More information

Useful Equations for solving SVM questions

Useful Equations for solving SVM questions Support Vector Machines (send corrections to yks at csail.mit.edu) In SVMs we are trying to find a decision boundary that maximizes the "margin" or the "width of the road" separating the positives from

More information

Intro to ab initio methods

Intro to ab initio methods Lecture 2 Part A Intro to ab initio methods Recommended reading: Leach, Chapters 2 & 3 for QM methods For more QM methods: Essentials of Computational Chemistry by C.J. Cramer, Wiley (2002) 1 ab initio

More information

Pyrogallol[4]arenes as frustrated organic solids

Pyrogallol[4]arenes as frustrated organic solids Supporting Information Pyrogallol[4]arenes as frustrated organic solids Harshita Kumari, a Loredana Erra, b Alicia C. Webb, a Prashant Bhatt, c Charles L. Barnes, a Carol A. Deakyne, * a John E. Adams

More information

Combining Metadynamics Simulation and

Combining Metadynamics Simulation and Supporting Information Combining Metadynamics Simulation and Experiments to Characterize Dendrimers in Solution Giovanni M. Pavan*,a,, Alessandro Barducci*,b,c,, Lorenzo Albertazzi d and Michele Parrinello

More information

Statistical Methods for Data Mining

Statistical Methods for Data Mining Statistical Methods for Data Mining Kuangnan Fang Xiamen University Email: xmufkn@xmu.edu.cn Support Vector Machines Here we approach the two-class classification problem in a direct way: We try and find

More information

Machine Learning, Midterm Exam

Machine Learning, Midterm Exam 10-601 Machine Learning, Midterm Exam Instructors: Tom Mitchell, Ziv Bar-Joseph Wednesday 12 th December, 2012 There are 9 questions, for a total of 100 points. This exam has 20 pages, make sure you have

More information

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2 Purdue University CHM 67300 Computational Quantum Chemistry REVIEW Yingwei Wang October 10, 2013 Review: Prof Slipchenko s class, Fall 2013 Contents 1 Hartree energy 2 2 Many-body system 2 3 Born-Oppenheimer

More information

Statistical Methods for SVM

Statistical Methods for SVM Statistical Methods for SVM Support Vector Machines Here we approach the two-class classification problem in a direct way: We try and find a plane that separates the classes in feature space. If we cannot,

More information

Physics 227 Exam 2. Rutherford said that if you really understand something you should be able to explain it to your grandmother.

Physics 227 Exam 2. Rutherford said that if you really understand something you should be able to explain it to your grandmother. Physics 227 Exam 2 Rutherford said that if you really understand something you should be able to explain it to your grandmother. For each of the topics on the next two pages, write clear, concise, physical

More information

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University AN INTRODUCTION TO QUANTUM CHEMISTRY Mark S. Gordon Iowa State University 1 OUTLINE Theoretical Background in Quantum Chemistry Overview of GAMESS Program Applications 2 QUANTUM CHEMISTRY In principle,

More information

Observing Dark Worlds (Final Report)

Observing Dark Worlds (Final Report) Observing Dark Worlds (Final Report) Bingrui Joel Li (0009) Abstract Dark matter is hypothesized to account for a large proportion of the universe s total mass. It does not emit or absorb light, making

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

Advanced Introduction to Machine Learning

Advanced Introduction to Machine Learning 10-715 Advanced Introduction to Machine Learning Homework 3 Due Nov 12, 10.30 am Rules 1. Homework is due on the due date at 10.30 am. Please hand over your homework at the beginning of class. Please see

More information

Supporting Information. Novel Insights into a major DNA oxidative lesion: its effects on Z-DNA. stabilization

Supporting Information. Novel Insights into a major DNA oxidative lesion: its effects on Z-DNA. stabilization Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information Novel Insights into a major DNA oxidative lesion:

More information

0.1 Schrödinger Equation in 2-dimensional system

0.1 Schrödinger Equation in 2-dimensional system 0.1 Schrödinger Equation in -dimensional system In HW problem set 5, we introduced a simpleminded system describing the ammonia (NH 3 ) molecule, consisting of a plane spanned by the 3 hydrogen atoms and

More information

Linear classifiers: Logistic regression

Linear classifiers: Logistic regression Linear classifiers: Logistic regression STAT/CSE 416: Machine Learning Emily Fox University of Washington April 19, 2018 How confident is your prediction? The sushi & everything else were awesome! The

More information

Sequential Minimal Optimization (SMO)

Sequential Minimal Optimization (SMO) Data Science and Machine Intelligence Lab National Chiao Tung University May, 07 The SMO algorithm was proposed by John C. Platt in 998 and became the fastest quadratic programming optimization algorithm,

More information

Structure of diatomic molecules

Structure of diatomic molecules Structure of diatomic molecules January 8, 00 1 Nature of molecules; energies of molecular motions Molecules are of course atoms that are held together by shared valence electrons. That is, most of each

More information

MOLECULAR STRUCTURE. The general molecular Schrödinger equation, apart from electron spin effects, is. nn ee en

MOLECULAR STRUCTURE. The general molecular Schrödinger equation, apart from electron spin effects, is. nn ee en MOLECULAR STRUCTURE The Born-Oppenheimer Approximation The general molecular Schrödinger equation, apart from electron spin effects, is ( ) + + V + V + V =E nn ee en T T ψ ψ n e where the operators in

More information

Support Vector Machine I

Support Vector Machine I Support Vector Machine I Jia-Bin Huang ECE-5424G / CS-5824 Virginia Tech Spring 2019 Administrative Please use piazza. No emails. HW 0 grades are back. Re-grade request for one week. HW 1 due soon. HW

More information

Advanced statistical methods for data analysis Lecture 2

Advanced statistical methods for data analysis Lecture 2 Advanced statistical methods for data analysis Lecture 2 RHUL Physics www.pp.rhul.ac.uk/~cowan Universität Mainz Klausurtagung des GK Eichtheorien exp. Tests... Bullay/Mosel 15 17 September, 2008 1 Outline

More information

Stabilized quasi-newton optimization of noisy potential energy surfaces

Stabilized quasi-newton optimization of noisy potential energy surfaces Stabilized quasi-newton optimization of noisy potential energy surfaces Bastian Schaefer, S. Alireza Ghasemi, Shantanu Roy, and Stefan Goedecker Citation: The Journal of Chemical Physics 142, 034112 (2015);

More information

Lecture 10. Born-Oppenheimer approximation LCAO-MO application to H + The potential energy surface MOs for diatomic molecules. NC State University

Lecture 10. Born-Oppenheimer approximation LCAO-MO application to H + The potential energy surface MOs for diatomic molecules. NC State University Chemistry 431 Lecture 10 Diatomic molecules Born-Oppenheimer approximation LCAO-MO application to H + 2 The potential energy surface MOs for diatomic molecules NC State University Born-Oppenheimer approximation

More information

UVA CS 4501: Machine Learning

UVA CS 4501: Machine Learning UVA CS 4501: Machine Learning Lecture 16 Extra: Support Vector Machine Optimization with Dual Dr. Yanjun Qi University of Virginia Department of Computer Science Today Extra q Optimization of SVM ü SVM

More information

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 4 Molecular orbitals C.-K. Skylaris Learning outcomes Be able to manipulate expressions involving spin orbitals and molecular orbitals Be able to write down

More information

CHEMISTRY Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait

CHEMISTRY Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait CHEMISTRY 2000 Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait Why Do Bonds Form? An energy diagram shows that a bond forms between two atoms if the overall energy of the system

More information

Earthquake-Induced Structural Damage Classification Algorithm

Earthquake-Induced Structural Damage Classification Algorithm Earthquake-Induced Structural Damage Classification Algorithm Max Ferguson, maxkferg@stanford.edu, Amory Martin, amorym@stanford.edu Department of Civil & Environmental Engineering, Stanford University

More information

Discriminant Kernels based Support Vector Machine

Discriminant Kernels based Support Vector Machine Discriminant Kernels based Support Vector Machine Akinori Hidaka Tokyo Denki University Takio Kurita Hiroshima University Abstract Recently the kernel discriminant analysis (KDA) has been successfully

More information

Calculations of electron-molecule scattering cross sections using the Rmatrix method

Calculations of electron-molecule scattering cross sections using the Rmatrix method Calculations of electron-molecule scattering cross sections using the Rmatrix method Jimena Gorfinkiel Department of Physical Sciences The Open University Milton Keynes, UK Jimena.Gorfinkiel@open.ac.uk

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines Shivani Agarwal Support Vector Machines (SVMs) Algorithm for learning linear classifiers Motivated by idea of maximizing margin Efficient extension to non-linear

More information

Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Manno 6928, Switzerland.

Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Manno 6928, Switzerland. Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 ELECTRONIC SUPPTING INFMATION F: Self-organization of star-shaped columnar liquid crystals with

More information

Improved Reweighting of Accelerated Molecular Dynamics Simulations for Free Energy Calculation

Improved Reweighting of Accelerated Molecular Dynamics Simulations for Free Energy Calculation This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. pubs.acs.org/jctc Improved

More information

MSE 102, Fall 2014 Midterm #2. Write your name here [10 points]:

MSE 102, Fall 2014 Midterm #2. Write your name here [10 points]: MSE 102, Fall 2014 Midterm #2 Write your name here [10 points]: Instructions: Answer all questions to the best of your abilities. Be sure to write legibly and state your answers clearly. The point values

More information

Variational Methods for Electronic Structure

Variational Methods for Electronic Structure Variational Methods for Electronic Structure The hydrogen atom is a two-body system consisting of a proton and an electron. If spin and relativistic effects are ignored, then the Schrödinger equation for

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Course Info. Instructor: Nicholas Ruozzi Office: ECSS 3.409 Office hours: Tues.

More information

Introduction to Computational Chemistry

Introduction to Computational Chemistry Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry room B430, Chemicum 4th floor vesa.hanninen@helsinki.fi September 3, 2013 Introduction and theoretical backround September

More information

Machine Learning Support Vector Machines. Prof. Matteo Matteucci

Machine Learning Support Vector Machines. Prof. Matteo Matteucci Machine Learning Support Vector Machines Prof. Matteo Matteucci Discriminative vs. Generative Approaches 2 o Generative approach: we derived the classifier from some generative hypothesis about the way

More information

Constrained Optimization and Support Vector Machines

Constrained Optimization and Support Vector Machines Constrained Optimization and Support Vector Machines Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/

More information

Introduction to numerical projects

Introduction to numerical projects Introduction to numerical projects Here follows a brief recipe and recommendation on how to write a report for each project. Give a short description of the nature of the problem and the eventual numerical

More information